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Abstract. Electricity data not only demonstrates electricity consumption of different time in different 

region, but also reflects the trend of electricity consumption in different time. Thus, the detection of 

anomalous electricity data is of great significance. Currently, anomaly detection methods focus on 

mining the anomaly in the time series data, and few of them study the trend of time series data. Hence, 

it is a tough task for exploring an advanced approach to predict anomaly trend targeted to electricity 

data. To address this issue, here proposed a deep neural network to mine anomaly and to predict the 

anomaly trend in electricity data by focusing on the degree of change to electricity consumption. To 

predict anomaly trend more accurately, the three trend respecting the change of electricity 

consumption between time points, i.e., rising, falling and constancy, are considered during calculating 

the cost function. Experimental results on the real electricity data show the proposed method is higher 

accuracy compared to the state-of-the-art anomaly detection methods as for predicting the anomaly 

trend and detecting anomalies for electricity consumption. We find that the ability that neural 

networks predict the anomaly trend in regard to electricity data can be promoted through this manner 

of using the cost function to calculate the degree of change to electricity consumption. Our findings 

also indicate that the prediction to the change of anomaly trend in regard to the time series data using 

multiple-layers neural network approach outperforms that of using hybrid methods consisting of the 

state-of-the-art anomaly detection approaches. 
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1. INTRODUCTION 

Electricity data changes along with time and power consumption, showing features of time series data. 

Electricity data is much valuable information, because of reflecting the trend of the electricity consumption 

in different time, it is of great significance to mine anomalies in electricity data. Fig. 1 displays examples of 

anomalies to time series data. This easily mines that point at T5 is an anomaly as shown in Fig. 1a. 

Unfortunately, it is difficult to find the anomaly trend caused by the point at T5. For another case, when the 

anomaly features are not obvious, anomalies are also difficult to mine, e.g., in Fig. 1b, anomaly features are 

similar to normal features. 

 

 
a) anomaly features are significant 

 
b) anomaly features are not significant 

Fig. 1 – Anomalies in time series data. 
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Anomaly mining refers to discover objects of being different from most data [1, 2]. Using traditional 
approaches to mine anomalies indicates that the loss has occurred. While for the time series data, it is an 
ordered set of column observations recorded in chronological order, according to the trend of data over time, 
this is more values to predict the occurrence of anomalies in time.  

The anomalies of time series data refer to the point where the pattern in the sequence is inconsistent, 
such as sudden rise or fall, trend change, exceeding the historical, maximum or minimum value. The 
detection of abnormal trends respecting the time series data aims to quickly and accurately find existing 
abnormal points, and predict which points are abnormal based on the anomaly detection results [3, 4, 5]. 
Hence, Anomaly mining and trend analysis are essential for the study of the time series data. Recently, many 
studies have presented important contributions in regard to anomaly detection to the time series data. 
Existing methods of anomaly detection about the time series data can be classified the following categories 
[6, 7]. (I) Classification-based, such as, Support Vector Machine (SVM) [8, 9], and One Class-Support 
Vector Machine (OC-SVM) [10]. The complexity and high-dimensionality of data cause the limitation of 
mining abnormal features using SVM [11]. Moreover, these methods are greatly influenced by data 
distribution of the sample. Similarly, in [12], the nonlinear modeling approach is used for canonical 
correlation analysis, through analyzing these canonical correlation between data, this help guide detection 
algorithms. (II) Clustering-based, e.g., the method in [13], in [14] and in [15] use the manner of clustering to 
detect anomalies. Such method (unsupervised manner) does not rely on data label, but it depends too much 
on the parametric setting of models. While for method (i) and (ii), they are prone to analysis the anomalies of 
the time series data, and few of them study the trend of time series data. (III) Prediction-based, such method 
adopts machine learning manners for anomaly detection [16]. For example, in [17], a two-step anomaly 
detection method is used for time series data. S.Ahmad et al. [18] propose a hierarchical temporal memory 
method to mining anomalies in time series data. As well as, the methods in [19] and in [20] detect anomalies 
in multivariate time series data using deep architectures approaches. In addition, the generative adversarial 
networks (GANs) [21] are also widely applied for anomaly detection in time series data, similarly, in [22] 
and in [23]. These methods judge anomalies via assessing the difference between the predicted value of the 
data at the time point in the normal mode and the actual value. Indeed, it is difficulty for the estimation of 
models [24]. Beyond that, the Multivariate Bayesian Structural Time Series (MBSTS) model in [25] is used 
to predict the prices of a portfolio of stocks. Similar to this hybrid manner, e.g., the hybrid method in [26]. 
Through the above literature analyzing, for the time series data, it is a challenge for proposing an advanced 
method to predict anomaly trend.  

