A result on $P_{2,3}$-factor uniform graphs

Sizhong Zhou*, Zhiren Sun**, Fan Yang***

*School of Science, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, China
**School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
***School of Physical and Mathematical Sciences, Nanjing Technology University, Nanjing, Jiangsu 211816, China

Corresponding author: Sizhong Zhou, E-mail: zsz_cumt@163.com

Abstract: Let $k \geq 2$ be an integer, and let G be a graph. A $P_{2,3}$-factor of a graph G is a spanning subgraph F of G such that each component of F is a path of order at least k. A graph G is a $P_{2,3}$-factor uniform graph if G has a $P_{2,3}$-factor including e_1 and excluding e_2 for any two distinct edges e_1 and e_2 of G. In this article, we verify that a 3-edge-connected graph G is a $P_{2,3}$-factor uniform graph if its sun toughness $s(G) > 1$. Furthermore, we show that the two conditions on edge-connectivity and sun toughness are sharp.

Key words: graph; edge-connectivity; sun toughness; $P_{2,3}$-factor; $P_{2,3}$-factor uniform graph.

1. INTRODUCTION

We deal with only finite, undirected and simple graphs, which have neither loops nor multiple edges. Let G be a graph. We denote by $V(G)$, $E(G)$ and $I(G)$ the vertex set, the edge set and the isolated vertex set of G, respectively, and write $d_G(v) = |I(G)|$. For any $v \in V(G)$, we use $d_G(v)$ to denote the degree of v in G. For any $X \subseteq V(G)$, $G[X]$ is a subgraph induced by X of G with $V(G[X]) = X$ and $E(G[X]) = \{uv \in E(G) : u, v \in X\}$, and write $G - X = G[V(G) \setminus X]$. For any $E' \subseteq E(G)$, we denote by $G - E'$ the subgraph obtained from G by deleting E'. A vertex subset X of G is independent if no two vertices in X are adjacent to each other. The number of connected components of G is denoted by $\omega(G)$. A path on n vertices is denoted by P_n and a complete graph on n vertices is denoted by K_n. Given two graphs G_1 and G_2, we use $G_1 \lor G_2$ to denote the graph obtained from $G_1 \cup G_2$ by adding all the edges joining a vertex of G_1 to a vertex of G_2.

Let $k \geq 2$ be an integer. A spanning subgraph F of a graph G is called a $P_{2,k}$-factor of G if each component of F is a path of order at least k. A graph G is called a $P_{2,k}$-factor covered graph if for any $e \in E(G)$, G has a $P_{2,k}$-factor including e.

Wang [1] gave a necessary and sufficient condition for a bipartite graph having a $P_{2,3}$-factor. Kaneko [2] characterized a graph with a $P_{2,3}$-factor, which is a generalization of Wang’s result. Kano, Katona and Király [3] gave a simple proof of Kaneko’s result. Zhang and Zhou [4] first defined the concept of a $P_{2,k}$-factor covered graph, and then showed a necessary and sufficient condition for a graph to be a $P_{2,3}$-factor covered graph. Zhou [5] obtained a new result on the existence of $P_{2,3}$-factor covered graphs. Some other results on graph factors see [6, 21].

A graph R is called a factor-critical graph if $R - \{v\}$ admits a perfect matching for every $v \in V(R)$. A graph H is defined as a sun if $H = K_1, H = K_2$ or H is the corona of a factor-critical graph R with order at least three, i.e., H is obtained from R by adding a new vertex $w = w(v)$ together with a new edge vw for any $v \in V(R)$. A big

***School of Science, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, China
**School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
Nanjing, Jiangsu 211816, China
sun means a sun with order at least 6. We use \(\text{sun}(G) \) to denote the number of sun components of \(G \). Kaneko \[2\] put forward a necessary and sufficient condition for the existence of \(P_{\geq 3} \)-factors in graphs. Zhang and Zhou \[4\] generalized this result and obtained a necessary and sufficient condition for the existence of \(P_{\geq 3} \)-factor covered graphs.

Theorem 1 (\[2\]). A graph \(G \) has a \(P_{\geq 3} \)-factor if and only if
\[
\text{sun}(G - X) \leq 2|X|
\]
for all \(X \subseteq V(G) \).

Theorem 2. (\[4\]). A connected graph \(G \) is a \(P_{\geq 3} \)-factor covered graph if and only if
\[
\text{sun}(G - X) \leq 2|X| - \varepsilon(X)
\]
for any vertex subset \(X \) of \(G \), where \(\varepsilon(X) \) is defined as follows:
\[
\varepsilon(X) = \begin{cases}
2, & \text{if } X \text{ is not an independent set;} \\
1, & \text{if } X \text{ is a nonempty independent set and } G - X \text{ admits a non- } \text{sun component;} \\
0, & \text{otherwise.}
\end{cases}
\]

We introduce a new parameter, i.e., sun toughness, which is denoted by \(s(G) \). The sun toughness \(s(G) \) of a graph \(G \) was defined as follows:
\[
s(G) = \min \left\{ \frac{|X|}{\text{sun}(G - X)} : X \subseteq V(G), \text{sun}(G - X) \geq 2 \right\},
\]
if \(G \) is not complete; otherwise, \(s(G) = +\infty \).

