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Abstract. The importance of transportation to economic and social development cannot be 

overstated. Transport equipment is transported between two nodes in different regions through the 

transportation network. Therefore, for the complex network of transportation networks, the proposed 

algorithm assumes that the role of a region as an intermediary to mediate transportation between 

different regions is closely related to the regional development indicators. Three indices for individual 

regions are proposed to quantify the degree of connectivity and importance with other regions in the 

transportation network through information on regional nodes of different service routes. Taking 

regional development indicators as dependent variables, the best model obtained by multiple linear 

regression on the model with permutations and combinations of explanatory variables is used to make 

predictions for the new data. This hypothesis is tested by using China's railroad passenger network 

and China's regional GDP. The results not only show that the three regional indices are good 

predictors of regional development indicators, but also support the idea that regions with more 

integrated transportation networks have better regional development indicators. 

Key words: transportation networks, regional development indicators, regional indices, multiple linear 
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1. INTRODUCTION 

Transport is an important link in the production and distribution process. Networking is the basic 

guarantee for modern transport organisation and management. Considering that a transportation network 

consists of transport routes, transport stations, transport equipment and other related facilities, it is assumed 

that nodes denote important distribution points of transport routes, such as ports, stations, etc. The edges of 

the network represent the connecting channels between distribution points, such as air routes, railway lines, 

etc. The region is a collection containing a number of nodes and with certain boundaries between regions, 

such as cities, countries, etc. Early research in complex transportation networks focused on constructing the 

topology of networks using complex network theory to explore the statistical properties on the structure of 

analyzing static transportation networks. In many studies, the topology of a transportation network is usually 

properly represented by the concepts of space L and P [1, 2]. Wang et al [3] proposed that as long as the 

same train stops at any two stations, there is a connection between the nodes representing these two stations, 

and the transportation network constructed is defined in P-space. 

A closely related field of study is devoted to the impact of transportation networks on social 

development, such as economic growth and population growth. Regional development indicators are used to 

measure the level of regional development, the most commonly used of which are gross regional product, 

national trade volume and regional population size. In terms of high-speed rail infrastructure, Cheng et al. [4] 

and Chen et al. [5] studied the impact of their new developments on the economic structure of European 

cities and regions. Jia et al. [6] found that the rapid development of China's regional economy was due to the 

large-scale construction of high-speed railways. Gao et al. [7], by analysing 25 years of economic data from 

China proposed the concept of inter-industry and inter-regional learning for regional economic development, 

stating that the development of high-speed railways increased the industrial similarity of connected pairs of 

neighbouring provinces. Therefore, it can be assumed that the role of a region as an intermediary in transport 

between different regions is closely related to the regional development indicators. 
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The structure of transportation network is important for the study of regional development indicators, 
and in network analysis the location of nodes affects the opportunities and constraints they encounter [8]. 
The connectivity and centrality characteristics of network nodes are key indicators of the relationship 
between transportation networks and regional development indicators. Among these, network connectivity 
describes the degree of connectivity between network nodes and reflects reachability [9]. Li et al. [10] 
analysed the logistics connectivity of 31 Chinese provinces over a 13-year period from 2002 to 2014, and the 
empirical results showed that transport connectivity had a statistically significant and positive impact on 
China's economic development. Meanwhile, in order to quantify the relative importance of nodes in the 
overall complex network, centrality indices for nodes in various types of networks have been proposed based 
on specific scenarios, such as degree centrality [11], closure centrality [12], and betweenness centrality [13], 
etc. Porta et al. [14] found that street centrality was correlated with the location of economic activities by 
examining the geographical distribution of three street centrality indices and their correlation with various 
types of economic activities in Barcelona, Spain. Ma et al. [15] used network centrality as a bridge variable 
to examine the coordinated coupled development between urban public transport (UPTN) and urban 
commercial complexes. The results show that there is a positive linear relationship between the centrality of 
the UPTN and the distribution of commercial complexes. However, almost all of these studies of centrality 
have focused on the overall centrality of the network, ignoring the extent of regional control over the 
transport of goods along the shortest path between pairs of regions in the network. As such we propose local 
centrality, an index that measures the extent to which a region acts as a transit centre for transport. 

