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Abstract. We consider the Schrödinger equation (SE) with the potential: Vq(r) = δ r2+ A
r +

B
r2 defined by us as

the quasi-harmonic potential with B
r2 the centrifugal type term, δ ,A,B > 0 and 0 < µδ � 1. Applying Laplace

transform method (LTM), we obtain a new analytical solution in the Vq- potential problem. Using directly
and inverse Laplace transforms, we give the complete forms of the energy eigenvalues and the wave functions.
Furthermore, introducing the potentials family

{
λVq

}
λ>0, we outline a path for deriving the critical value of

the angular momentum `c depending on the scalar minimum value λc chosen such that bound states exist. For
this family of potentials, we obtain a useful approximation of upper bound `+c to `c .
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1. INTRODUCTION

In quantum mechanics, several authors have solved the Schrödinger equation [1] for potentials, such as
pseudo harmonic, Mie type, Coulomb-like potentials [2–4], and Halton, Manning Rosen [5,6], Pöshel-Teller [7]
and Wood-Saxon potential at the nuclear scale [8, 9].

There are several methods for solving the SE such as Laplace transform [10], Nikiforov-Uvarov [6],
homotopy perturbation [11], series solution [12], Fourier transform [13], asymptotic iteration methods [14],
super-symmetric approach [15], variational method [16] and others.

In this paper, we note that the Laplace transform leads to the analytical and exact forms of eigenfunctions
for the potential:

Vq(r) = δ r2 +
A
r
+

B
r2 , (1)

which is a special quasi-harmonic type potential containing a centrifugal type term.
The Vq potential at the nuclear scale implies a short range behaviour of the potential. For this reason,

there is a finite number of bound states beyond which the ` -state is unbounded [17]. It is important to obtain
the critical value of angular momentum `c, defined indirectly by λ > 0, a scalar chosen to ensure Ve f f < 0 (see
to Sect. 3.2), which gives rise to bound states for the short-range potential. Therefore, the second aim of this
paper is to obtain an approximation for `c. More exactly, in the case of Vq potential, we find an upper bound `+c
to `c .
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The present paper gives an analytical solution to the Vq- potential problem by LTM to solve SE. In
Section 2, we find the proper Laplace transform to solve SE. In Section 3, we give two categories of results: in
subsection 3.1, the energy and eigenfunctions, and in subsection 3.2, the assessment of `+c ; we also introduce a
family of Vq potentials, determined by some values of scalar λ to ensure the bound states.

Conclusions close our paper.

2. THE PROPER LAPLACE TRANSFORM FOR BOUND STATES SPECTRUM

In the natural units c = } = 1, assuming spherical symmetry of the potential, the time-independent
Schrödinger equation in the spherical coordinates (r,θ ,ϕ) is given by [6, 18]:[

− 1
2µ

O2 +V (r)
]

Ψn`m(r,θ ,ϕ) = En`Ψn`m(r,θ ,ϕ), (2)

where En` and V (r) denote the energy eigenvalues, the potential and µ the reduced mass, respectively, for a
certain physical system.

The Ψn`m(r,θ ,ϕ) denotes the n-th state of eigenfunctions. We choose the bound state eigenfunctions
Ψn`m(r,θ ,ϕ) such that wave functions are vanishing for r −→ 0, r −→ ∞. We look for separable solutions
form of SE:

Ψn`m(r,θ ,ϕ) = ℜn`(r)Y m
` (θ ,ϕ), (3)

where ℜn`(r) are the radial functions and Y m
` (θ ,ϕ) the angular functions, respectively.