A graph \(G \) is defined as a \(P_{\geq k} \)-factor uniform graph if \(G \) admits a \(P_{\geq k} \)-factor containing \(e_1 \) and excluding \(e_2 \) for any two distinct edges \(e_1 \) and \(e_2 \) of \(G \), which is an extension of the concept of a \(P_{\geq k} \)-factor covered graph. In this paper, we investigate the \(P_{\geq 3} \)-factor uniform graph and obtain a sun toughness condition for the existence of \(P_{\geq 3} \)-factor uniform graphs.

Theorem 3. Let \(G \) be a 3-edge-connected graph. Then \(G \) is a \(P_{\geq 3} \)-factor uniform graph if its sun toughness \(s(G) > 1 \).

2. THE PROOF OF THEOREM 3

Proof of Theorem 3. Since \(G \) is 3-edge-connected, we have \(|V(G)| \geq 4 \). If \(G \) is a complete graph, then it is easily seen that \(G \) is a \(P_{\geq 3} \)-factor uniform graph by \(|V(G)| \geq 4 \). Next, we consider that \(G \) is a non-complete graph.

Note that \(G \) is 3-edge-connected. Thus, we know that \(G' = G - e \) is connected for all \(e = xy \in E(G) \). In order to justify Theorem 3, we only need to verify that \(G' \) is \(P_{\geq 3} \)-factor covered. On the contrary, suppose that \(G' \) is not \(P_{\geq 3} \)-factor covered. Then it follows from Theorem 2 that there exists some vertex subset \(X \) of \(G' \) such that
\[
\text{sun}(G' - X) \geq 2|X| - \varepsilon(X) + 1.
\]

Claim 1. \(|X| = 2 \).

Proof. If \(|X| = 0 \), then it follows from (1) that
\[
\text{sun}(G') \geq 1.
\]

Since G is 3-edge-connected and $G' = G - e$, we have
\[\text{sun}(G') \leq \omega(G') = 1. \] (3)

According to (2) and (3), we get
\[\text{sun}(G') = \omega(G') = 1. \]

Note that $|V(G')| = |V(G)| \geq 4$. Therefore, $G' \neq K_1$ and $G' \neq K_2$. Thus, G' is a big sun. Obviously, there are at least three vertices with degree 1 in G', and so there is at least one vertex with degree 1 in $G = G' + e$. This contradicts that G is 3-edge-connected.

If $|X| = 1$, then by (1) and $\epsilon(X) \leq 1$ we get $\text{sun}(G' - X) \geq 2$. Let C be any sun component of G'. If $C = K_1$, then for $x \in V(C)$ we have $d_G(x) = 0$, and so $d_G(x) \leq 2$ by $|X| = 1$ and $G = G' + e$. This contradicts that G is 3-edge-connected. If $C = K_2$ or C is a big sun component of G', then there exist at least two vertices u and v with $d_G(u) = d_G(v) = 1$. Combining this with $|X| = 1$ and $G = G' + e$, it is easily seen that $d_G(u) \leq 2$ or $d_G(v) \leq 2$. This contradicts that G is 3-edge-connected.

If $|X| \geq 3$, then by (1) and $\epsilon(X) \leq 2$ we obtain $\text{sun}(G' - X) \geq 2|X| - \epsilon(X) + 1 \geq 2|X| - 1 \geq 5$. Combining this with $\text{sun}(G' - X) \leq \text{sun}(G - X) + 2$, we have $\text{sun}(G - X) \geq 3$. Using the definition of $s(G)$, we obtain
\[s(G) \leq \frac{|X|}{\text{sun}(G - X) - 2} \leq \frac{|X|}{2|X| - 3} \leq \frac{3}{6 - 3} = 1, \]
which contradicts that $s(G) > 1$. Therefore, $|X| = 2$. Claim 1 is justified. \hfill \Box

In light of (1), $\epsilon(X) \leq |X|$ and Claim 1, we obtain
\[\text{sun}(G' - X) \geq 2|X| - \epsilon(X) + 1 \geq |X| + 1 = 3. \] (4)

It follows from (4) and $G' = G - e$ that
\[3 \leq \text{sun}(G' - X) = \text{sun}(G - e - X) \leq \text{sun}(G - X) + 2, \] (5)
which implies
\[\text{sun}(G - X) \geq 1. \]

Next, we consider two cases in light of the value of $\text{sun}(G - X)$.

Case 1. $\text{sun}(G - X) \geq 2$.

Using Claim 1, $s(G) > 1$ and the concept of $s(G)$, we have
\[1 < s(G) \leq \frac{|X|}{\text{sun}(G - X)} \leq \frac{|X|}{2} = 1, \]
a contradiction.

Case 2. $\text{sun}(G - X) = 1$.

