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Abstract: Let k ≥ 2 be an integer, and let G be a graph. A P≥k-factor of a graph G is a spanning subgraph F of
G such that each component of F is a path of order at least k. A graph G is a P≥k-factor uniform graph if G has a
P≥k-factor including e1 and excluding e2 for any two distinct edges e1 and e2 of G. In this article, we verify that a
3-edge-connected graph G is a P≥3-factor uniform graph if its sun toughness s(G)> 1. Furthermore, we show that the
two conditions on edge-connectivity and sun toughness are sharp.
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1. INTRODUCTION

We deal with only finite, undirected and simple graphs, which have neither loops nor multiple edges. Let
G be a graph. We denote by V (G), E(G) and I(G) the vertex set, the edge set and the isolated vertex set of G,
respectively, and write i(G) = |I(G)|. For any v ∈V (G), we use dG(v) to denote the degree of v in G. For any
X ⊆V (G), G[X ] is a subgraph induced by X of G with V (G[X ]) = X and E(G[X ]) = {uv∈ E(G) : u,v∈ X}, and
write G−X = G[V (G)\X ]. For any E ′ ⊆ E(G), we denote by G−E ′ the subgraph obtained from G by deleting
E ′. A vertex subset X of G is independent if no two vertices in X are adjacent to each other. The number of
connected components of G is denoted by ω(G). A path on n vertices is denoted by Pn and a complete graph
on n vertices is denoted by Kn. Given two graphs G1 and G2, we use G1∨G2 to denote the graph obtained from
G1∪G2 by adding all the edges joining a vertex of G1 to a vertex of G2.

Let k ≥ 2 be an integer. A spanning subgraph F of a graph G is called a P≥k-factor of G if each component
of F is a path of order at least k. A graph G is called a P≥k-factor covered graph if for any e ∈ E(G), G has a
P≥k-factor including e.

Wang [1] gave a necessary and sufficient condition for a bipartite graph having a P≥3-factor. Kaneko [2]
characterized a graph with a P≥3-factor, which is a generalization of Wang’s result. Kano, Katona and Király [3]
gave a simple proof of Kaneko’s result. Zhang and Zhou [4] first defined the concept of a P≥k-factor covered
graph, and then showed a necessary and sufficient condition for a graph to be a P≥3-factor covered graph. Zhou
[5] obtained a new result on the existence of P≥3-factor covered graphs. Gao, Wang and Chen [6] improved
Zhou’s previous result on P≥3-factor covered graphs. Zhou [7], Zhou, Sun and Liu [8] gave some results on
path factors with given properties in graphs. Zhou and Sun [9] showed a binding number condition for a graph
to be P≥3-factor uniform. Some other results on graph factors see [10–26].
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A graph R is called a factor-critical graph if R−{v} admits a perfect matching for every v ∈V (R). A graph
H is defined as a sun if H = K1, H = K2 or H is the corona of a factor-critical graph R with order at least three,
i.e., H is obtained from R by adding a new vertex w=w(v) together with a new edge vw for any v∈V (R). A big
sun means a sun with order at least 6. We use sun(G) to denote the number of sun components of G. Kaneko [2]
put forward a necessary and sufficient condition for the existence of P≥3-factors in graphs. Zhang and Zhou [4]
generalized this result and obtained a necessary and sufficient condition for the existence of P≥3-factor covered
graphs.

Theorem 1 ( [2]). A graph G has a P≥3-factor if and only if

sun(G−X)≤ 2|X |

for all X ⊆V (G).

Theorem 2. ( [4]). A connected graph G is a P≥3-factor covered graph if and only if

sun(G−X)≤ 2|X |− ε(X)

for any vertex subset X of G, where ε(X) is defined as follows:

ε(X) =


2, i f X is not an independent set;
1, i f X is a nonempty independent set and G−X admits

a non− sun component;
0, otherwise.

