A result on \(P_{\geq 3} \)-factor uniform graphs

Sizhong Zhou*, Zhiren Sun**, Fan Yang***

*School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
**School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
***School of Physical and Mathematical Sciences, Nanjing Technology University, Nanjing, Jiangsu 211816, China

Corresponding author: Sizhong Zhou, E-mail: zsz@cumt.edu.cn

Abstract: Let \(k \geq 2 \) be an integer, and let \(G \) be a graph. A \(P_{2k} \)-factor of a graph \(G \) is a spanning subgraph \(F \) of \(G \) such that each component of \(F \) is a path of order at least \(k \). A graph \(G \) is a \(P_{2k} \)-factor uniform graph if \(G \) has a \(P_{2k} \)-factor including \(e_1 \) and excluding \(e_2 \) for any two distinct edges \(e_1 \) and \(e_2 \) of \(G \). In this article, we verify that a 3-edge-connected graph \(G \) is a \(P_{3} \)-factor uniform graph if its sun toughness \(s(G) > 1 \). Furthermore, we show that the two conditions on edge-connectivity and sun toughness are sharp.

Key words: graph; edge-connectivity; sun toughness; \(P_{3} \)-factor; \(P_{3} \)-factor uniform graph.

1. INTRODUCTION

We deal with only finite, undirected and simple graphs, which have neither loops nor multiple edges. Let \(G \) be a graph. We denote by \(V(G) \), \(E(G) \) and \(I(G) \) the vertex set, the edge set and the isolated vertex set of \(G \), respectively, and write \(i(G) = |I(G)| \). For any \(v \in V(G) \), we use \(d_G(v) \) to denote the degree of \(v \) in \(G \). For any \(X \subseteq V(G) \), \(G[X] \) is a subgraph induced by \(X \) of \(G \) with \(V(G[X]) = X \) and \(E(G[X]) = \{ uv \in E(G) : u, v \in X \} \), and write \(G - X = G[V(G) \setminus X] \). For any \(E' \subseteq E(G) \), we denote by \(G - E' \) the subgraph obtained from \(G \) by deleting \(E' \). A vertex subset \(X \) of \(G \) is independent if no two vertices in \(X \) are adjacent to each other. The number of connected components of \(G \) is denoted by \(\omega(G) \). A path on \(n \) vertices is denoted by \(P_n \) and a complete graph on \(n \) vertices is denoted by \(K_n \). Given two graphs \(G_1 \) and \(G_2 \), we use \(G_1 \lor G_2 \) to denote the graph obtained from \(G_1 \lor G_2 \) by adding all the edges joining a vertex of \(G_1 \) to a vertex of \(G_2 \).

Let \(k \geq 2 \) be an integer. A spanning subgraph \(F \) of a graph \(G \) is called a \(P_{2k} \)-factor of \(G \) if each component of \(F \) is a path of order at least \(k \). A graph \(G \) is called a \(P_{2k} \)-factor covered graph if for any \(e \in E(G) \), \(G \) has a \(P_{2k} \)-factor including \(e \).

A graph R is called a factor-critical graph if $R - \{v\}$ admits a perfect matching for every $v \in V(R)$. A graph H is defined as a sun if $H = K_1$, $H = K_2$ or H is the corona of a factor-critical graph R with order at least three, i.e., H is obtained from R by adding a new vertex $w = w(v)$ together with a new edge vw for any $v \in V(R)$. A big sun means a sun with order at least 6. We use $\text{sun}(G)$ to denote the number of sun components of G.

Theorem 1 ([2]). A graph G has a P_3-factor if and only if
\[
\text{sun}(G - X) \leq 2|X| \quad \text{for all } X \subseteq V(G).
\]

Theorem 2. ([4]). A connected graph G is a P_3-factor covered graph if and only if
\[
\text{sun}(G - X) \leq 2|X| - \epsilon(X)
\]
for any vertex subset X of G, where $\epsilon(X)$ is defined as follows:
\[
\epsilon(X) = \begin{cases}
2, & \text{if } X \text{ is not an independent set;} \\
1, & \text{if } X \text{ is a nonempty independent set and } G - X \text{ admits a non-sun component;} \\
0, & \text{otherwise.}
\end{cases}
\]

We introduce a new parameter, i.e., sun toughness, which is denoted by $s(G)$. The sun toughness $s(G)$ of a graph G was defined as follows:
\[
s(G) = \min \left\{ \frac{|X|}{\text{sun}(G - X)} : X \subseteq V(G), \text{sun}(G - X) \geq 2 \right\},
\]
if G is not complete; otherwise, $s(G) = +\infty$.

A graph G is defined as a $P_{2,k}$-factor uniform graph if G admits a $P_{2,k}$-factor containing e_1 and excluding e_2 for any two distinct edges e_1 and e_2 of G, which is an extension of the concept of a $P_{2,k}$-factor covered graph. In this paper, we investigate the $P_{2,3}$-factor uniform graph and obtain a sun toughness condition for the existence of $P_{2,3}$-factor uniform graphs.