Synthesising the above analysis and research, three indices for individual regions are proposed, namely 
regional connectivity, local centrality and global centrality, using regions as network mediators. The degree 
of connectivity and importance of a region to other regions is quantified through information on nodes along 
different service routes. The new data is predicted by means of an optimal model obtained by multiple linear 
regression of models with permutations and combinations of explanatory variables, using the regional 
development index as the dependent variable. In this study, to demonstrate the usefulness of the three 
proposed regional indices in predicting regional development indicators, China's railway passenger network 
and China's regional GDP are used as example. The experiments show that the three proposed regional 
indices are effective in predicting regional development indicators. 

2. PROPOSED ALGORITHM 

Figure 1 shows the construction of the model for predicting regional development indicators of 
transportation network using special indices. The specific construction steps are as follows. 

1. Construct an unweighted transportation network and six weighted transportation networks based on 
the fixed service schedules of transport equipment. 

2. Obtain indices for each region in the network, including seven normalized and unnormalized 
regional connectivity, three local centralities and two global centralities. 

3. Select the three explanatory variables that best explain the regional development indicators based on 
Pearson's correlation coefficient and a specific selection method for the explanatory variables. 

4. Using the regional indicators as the dependent variables, multiple linear regressions were conducted 
on each of the four models with the three explanatory variables arranged and combined. Based on the 
variance inflation factor (VIF) and the Akaike information criterion (AIC), the one model that best explains 
the regional indicators is obtained and the regression coefficients are used as model parameters. 

5. Predictions are made using the traffic network containing the new data and the proportion of 
variance is used to determine how well the predictions are. 

2.1. Construction of transportation network 

Since the information about the important nodes of the transport routes is precisely preserved in the 
network structure of space P, the transportation network topology is defined in space P and an unweighted 
transportation network is constructed from it in the following way. First, any pair of nodes of each transport 
route is interconnected to form a sub-network. When edge weights are not considered, an unweighted 
transportation network consisting of multiple nodes and edges is obtained through overlapping the sub-
networks formed by each transport route. As shown in Fig. 2, the transportation network dataset is 
represented as a binary network consisting of nodes and transport routes, and the binary network is projected 
into a one-mode network to construct a transportation network consisting of nodes. 
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Fig. 1 – Model construction diagram for predicting regional development indicators of transportation networks using special indices. 

  

Fig. 2 – The construction process of 

transportation network. 
Fig. 3 – Construction of weighted transportation network. 

Six weighted transportation networks are constructed on the basis of the unweighted network, which is 

constructed in approximately the same way as the unweighted network. When the transport volume of each 

service route is ignored, for a transport route r containing rN  nodes, edge weights of 1 , 1/ ( 1)rN − , 

1/ [ ( 1) / 2]r rN N −  are assigned to the edges of all pairs of nodes on route r, respectively. And in the case of 

considering the transport volume of the service route, let the total transport volume of the service route r  be 

rC  and get the edge weight also as rC . When the transport volume rC  of each node is equally divided by 

the other 1rN −  nodes on the transport route r, each edge gets the edge weight as / ( 1)r rC N − . Alternatively, 
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when considering that a transport device can transport goods in a relatively even manner between any nodes 

on a transport route, the edge weight / [ ( 1) / 2]r r rC N N −  means that rC  equally divided by all ( 1) / 2r rN N −  

transport modes that may exist on transport route r. After obtaining the six edge weights, the edge weight 

between any pair of nodes is the sum of the edge weights of all the transport routes where this edge is 

located. Figure 3 shows the construction diagram of the weighted transportation networks. 

Based on the above construction method, the edge weights  between two different nodes are obtained. 

[1 ( , )] Weightij r ir jr

r R

W i j B B


= −   (1) 

where ( , )i j  is the Kronecker delta, R notes the set of all transport routes in the transportation network, 

Weight r  notes the edge weight of transport route r, irB  denotes whether node i is in route r, and 1irB =  or 

0irB =  denotes node i  is in route r  and not in route r , respectively. 

2.2. Access to regional special indices 

Regional Connectivity. The connectivity of region a indicates how well a region is connected to other 

regions in the transportation network. The connectivity of region a  is represented by a i

i a

Rc W


= , where 

iW  is the edge weight between a node belonging to region a and a node in any other region. This definition 

applies to both unweighted and weighted transportation networks, thus obtaining regional connectivity for 

seven different edge weights. In addition, the normalized regional connectivity is also considered, which is 

defined as the average of the regional connectivity of all nodes in region a, denoted by * /a a aRc Rc N= , 

where aN  is the number of nodes in region a . 