We introduce a new parameter, i.e., sun toughness, which is denoted by s(G). The sun toughness s(G) of a
graph G was defined as follows:

s(G) = min{ |X |
sun(G−X)

: X ⊆V (G), sun(G−X)≥ 2},

if G is not complete; otherwise, s(G) = +∞.
A graph G is defined as a P≥k-factor uniform graph if G admits a P≥k-factor containing e1 and excluding e2

for any two distinct edges e1 and e2 of G, which is an extension of the concept of a P≥k-factor covered graph. In
this paper, we investigate the P≥3-factor uniform graph and obtain a sun toughness condition for the existence
of P≥3-factor uniform graphs.

Theorem 3. Let G be a 3-edge-connected graph. Then G is a P≥3-factor uniform graph if its sun toughness
s(G)> 1.

2. THE PROOF OF THEOREM 3

Proof of Theorem 3. Since G is 3-edge-connected, we have |V (G)| ≥ 4. If G is a complete graph, then it is
easily seen that G is a P≥3-factor uniform graph by |V (G)| ≥ 4. Next, we consider that G is a non-complete
graph.

Note that G is 3-edge-connected. Thus, we know that G′ = G− e is connected for all e = xy ∈ E(G). In
order to justify Theorem 3, we only need to verify that G′ is P≥3-factor covered. On the contrary, suppose that
G′ is not P≥3-factor covered. Then it follows from Theorem 2 that there exists some vertex subset X of G′ such
that

sun(G′−X)≥ 2|X |− ε(X)+1. (1)
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Claim 1. |X |= 2.
Proof. If |X |= 0, then it follows from (1) that

sun(G′)≥ 1. (2)

Since G is 3-edge-connected and G′ = G− e, we have

sun(G′)≤ ω(G′) = 1. (3)

According to (2) and (3), we get
sun(G′) = ω(G′) = 1.

Note that |V (G′)| = |V (G)| ≥ 4. Therefore, G′ 6= K1 and G′ 6= K2. Thus, G′ is a big sun. Obviously, there are
at least three vertices with degree 1 in G′, and so there is at least one vertex with degree 1 in G = G′+ e. This
contradicts that G is 3-edge-connected.

If |X |= 1, then by (1) and ε(X)≤ 1 we get sun(G′−X)≥ 2. Let C be any sun component of G′. If C = K1,
then for x ∈ V (C) we have dG′(x) = 0, and so dG(x) ≤ 2 by |X | = 1 and G = G′+ e. This contradicts that G
is 3-edge-connected. If C = K2 or C is a big sun component of G′, then there exist at least two vertices u and
v with dG′(u) = dG′(v) = 1. Combining this with |X | = 1 and G = G′+ e, it is easily seen that dG(u) ≤ 2 or
dG(v)≤ 2. This contradicts that G is 3-edge-connected.

If |X | ≥ 3, then by (1) and ε(X)≤ 2 we obtain sun(G′−X)≥ 2|X |− ε(X)+1≥ 2|X |−1≥ 5. Combining
this with sun(G′−X)≤ sun(G−X)+2, we have sun(G−X)≥ 3. Using the definition of s(G), we obtain

s(G) ≤ |X |
sun(G−X)

≤ |X |
sun(G′−X)−2

≤ |X |
2|X |−3

≤ 3
6−3

= 1,

which contradicts that s(G)> 1. Therefore, |X |= 2. Claim 1 is justified. 2

In light of (1), ε(X)≤ |X | and Claim 1, we obtain

sun(G′−X)≥ 2|X |− ε(X)+1≥ |X |+1 = 3. (4)

It follows from (4) and G′ = G− e that

3≤ sun(G′−X) = sun(G− e−X)≤ sun(G−X)+2, (5)

which implies
sun(G−X)≥ 1.

Next, we consider two cases in light of the value of sun(G−X).
Case 1. sun(G−X)≥ 2.