In this work, our motivation is to predict the anomaly trend in electricity data. However, we aim at 

proposing an advanced method to explore the anomaly trend targeted to the time series data. To achieve our 

studied goals, here designs a deep neural network to predict the change of anomaly trend in electricity data. 

To more accurately predict anomaly trends, the three trends, i.e., rising, falling and constancy, in regard to 

the electricity consumption change between time points are considered when calculating the cost function in 

the proposed deep neural network. In addition, the 2-norm is also used to optimize the cost function. Finally, 

the proposed model is tested and validated comprehensively on real electricity datasets. 
We summarize the main contributions of this work as follows: 

(1) The multiple-hidden layers neural network is designed, which is used to predict the anomaly trend 

targeted to electricity data via focusing on the degree of change to electricity consumption.  

(2) The prediction ability of neural networks to the anomaly trend respecting electricity data is 

promoted through this manner of using the cost function to calculate the degree of change in electricity 

consumption. 

(3) For the prediction to time series data, the desired prediction results is easier to obtain using the 

multiple-layers neural networks method instead of using hybrid methods consisting of the state-of-the-art 

anomaly detection approaches. 

2. METHOD 

In this section, we firstly analyze the three trends about the change of electricity consumption. Through 

calculating the three trends, this provides a theoretical basis for our model to predict anomaly trend. Then, 

the proposed neural network is designed in subsection 2.2, including description of the model architecture, 

selection of hyper parameters, and the model training. 
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2.1. Analysis of three trends 

The change of electricity consumption can be divided into three trends between time ti and time ti+1, 

including rising, falling and constancy. Whereas, the three trends can hardly reflect the degree of change to 

electricity consumption, as such, the degree of change to electricity consumption needs to be quantified. 

Let us assume that given the time series data of electricity consumption TD = {< t1, D1 >, < t2, D2 >, … ,   

< ti , Di >, … ,< tn , Dn >}, and 1 ≤ i ≤ n, the item < ti , Di > represents that electricity consumption is Di at ti time. 

Ti,i+1 expresses the degree of the trend about electricity consumption from time ti to time ti+1. Hence, Ti,i+1 can 

be defined as following: 
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Equation (1) indicates that electricity consumption increases if Ti,i+1 is greater than zero. If Ti,i+1 is lower than 

zero, electricity consumption decreases. Obviously, Ti,i+1 is equal to zero , which means is constant for 

electricity consumption. Using these series {T1,2, T2,3, … , Ti,i+1, … , Tn,n+1} can describe the trend of 

electricity consumption between any two adjacent time points.  

2.2. Model description 

(1) Model architecture. A multiple-hidden layer neural network is proposed, denoted as m-NN, m1, 

where m is the m-th hidden layer of m-NN. The proposed m-NN is formulated in detail as follows. 

– Input layer. In the layer, the input xin (t) is the original time series data, i.e., xin (t) =TD. 

– Multiple-hidden layers. Hidden layers include the encoding hidden-layers of capturing the useful 

representations and the decoding hidden-layers of the reconstructed input. The two types of architectures are 

designed as following, respectively. 

For the encoding hidden-layers, the input ( , )in

m
H t l  and the output ( , )out

m
h t l  of the m-th hidden layer in 

the l-th iteration are calculated using Eq. (2) and Eq. (3), respectively, having 
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As regards the decoding hidden-layer, correspondingly, the corresponding output of the k-th hidden 

layer in the l-th iteration are calculated, as following 

( ( ) ( , ) ( ))out de in
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where the items en

m
act  and de

k
act  are activation functions in the encoding hidden-layer and the decoding 

hidden-layer. w and b are the weights and bias of each hidden layer. 

– Output layer. The reconstructed ˆ ( , )inx t l  is used as final output. 

– Cost function. The cost function J(w,b) of m-NN consists of the mean square error (mse), the 

item and the L2 regulation term weights  [27], as following 

( ) mse weightsJ = ++w,b  (6) 
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where   and   are trade-off parameters, and 0 1 , 0 1   . The item is used to assess the degree of 

change to electricity consumption at time ti and time tj , thereby predicting the anomaly trend. Ti,i+1 and Tj,j+1 

are calculated using Eq. (1). The item weights  is used to optimize the weight parameter of m-NN. 

(2) Hyper parameters. Some hyper parameters of m-NN need to be considered, including the number 
of neurons, neuron weight and activation function. The number of neurons in m-th hidden layer, denoted as 
em , is determined by cross-validation by varying from em = e1 to e2 with a step of e . Let e1 =10, e2 =30, and 

e =2. Given those data volume and data dimensionality, the number of neurons is sufficiently large, but not 

too large. While for neuron weight, a relatively small initial value is given. Using this manner to consider the 
number and weight of neurons is to prevent from causing over-fitting due to their excessive values. In 
addition, the function Leaky ReLu, i.e., g( ) max(0, ) *min(0, )x x leak x= + , is used as the activation function 

of m-NN, where the item leak is a constant. Compared with other activation functions, e.g., ReLu, tanh and 
Sigmoid, etc, Leaky ReLu can obtain a very small gradient when the input x is not greater than zero, which is 
beneficial to prevent from gradient vanishing. Certainly, for the other parameters in m-NN, they have no 
substantial effects on the results, so their default values are adopted. 