Theorem 3. Let G be a 3-edge-connected graph. Then G is a $P_{2,3}$-factor uniform graph if its sun toughness $s(G) > 1$.

2. THE PROOF OF THEOREM 3

Proof of Theorem 3. Since G is 3-edge-connected, we have $|V(G)| \geq 4$. If G is a complete graph, then it is easily seen that G is a $P_{2,3}$-factor uniform graph by $|V(G)| \geq 4$. Next, we consider that G is a non-complete graph.

Note that G is 3-edge-connected. Thus, we know that $G' = G - e$ is connected for all $e = xy \in E(G)$. In order to justify Theorem 3, we only need to verify that G' is $P_{2,3}$-factor covered. On the contrary, suppose that G' is not $P_{2,3}$-factor covered. Then it follows from Theorem 2 that there exists some vertex subset X of G' such that
\[
\text{sun}(G' - X) \geq 2|X| - \epsilon(X) + 1.
\] (1)
Claim 1. \(|X| = 2\).

Proof. If \(|X| = 0\), then it follows from (1) that

\[\text{sun}(G') \geq 1. \] \hspace{1cm} (2)

Since \(G\) is 3-edge-connected and \(G' = G - e\), we have

\[\text{sun}(G') \leq \omega(G') = 1. \] \hspace{1cm} (3)

According to (2) and (3), we get

\[\text{sun}(G') = \omega(G') = 1. \]

Note that \(|V(G')}| = |V(G)| \geq 4\). Therefore, \(G' \neq K_1\) and \(G' \neq K_2\). Thus, \(G'\) is a big sun. Obviously, there are at least three vertices with degree 1 in \(G'\), and so there is at least one vertex with degree 1 in \(G = G' + e\). This contradicts that \(G\) is 3-edge-connected.

If \(|X| = 1\), then by (1) and \(\varepsilon(X) \leq 1\) we get \(\text{sun}(G' - X) \geq 2\). Let \(C\) be any sun component of \(G'\). If \(C = K_1\), then for \(x \in V(C)\) we have \(d_G(x) = 0\), and so \(d_G(x) \leq 2\) by \(|X| = 1\) and \(G = G' + e\). This contradicts that \(G\) is 3-edge-connected. If \(C = K_2\) or \(C\) is a big sun component of \(G'\), then there exist at least two vertices \(u\) and \(v\) with \(d_G(u) = d_G(v) = 1\). Combining this with \(|X| = 1\) and \(G = G' + e\), it is easily seen that \(d_G(u) \leq 2\) or \(d_G(v) \leq 2\). This contradicts that \(G\) is 3-edge-connected.

If \(|X| \geq 3\), then by (1) and \(\varepsilon(X) \leq 2\) we obtain \(\text{sun}(G' - X) \geq 2|X| - |\varepsilon(X)| + 1 \geq 2|X| - 1 \geq 5\). Combining this with \(\text{sun}(G' - X) \leq \text{sun}(G - X) + 2\), we have \(\text{sun}(G - X) \geq 3\). Using the definition of \(s(G)\), we obtain

\[s(G) \leq \frac{|X|}{\text{sun}(G - X)} \leq \frac{|X|}{\text{sun}(G' - X) - 2} \]

\[\leq \frac{|X|}{2|X| - 3} < \frac{3}{6 - 3} = 1, \]

which contradicts that \(s(G) > 1\). Therefore, \(|X| = 2\). Claim 1 is justified. \(\Box\)

In light of (1), \(\varepsilon(X) \leq |X|\) and Claim 1, we obtain

\[\text{sun}(G' - X) \geq 2|X| - |\varepsilon(X)| + 1 \geq |X| + 1 = 3. \] \hspace{1cm} (4)

It follows from (4) and \(G' = G - e\) that

\[3 \leq \text{sun}(G' - X) = \text{sun}(G - e - X) \leq \text{sun}(G - X) + 2, \] \hspace{1cm} (5)

which implies

\[\text{sun}(G - X) \geq 1. \]

Next, we consider two cases in light of the value of \(\text{sun}(G - X)\).

Case 1. \(\text{sun}(G - X) \geq 2\).

Using Claim 1, \(s(G) > 1\) and the concept of \(s(G)\), we have

\[1 < s(G) \leq \frac{|X|}{\text{sun}(G - X)} \]

\[\leq \frac{|X|}{2} = 1, \]

a contradiction.

Case 2. \(\text{sun}(G - X) = 1\).

We denote by \(C_1\) the sun component of \(G - X\). From (5), we get that \(\text{sun}(G' - X) = 3\). Combining this with \(G' = G - e\), we know that \(C_1\) is also a sun component of \(G' - X\), and we denote by \(C_2\) and \(C_3\) the other two sun components of \(G' - X\). Thus, \(G' - X\) has at least two sun components other than \(C_1\), and so \(G - X\) has at least one vertex with degree 1. This contradicts that \(G\) is 3-edge-connected. \(\Box\)
components of $G' - X$. Obviously, one vertex of e belongs to $V(C_2)$ and the other vertex of e belongs to $V(C_3)$. Note that $e = xy$, and let $x \in V(C_2)$ and $y \in V(C_3)$.