Equation (2) provides two separated equations: one is known as the spherical harmonics equation and the
other is known as the radial equation, which generally takes the following form in a D- dimensional space with
the hyper-sphere ΣD = ΣD(r,ϕ,θ1, ..,θD−2):

ℜ
′′(r)+

2
r

ℜ
′(r)+

[
−`(`+D−2)

r2 +2µ(En`−V (r))
]

ℜ(r) = 0, (4)

where `(`+D−2) is the separation constant with D > 1 and `= 0,1,2,3, ...,n−1.
In this paper, because we consider the stationary case of SE with the potential Vq, we work in three spatial

dimensions D = 3. So, eq. (4) becomes:

ℜ
′′(r)+

2
r

ℜ
′(r)+

[
−`(`+1)

r2 +2µ

(
En`−δ r2− A

r
− B

r2

)]
ℜ(r) = 0. (5)

In the eq. (5), for r→ ∞, we consider the following asymptotic form: [19]

ℜ
′′(r)−4d2r2

ℜ(r) = 0,

d =

√
µδ

2
, δ > 0,

(6)

and consequently, we propose to find the solution in the following form:

ℜ(r) = rke−d r2
f (r), k > 0. (7)

Further, we solve the following SE form with k-value and f (r) function as unknowns:

r2 f ′′(r)+ r(ηk +2r−2dr2) f ′(r)+
[
Qn`−2µAr+ ∈k r2 +dkr3−2µδ r4 +4d2r4] f (r) = 0, (8)
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where the prime over f (r) denotes the derivative with respect to r; also, we introduce the following notations:

Qn` = k(k+3)− `(`+1)−2µB,

∈k= 2µEn`−4dk−6d,ηk = 2k.
(9)

Starting from this point, we impose several parametric restrictions.
Firstly, we aim to obtain:

Qn` = 0. (10)

For that, we consider the following correlation µB = `, which is possible physical speaking, because both
µ > 0 (as a mass) and B > 0, with µB taking an integer value like `; also, it is useful from a mathematical point
of view, because it simplifies the Qn` expression; after that, the eq.(10) implies two values for k:

k+ = `,

k− =−(`+3).
(11)

The acceptable physical value remains k+ = `.
For r > 0, the equation (8) becomes:

r f ”(r)+(η`+2r−2dr2) f ′(r)+ [4d2r3−2µδ r3 +d`r2+ ∈` r−2µA] f (r) = 0. (12)

In eq. (12), in order to reduce the complexity of its polynomis coefficients, we simultaneously consider
two restrictions: a) a parametric restriction µδ � 1 and b) a scale restriction r� 1, making d and r small
enough (e.g. 1 ∼ a0 - the first Bohr radius at the atomic scale, or 1 ∼ the nucleus radius at the nuclear scale,
depending on the considered physical conditions).

Hence, the following differential equation in the unknown function f (r) remains unsolved:

r f ”(r)+(η`+2r−2dr2) f ′(r)+(d`r2+ ∈` r−2µA) f (r) = 0. (13)

So, in eq. (8), before working in the transform space by applying Laplace transform, we reduce the
differential equation from third to the second order by using Qn` = 0 with the above restrictions.

Therefore, we apply the Laplace transform Φ(s) = L{ f (r)}(s) , with Re(s)> 0 [10], and eq. (13) beco-
mes:

d(2s− `)Φ”(s)+(s2 +2s+ ∈̃)Φ ′(s)+(γs+α)Φ(s) = 0, (14)

where :

γ = 2−2`,

α = 2µA+2,

∈̃=∈+4d.

(15)

We observe that s0 =
`
2 is a singular point, suggesting the following form of the Laplace transform:

Φ(s) =
Cn`(

s− `
2

)n+1 . (16)

The inverse Laplace transform f (r) = L−1 {Φ(s)}(r) leads to the following expression:

f (r) =
Cn`

n!
rne

`r
2 . (17)
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3. RESULTS

3.1. The energy eigenvalues and wave functions

Using the form (16) in eq.(14), we obtain the system of conditions:

γ = n+1,

α = 2(n+1)+d`γ,

Ñ− `α = 2(n+1)∈̃,
(18)

where Ñ = 4d(n+1)(n+2).
Solving the third equation from (18), we obtain the energy eigenvalues:

En` =
d
µ

[
n+2`+3− α`

4d(n+1)

]
=

√
δ

2µ

[
n+2`+3− `

(4+ `)

8d

]
. (19)

We remark that in the case of harmonic oscillator V (r) = 1
2 µω2r2 , the energy expression leads to the

eigenvalue E00 =
3
2 ω which is the well known ground state energy.