Local Centrality. For local centrality, it is first necessary to define the effective path. Consider a pair 

of nodes i  and j  in different regions, and their shortest paths in the transportation network are denoted by 

minL . Since longer shortest paths represent more transit time required for transportation in network routing, 

only min 2,3,4L =  is set. When the length of the shortest path is less than or equal to minL  and the regions of 

all nodes on the shortest path except i  and j  are different from the regions of nodes i  and j , the shortest 

path is an effective path. Since the regions of nodes on the effective path between nodes i  and j  affect the 

transit of goods between the regions in which the two nodes are located, they can be considered critical to the 

regional development indicators. When any node between i  and j  is in region a  and there are multiple 

effective paths L  between them, the number of effective paths of node k  between i  and j  divided by the 

total number of effective paths is defined as /L ij ij
k k

i j

b p n


= , where L  is the effective path, ij
kp  is the 

number of effective paths of node k , and ijn is the number of effective paths. The sum of all L
kb  longing to 

the nodes of region a  is defined as the local centrality of the region and denoted by L
a k

k a

Lc b


= . 

Global Centrality. The global structure information of the network is expressed in terms of global 

centrality, similar to the regional connectivity of the transportation network, which is defined as the sum of 

the betweenness centrality of the nodes in region a , denoted by /ij ij
a k

k a i j

Gc
 

=   , where ij  the number 

of shortest paths between nodes i  and j , and ij
k  the number of shortest paths between i  and j  through 

node k . In addition, the same as the normalized regional connectivity, the normalized global centrality is 

also defined as the average of the global centrality of all nodes in region a . 

2.3. Selection of explanatory variables 

In order to select better explanatory variables among the obtained regional indices to be used for linear 

regression, Pearson correlation coefficient is used to calculate the correlation coefficient between the 
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regional development indicators and each regional index as selection indicators. The specific method of 

selecting explanatory variables is as follows. First, only regional indices with correlation coefficients greater 

than 0.75 can be selected. Second, the regional index with the largest correlation coefficient was selected 

from the seven unnormalized and normalized regional connectivity indices based on the correlation 

coefficient. Third, since the effective path with longer lengths contain shorter ones, try to choose local 

centrality when minL  is a smaller value. Fourth, choose the one with the larger correlation coefficient 

between the unnormalized and normalized global centrality. 

2.4. Selecting model through multiple linear regression 

Based on the selected explanatory variables, a multiple linear regression model with least squares 

parameter estimation was used to discover the statistical relationships with the regional development 

indicator. The regional development indicator for a given region a  is considered as a dependent variable 

aRDI , predicted by the combination of three explanatory variables: regional connectivity (Rc), local 

centrality (Lc) and global centrality (Gc). The equation obtained is 

a * * * eRc Lc GcRDI Rc Lc Gc= + + +  (2) 

where Rc , Lc , Gc  is the regression coefficient for each of the three explanatory variables. 

Due to the presence of multicollinearity among the independent variables, the coefficient estimates of 

the multiple linear regression model may be changed erratically with small changes in the data. To obtain 

correlations between explanatory variables in different models to demonstrate that the model can be used for 

multiple linear regression in a transportation network, the variance inflation factor kVIF  was measured for 

each model with independent variable k [16]. When the value of kVIF  is larger, the estimated regression 

coefficients are also worse due to linearity. maxVIF  indicates the maximum variance inflation factor of all 

independent variables in a model: 

21/ (1 )k kVIF R= −  (3) 

max max k
k M

VIF VIF


= , (4) 

where M  is the set of independent variables in the model, and 2
kR  is the coefficient of determination 

between the kth predictor variable and the remaining predictor variables. Considering the preferred validity 

of multivariate linear regression in many studies with VIF less than 5 [17], the model with maxVIF less than 5 

was chosen. 

In order to select the best combination model for the explanatory variables in the multiple linear 

regression, the one with the smallest AIC  value was given priority according to the AIC criterion. Since the 

ordinary least squares is used for multiple linear regression, AIC  is calculated as 

ln( / ) 2AIC N RSS N K=  + , (5) 

where N  is the number of observations, RSS  is the sum of squared residuals, and K  is the number of 

explanatory variables. 

For each model of the multiple linear regression, the regression model is evaluated by measuring the 

proportion of variance explained by the regression, and the coefficient of determination is expressed as 
2R : 

2 21 (1 )( 1) / ( 1)R R N N K= − − − − − , (6) 

where N  and K  have the same meaning as in Eq. (5). 