Subcase 2.1. $C_2 \neq K_1$ or $C_3 \neq K_1$.

Without loss of generality, let $C_2 \neq K_1$. Then $C_2 = K_2$ or C_2 is a big sun.

If $C_2 = K_2$, then $\text{sun}(G - X \cup \{x\}) = \text{sun}(G' - X \cup \{x\}) = 3$. In view of $s(G) > 1$, Claim 1 and the concept of $s(G)$, we get

$$1 < s(G) \leq \frac{|X \cup \{x\}|}{\text{sun}(G - X \cup \{x\})} = \frac{|X| + 1}{3} = 1,$$

which is a contradiction.

If C_2 is a big sun. Then we write R_0 for the factor-critical graph in C_2. Thus, $d_C(u) = 1$ for any $u \in V(C_2) \setminus V(R_0)$ and $|V(R_0)| = \frac{|V(C_2)|}{2} \geq 3$. Note that $y \in V(C_3)$. If $x \in V(R_0)$, then we have

$$\text{sun}(G - X \cup \{x\}) = \text{sun}(G' - X \cup \{x\}) = 3.$$

In terms of Claim 1, $s(G) > 1$ and the concept of $s(G)$, we get

$$1 < s(G) \leq \frac{|X \cup \{x\}|}{\text{sun}(G - X \cup \{x\})} = \frac{1 + |X|}{3} = 1,$$

a contradiction. If $x \in V(C_2) \setminus V(R_0)$, then $\exists x_0 \in V(R_0)$ such that $xx_0 \in E(C_2)$. Thus, we obtain

$$\text{sun}(G - X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\}) = \text{sun}(G' - X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\}) = |V(R_0)| + 2.$$

Combining this with Claim 1 and the concept of $s(G)$, we get

$$s(G) \leq \frac{|X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\}|}{\text{sun}(G - X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\})} = \frac{|X| + |V(R')|}{|V(R_0)| + 2} = 1,$$

which contradicts that $s(G) > 1$.

Subcase 2.2 $C_2 = K_1$ and $C_3 = K_1$.

Apparently, $C_2 \cup C_3 + e = K_2$, which is a sun component of $G - X$. Thus, $\text{sun}(G - X) = 2$. This contradicts that $\text{sun}(G - X) = 1$. Theorem 3 is testified.

3. REMARKS

Remark 1. We point out here that the sun toughness condition stated in Theorem 3 is sharp, that is, we cannot replace $s(G) > 1$ by $s(G) \geq 1$. Let $G = H \vee (K_2 \cup P_4)$, where $H = K_2$ and $P_4 = v_0v_1v_2v_3$. We easily calculate that $s(G) = \frac{|V(H) \cup \{v_1\}|}{\text{sun}(G - V(H) \cup \{v_1\})} = 1$ and G is 3-edge-connected. We write $e = v_1v_2$ and $G' = G - e$. Set $X = V(H) \subseteq V(G')$. Then $\epsilon(X) = 2$ and $\text{sun}(G' - X) = 3 > 2 = 2|X| - \epsilon(X)$. Using Theorem 2, G' is not $P_{3,3}$-factor covered, and so G is not $P_{3,3}$-factor uniform.

Remark 2. Now, we show that the edge-connectivity in Theorem 3 is sharp, that is, we cannot replace 3-edge-connected by 2-edge-connected. Let $G = K_1 \vee (K_2 \cup K_4)$. We easily see that G is 2-edge-connected and...
Let $G' = G - e$ for $e \in E(K_2)$. We choose $X = V(K_1)$, and so $\varepsilon(X) = 1$. Thus, we have $\sun(G' - X) = 2 > 1 = 2|X| - \varepsilon(X)$. In light of Theorem 2, G' is not $P_{\geq 3}$-factor covered, and so G is not $P_{\geq 3}$-factor uniform.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to the referees and editors for reading this paper carefully and presenting some critical comments which leads to a number of improvements. This work is supported by 333 Project of Jiangsu Province and Six Big Talent Peak of Jiangsu Province, China (Grant No. JY–022).

REFERENCES

7. S. ZHOU, *Some results on path-factor critical avoidable graphs*, Discusions Mathematicae Graph Theory, DOI: 10.7151/d-mgt.2364

A result on $P_{3,3}$-factor uniform graphs

24. S. ZHOU, Q. BIAN, Z. SUN, Two sufficient conditions for component factors in graphs, Discussiones Mathematicae Graph Theory, DOI: 10.7151/dmgt.2401

25. S. ZHOU, A neighborhood union condition for fractional (a, b, k)-critical covered graphs, Discrete Applied Mathematics, DOI: 10.1016/j.dam.2021.05.022

Received on January 9, 2020