Using Claim 1, s(G)> 1 and the concept of s(G), we have

1 < s(G)≤ |X |
sun(G−X)

≤ |X |
2

= 1,

a contradiction.
Case 2. sun(G−X) = 1.

We denote by C1 the sun component of G−X . From (5), we get that sun(G′−X) = 3. Combining this with
G′ = G− e, we know that C1 is also a sun component of G′−X , and we denote by C2 and C3 the other two sun
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components of G′−X . Obviously, one vertex of e belongs to V (C2) and the other vertex of e belongs to V (C3).
Note that e = xy, and let x ∈V (C2) and y ∈V (C3).
Subcase 2.1. C2 6= K1 or C3 6= K1.

Without loss of generality, let C2 6= K1. Then C2 = K2 or C2 is a big sun.
If C2 = K2, then sun(G−X ∪{x}) = sun(G′−X ∪{x}) = 3. In view of s(G)> 1, Claim 1 and the concept

of s(G), we get

1 < s(G)≤ |X ∪{x}|
sun(G−X ∪{x})

=
|X |+1

3
= 1,

which is a contradiction.
If C2 is a big sun. Then we write R0 for the factor-critical graph in C2. Thus, dC2(u) = 1 for any u ∈

V (C2)\V (R0) and |V (R0)|= |V (C2)|
2 ≥ 3. Note that y ∈V (C3). If x ∈V (R0), then we have

sun(G−X ∪{x}) = sun(G′−X ∪{x}) = 3.

In terms of Claim 1, s(G)> 1 and the concept of s(G), we get

1 < s(G)≤ |X ∪{x}|
sun(G−X ∪{x})

=
1+ |X |

3
= 1,

a contradiction. If x ∈V (C2)\V (R0), then ∃x0 ∈V (R0) such that xx0 ∈ E(C2). Thus, we obtain

sun(G−X ∪ (V (R0)\{x0})∪{x}) = sun(G′−X ∪ (V (R0)\{x0})∪{x}) = |V (R0)|+2.

Combining this with Claim 1 and the concept of s(G), we get

s(G) ≤ |X ∪ (V (R0)\{x0})∪{x}|
sun(G−X ∪ (V (R0)\{x0})∪{x})

=
|X |+ |V (R′)|
|V (R0)|+2

=
2+ |V (R′)|
|V (R0)|+2

= 1,

which contradicts that s(G)> 1.
Subcase 2.2 C2 = K1 and C3 = K1.

Apparently, C2∪C3 +e = K2, which is a sun component of G−X . Thus, sun(G−X) = 2. This contradicts
that sun(G−X) = 1. Theorem 3 is testified. 2

3. REMARKS

Remark 1. We point out here that the sun toughness condition stated in Theorem 3 is sharp, that is, we
cannot replace s(G) > 1 by s(G) ≥ 1. Let G = H ∨ (K2 ∪P4), where H = K2 and P4 = v0v1v2v3. We easily
calculate that s(G) = |V (H)∪{v1}|

sun(G−V (H)∪{v1}) = 1 and G is 3-edge-connected. We write e = v1v2 and G′ = G− e. Set
X = V (H) ⊆ V (G′). Then ε(X) = 2 and sun(G′−X) = 3 > 2 = 2|X | − ε(X). Using Theorem 2, G′ is not
P≥3-factor covered, and so G is not P≥3-factor uniform.

Remark 2. Now, we show that the edge-connectivity in Theorem 3 is sharp, that is, we cannot replace 3-
edge-connected by 2-edge-connected. Let G = K1∨ (K2∪K4). We easily see that G is 2-edge-connected and



5 Sizhong Zhou, Zhiren Sun, Fan Yang 230

s(G) = 3
2 > 1. Let G′ = G− e for e ∈ E(K2). We choose X = V (K1), and so ε(X) = 1. Thus, we have

sun(G′−X) = 2 > 1 = 2|X | − ε(X). In light of Theorem 2, G′ is not P≥3-factor covered, and so G is not
P≥3-factor uniform.
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