A complete solution of SE implies the computation of normalization constant Cn` from the condition:∫
∞

0
[ℜ(r)]2 r2dr = 1. (20)

In order to calculate elegantly the normalization constant, we propose to use a special and remarkable
integral; but for that, it is necessary to take in account the approximation r− `

4d ≈ r which occurs in the
exponential part of the integral by the above condition (20).

The remarkable integral is:

∫
∞

0
xpe−axq

dx =
1
q

Γ

(
p+1

q

)
a

p+1
q

, p,q,a > 0, (21)

where Γ(·) is the gamma function.
Thus, we obtain the normalization constant:

Cn` = n!

{
2(2d)`+n+ 3

2

Γ(`+n+ 3
2)

e−
`2
8d

} 1
2

. (22)

Finally, using the relations (11), (17), (22) in the radial function (7), we find the complete analytical form
of the eigenfunctions:

ℜn`(r) = rn+`Cn`

n!
e−dr2+ `

2 r. (23)

Further, we compute the rrms radius:

rrms =
√

< r2 >, (24)

where

< r2 >=
∫

∞

0
r2 [ℜ(r)]2 r2dr, (25)

and obtain :

rrms =

√
`+n+ 3

2
2d

=

√
`+n+ 3

2√
2µδ

,δ 6= 0. (26)
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3.2. The upper bound approximation of angular momentum

The methodology for the SE via LTM is also useful in the short range potential case [20]. At the nuclear
scale, we introduce the family of potentials

{
λVq

}
λ>0 with δ ,A,B > 0.

In eq. (4), considering the transformation ℜ(r) = U(r))
r and unit 2µ = 1, we obtain a SE form [21]:[

− d2

dr2 −λVq(r)+
`(`+1)

r2

]
Un`(r) = Ẽn`Un`(r). (27)

Combining λ > 0 and Vq at nuclear scale, the −λVq term is an attractive potential with λ as a measure of
the Vq- family’s strength.

We consider the effective potential: [17]

Ve f f (r) =−λVq(r)+
`(`+1)

r2 . (28)

A possible bound state of positive energy corresponds to the proposed λVq potentials including quasi-
bound states, where λ is relevant in the binding of `-states.

An infinitely small but negative part of Ve f f would permit a bound state.
So, the critical strength value λc(`) is needed to bind a `-state, thus occurring indirectly the critical value

for `.
Regarding the above, we make several computations:
•We define r0- the radius such that V

′
e f f (r0) = 0 and we obtain:

r0 =
3

√
A

2δ
> 0,δ 6= 0. (29)

• The critical strength value of λc occurs as the minimum value necessary to get a bound state from the
condition:

λc ≥ `(`+1)
2

−r3
0V ′q(r0)

,V
′
q(r0)< 0. (30)

•We obtain the upper bound `+c as:

`+c ≈

√
−r3

0V ′q(r0)

2

√
λc =

√
1
2
(2B+(4−

2
3 −1)Ar0)

√
λc, (31)

this upper bound approximation being appropriate for practical work.

4. CONCLUSIONS

In the two body problem, associated with a Vq quasi-harmonic potential having 0 < µδ � 1, and our
defined parametric constraints, we solved 3-dimensional Schrödinger equation via Laplace transform method.
We obtained a complete analytical solution, namely the energy eigenvalues and eigenfunctions.

In the computation of k positive value, we considered the correlation µB = ` and obtained k+ = `. There-
fore, the k value, involved in parametric restriction Qn` = 0, may be a subject of interest in quantum computing.

Using the wave function, we computed the root-mean-square (rms) charge radius, which is measured for
most stable nuclei by electron scattering form factors and/or from the x-ray transition energies of muonic atoms.
It will be interesting to compare our formula of rrms with experimentally-derived values.

Considering at nuclear scale a potentials family
{

λVq
}

λ>0, such that −λVq term becomes an attractive
potential, we also obtained the analytical solution, which is only valid for well bound states, but not for angular
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momentum close to or above the critical `c. We estimated the λc(`), representing the necessary strength of
the λVq potentials, required such that Ve f f contains a negative part. Therefore, we calculated an upper bound
`+c which is a good approximation of `c and find `+c is proportional to

√
λc, namely with the strength of the

potentials family
{

λVq
}

λ>0.
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