(3) Model Training. Training a neural network is to train its hyper parameters, so as to get the optimal 
parameters. Through monitoring some observed indicators, such as loss error, training precision, etc, those 
parameters can be adjusted in time for scientific training during model training. Consequently, for the m-NN 
training, we dynamically adjust the iteration epoch based on the observed training accuracy. Until m-NN 
converges, the training of the model stops.  
 

Table 1 

Algorithm 1 

 
1 Initialization hyper parameters, learning rate, etc, parameters, Q, P, e1, e2, weight ; 
2 Input sample dataset X={x | x1, ... , xN}; 
3 Xtrain is gotten by random selecting 80% of X ;                                                        /* training set   */ 
4 Xtest  is gotten by random selecting 10% of X ;                                                        /*  testing set   */ 
5 Xpre  is gotten by random selecting 10% of X ;                                                      /* prediction set  */ 
6 Randomly select 80% of Xtrain to obtain Train_set ;                        /* Cross-validated training set */ 
7     Cross-validation set Cross_set = Xtrain – Train_set ;                        /* Cross-validated testing set */ 
8 for p=1 to P do: 
9        for em

p = e1 to e2 with step e  do: 

10              Use gradient descent method to train a neural network  m-NNp for cross-validation; 
11              Calculate training accuracy                    TrAcc(em

p) = m-NNp(Train_set; em
p); 

12                                Calculate cross-validation  accuracy      CroAcc(em
p) = m-NNp(Cross_set; em

p); 
13        end for 
14                     for em

p = e1 to e2  with step e  do: 

15                      
              Calculate average cross-validation  accuracy 

1
_ ( ) ( ) /( )

p Pp p
m mp

Avg CroAcc e CroAcc e P
=

=
=  ; 

16        end for 
17 end for 
18 Get the optimal parameter em between e1 and e2            Opt(em) = arg maxe (Avg_CroAcc(em

p)); 
19 for q=1 to Q do: 
20        Use gradient descent method and Opt(em) to train a neural network m-NNq;                                        
21            Calculate training accuracy             TraAcc(q) = m-NNq (Xtrain; Opt(em)); 
22        Test the neural network m-NN; 
23        Calculate testing accuracy               TeAcc(q) = m-NN(Xtest); 
24      end for 
25         Select q so that qmax = arg maxq (TraAcc(q)); 
26       Get the maximum training accuracy     TraAcc = m-NNq (Xtrain; Opt(em), qmax)  in the qmax-th iteration; 
27        Get the maximum testing accuracy       TeAcc = m-NNq (Xtest, qmax); 
28 Predict  anomaly trend using the neural network m-NNq ; 

29       Calculate prediction accuracy                PreAcc = m-NNq (Xpre); 

30 Output TraAcc, TeAcc, PreAcc; 

 
Table 1 displays the overall algorithm. In Algorithm 1, some hyper parameters are firstly initialized, 

e.g., parameters, Q, P, e1, e2, and the division of sample set is given in between step1 to step 7. Then the 
cross-validation is implemented from step8 to step18, obtaining the optimal parameter em, denoted as Opt(em). 
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After getting the Opt(em), m-NN is trained q times until it converges, as shown from step19 to step24. After 
m-NN is trained, the testing set and prediction set are inputted, respectively. Finally, the maximum training 
accuracy, testing accuracy and prediction accuracy are outputted as shown from step25 to step30. 

3. EXPERIMENTAL SETTINGS 

In this section, experimental datasets, comparison methods and assessment metrics are given for the 

subsequent experiments. In addition, experimental procedure is also described in detail. 

3.1. Dataset 

In order to verify our method, we carry out experiments on real electric consumption data provided by 

California, USA [28]. Each record indicates the actual electric consumption at a specific moment. Hence, 

this dataset is considered to be a time series dataset. We opt for the data of 100 days of actual electricity 

consumption as an experimental dataset. Because the experimental dataset does not exist anomaly change 

trend, we select randomly the data of 10 days from it, and replace the origin value by using the y (y > 0) 

times of origin value to compose the experimental dataset included anomalies.  

3.2. Comparison methods and assessment metrics 

To address a fair assessment to our method, the Hierarchical Temporal Memory (HTM) [17] method 

and the Two-Step Anomaly Detection (MA + SARIMA) [18] method are used for comparison. To have a 

fair conclusion, for the competing methods, their optimal parameters observed in the corresponding literature 

are used. Unless otherwise stated, all experiments run on the same GPU, using the same environment. 