We denote by C_1 the sun component of $G - X$. From (5), we get that $\text{sun}(G' - X) = 3$. Combining this with $G' = G - e$, we know that C_1 is also a sun component of $G' - X$, and we denote by C_2 and C_3 the other two sun components of $G' - X$. Obviously, one vertex of e belongs to $V(C_2)$ and the other vertex of e belongs to $V(C_3)$. Note that $e = xy$, and let $x \in V(C_2)$ and $y \in V(C_3)$.

Subcase 2.1. $C_2 \neq K_1$ or $C_3 \neq K_1$.

Without loss of generality, let $C_2 \neq K_1$. Then $C_2 = K_2$ or C_2 is a big sun.

If $C_2 = K_2$, then $\text{sun}(G - X \cup \{x\}) = \text{sun}(G' - X \cup \{x\}) = 3$. In view of $s(G) > 1$, Claim 1 and the concept
of \(s(G) \), we get

\[
1 < s(G) \leq \frac{|X \cup \{x\}|}{\text{sun}(G - X \cup \{x\})} = \frac{|X| + 1}{3} = 1,
\]

which is a contradiction.

If \(C_2 \) is a big sun. Then we write \(R_0 \) for the factor-critical graph in \(C_2 \). Thus, \(d_{C_2}(u) = 1 \) for any \(u \in V(C_2) \setminus V(R_0) \) and \(|V(R_0)| = \frac{|V(C_2)|}{2} \geq 3 \). Note that \(y \in V(C_3) \). If \(x \in V(R_0) \), then we have

\[
\text{sun}(G - X \cup \{x\}) = \text{sun}(G' - X \cup \{x\}) = 3.
\]

In terms of Claim 1, \(s(G) > 1 \) and the concept of \(s(G) \), we get

\[
1 < s(G) \leq \frac{|X \cup \{x\}|}{\text{sun}(G - X \cup \{x\})} = \frac{1 + |X|}{3} = 1,
\]

a contradiction. If \(x \in V(C_2) \setminus V(R_0) \), then \(\exists x_0 \in V(R_0) \) such that \(xx_0 \in E(C_2) \). Thus, we obtain

\[
\text{sun}(G - X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\}) = \text{sun}(G' - X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\}) = |V(R_0)| + 2.
\]

Combining this with Claim 1 and the concept of \(s(G) \), we get

\[
s(G) \leq \frac{|X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\}|}{\text{sun}(G - X \cup (V(R_0) \setminus \{x_0\}) \cup \{x\})} = \frac{|X| + |V(R')|}{|V(R_0)| + 2} = \frac{2 + |V(R')|}{|V(R_0)| + 2} = 1,
\]

which contradicts that \(s(G) > 1 \).

Subcase 2.2 \(C_2 = K_1 \) and \(C_3 = K_1 \).

Apparently, \(C_2 \cup C_3 + e = K_2 \), which is a sun component of \(G - X \). Thus, \(\text{sun}(G - X) = 2 \). This contradicts that \(\text{sun}(G - X) = 1 \). Theorem 3 is testified. \(\square \)

3. REMARKS

Remark 1. We point out here that the sun toughness condition stated in Theorem 3 is sharp, that is, we cannot replace \(s(G) > 1 \) by \(s(G) \geq 1 \). Let \(G = H \cup (K_2 \cup P_4) \), where \(H = K_2 \) and \(P_4 = v_0v_1v_2v_3 \). We easily calculate that \(s(G) = \frac{|V(H) \cup \{v_1\}|}{\text{sun}(G - V(H) \cup \{v_1\})} = 1 \) and \(G \) is 3-edge-connected. We write \(e = v_1v_2 \) and \(G' = G - e \). Set \(X = V(H) \subseteq V(G') \). Then \(e(X) = 2 \) and \(\text{sun}(G' - X) = 3 > 2 = 2|X| - e(X) \). Using Theorem 2, \(G' \) is not \(P_{2,3} \)-factor covered, and so \(G \) is not \(P_{2,3} \)-factor uniform.

Remark 2. Now, we show that the edge-connectivity in Theorem 3 is sharp, that is, we cannot replace 3-edge-connected by 2-edge-connected. Let \(G = K_4 \cup (K_2 \cup K_4) \). We easily see that \(G \) is 2-edge-connected and \(s(G) = \frac{\frac{3}{2}}{2} > 1 \). Let \(G' = G - e \) for \(e \in E(K_2) \). We choose \(X = V(K_1) \), and so \(e(X) = 1 \). Thus, we have \(\text{sun}(G' - X) = 2 > 1 = 2|X| - e(X) \). In light of Theorem 2, \(G' \) is not \(P_{2,3} \)-factor covered, and so \(G \) is not \(P_{2,3} \)-factor uniform.
ACKNOWLEDGEMENTS

This work is supported by 333 Project of Jiangsu Province and Six Big Talent Peak of Jiangsu Province (Grant No. JY–022).

REFERENCES

Received on January 9, 2020