The Receiver Operating Characteristic curve (ROC) and the corresponding area under the curve (AUC) 

are used to assess the accuracy of methods. To minimize the random effects, all experiments are run 100 

times and then the results are averaged for evaluation.   

3.3. Experimental description 

Two sets of experiments were implemented to test the ability of our method. The detailed description is 

as follows.  

The dataset is randomly divided into three parts, of which, 80% of the data, i.e., training set, is used for 

model training, and 10% of the data, i.e., testing set, is used to test the capabilities of model to mine 

anomalies. The remaining data is used as the prediction set, which verifies the predictive ability to models. 

Experiment 1 (see Section 4.1). To test the structure for m-NN. Let m be equal to 1, 2, 3, … , 20, 

respectively, m-NN runs on the training set and the testing set, observing the impact of different hidden-layer 

scale on the results. 

Experiment 2 (see Section 4.2). To test the capabilities that the three methods (our method and two 

comparison methods) mine anomalies and predict anomaly trends. The three methods are trained using the 

training set. And their capabilities to mine anomalies are verified using the testing set. The prediction set is 

used for verifying the precision to predict anomaly trends. Then, experimental results are observed. 

4. RESULTS 

All experimental results show that the proposed m-NN outperforms the competing methods in the 

accuracy to mine anomalies and to predict anomaly trend. Section down below detailed experimental results. 

4.1. Experiments on network structure 

For the prediction ability of neural networks, network structure may reach their peak performance by 

different selection hidden-layer scale. Hence, this subsection focuses on the testing of network structure. 

Let m set in the range of 1 to 20, and the results on datasets are shown in Fig. 2. As m increases, the 

performance of increases and remains stable when m reaches a certain size, i.e., m = 3. Fig. 3 displays the loss 
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error of the training and testing procedure when m is equal to 3. These results given in Fig. 2 and Fig. 3 

indicate that m-NN is stable. Hence, let m be equal to 3 in the m-NN for subsequent experiments.  

 

   

Fig. 2 – Validation structures. Fig. 3 – Loss error on y  =  0.2 and y  =  0.6. 

4.2. Precision comparison 

Figure 4 displays the mining accuracy to experimental methods using different y value dataset. Results 

show that our method outperforms the competing methods. It can be seen in Fig. 4a that our method reaches 

above 0.8 in the precision of training and testing, as well as prediction precision. Even if anomaly features 

are not obvious, i.e., y is equal to 0.2. While for the competing methods, their precision is less than 0.5. 

Similarly, in Fig. 4b, when y is equal to 0.6, i.e., anomaly features are more obvious, the precision to all 

methods augments, while our method obtains desired results, and is superior to these competitors. This 

indicates that m-NN has advantages to mine the limited number of potential anomalies and to predict 

anomaly trend targeted to time series data.  

 

 

(a)  y = 0.2 

 

(b)  y = 0.6 

Fig. 4 – Results of AUCs using different y value: a) y value is equal to 0.2; b) y value is equal to 0.6. 

 

Figure 5 visualizes these results. When the anomaly features are not obvious, our method predict the 

anomaly trend with high accuracy, as shown in red area in Fig. 5a. Unfortunately, most the competing 

approaches are almost failure to predict. As anomaly features become obvious, all methods predict the 

anomaly trends, nevertheless, the prediction precision to our method is still higher than that of the 

competitors, as shown in red area in Fig. 5b. 

From Fig. 4 and Fig. 5, several observations can be obtained: 

(i) For the time series data, our method outperforms the competing approaches in the precision to mine 

anomalies and to predict the anomaly trend. This is because three trends respecting the degree of change to 

electricity consumption are fully considered during calculating the cost function of m-NN, thus improving 

the accuracy. 

(ii) The capability that neural networks predict the anomaly trend in electricity data can be increased 

through this manner of using the cost function to calculate the degree of change in electricity consumption. 

(iii) For the prediction to the time series data, using neural network approaches are easier to obtain the 

desired results instead of using hybrid methods consisting of the state-of-the-art anomaly detection methods. 
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(a) y = 0.2                                                                                             (b) y = 0.6 

Fig. 5 – Results of anomaly trend using different y value. Training results are marked as green. Testing results are marked as yellow. 
Prediction results are marked as red.: a) y is equal to 0.2; b) y is equal to 0.6. 

5. CONCLUSION 

In this work, in order to predict the anomaly trend in electricity data, a deep neural network was 
proposed based on time series data. Experiments on the real data of electricity consumption show that the 
proposed method outperforms the competitors in predict anomaly trend and mining anomaly. In the future 
works, we will explore the method respecting predict anomaly trend. 
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