Combined with the analysis of the above studies, the best model is the one corresponding to the 

minimum AIC  value when the maxVIF  value is less than 5, when the coefficient of determination obtained is 

larger and the variance explained is better. Also, the regression coefficients of the best model are the 

parameters of the model expressions. 
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2.5. Predicting regional development indicators for new data networks 

In order to evaluate the best model obtained, regional development indicator is predicted for the 

relevant transportation network containing the new data. The predicting steps are as follows. Firstly, the 

predicted regional development indicators for each region are obtained from the regression coefficients of 

the best model. Then total sum of squares (SST) and sum of squares due to regression (SSR) are calculated. 

Finally, the proportion of variance 2r  is obtained in terms of 

2 2 2ˆ/ ( ) / ( )i ir SSR SST y y y y= = − −  , (7) 

where ˆ
iy  is the predicted data, iy  is the true data and y  is the average of the true data. Larger values of 2r  

indicate better prediction. 

3. EXPERIMENTS AND RESULTS PROPOSED ALGORITHM 

3.1. Experimental setting 

The data on the Chinese railway transportation network for the experiments were obtained from the 

official website of the State Railway Administration of China (www.12306.cn). As the moment information 

of trains is available from this website, it is possible to obtain information on train times for 2350 in 2018 

and 2613 in 2019 (The dataset can be obtained from https://github.com/trainFrequencyData/sourceData). 

Considering the impact of passenger traffic, only stations with Chinese railway station grades of special, first 

and second class were used, resulting in 723 stations in 2018 and 731 stations in 2019 for 31 provinces and 

cities. For the acquisition of regional GDP, the GDP of 31 provinces and cities was collected from the 

statistical yearbooks of the National Bureau of Statistics of China. It is important to note in particular that 

these data do not include information on railway trips and stations in Hong Kong, Macau and Taiwan. 

For each trip on the Chinese railway network, trains can stop at railway stations in sequence and carry 

passengers between any two stations according to a fixed schedule. Therefore, the railway transportation 

network can be defined in terms of space P to obtain an unweighted railway passenger network consisting of 

723 nodes versus 182,453 edges in 2018 and 731 nodes versus 183,218 edges in 2019. Since the total 

passenger traffic of a single train is the sum of the remaining tickets between all stations that the train stops 

at, the same six weighted Chinese railway passenger transportation networks are constructed. 

3.2. Results 

Table 1 

Pearson's correlation coefficient between regional connectivity and GDP of 31 Chinese provinces and cities in 2018 

Edge weight oneN   1  1/ ( 1)rN −   1/ [ ( 1) / 2]r rN N −   rC   / ( 1)r rC N −   / [ ( 1) / 2]r r rC N N −   

r  (unnormalized) 0.876 0.853 0.832 0.813 0.868 0.872 0.884 

r  (normalized) 0.478 0.436 0.408 0.467 0.464 0.461 0.453 

Table 2 

Pearson's correlation coefficient between regional centrality and GDP of 31 Chinese provinces and cities in 2018 

 Local Centrality Global Centrality 

 min 2L =  min 3L =  min 4L =  unnormalized normalized 

r  0.863 0.871 0.882 0.857 0.446 

 

Tables 1 and 2 show the Pearson correlation coefficients between each network index and the GDP of 

31 Chinese provinces and cities in 2018. Since most of the correlation coefficients are greater than 0.85, 

many indices of China's railroad passenger transportation network are strongly correlated with gross regional 



7 A model for predicting regional development indicators of transportation networks using regional indices 289 

product. Given the explanatory variable selection method and the results shown in Tables 1 and 2, 

unnormalized regional connectivity with weights equal to / [ ( 1) / 2]r r rC N N − , local centrality with min 2L = , 

and unnormalized global centrality were retained. 

After obtaining the explanatory variables, multiple linear regressions are performed on four models of 

their permutations to explain the GDP of 31 Chinese provinces and cities in 2018, maxVIF , AIC  and 2R  are 

measured. The regression results are presented in Table 3. In terms of model selection, models with maxVIF  

greater than 5 are first excluded because these models generally have correlation between explanatory 

variables. Among the remaining models, the one with the smallest AIC  value is the bivariate model 

consisting of regional connectivity and local centrality. It explains 86.7% of the variance in GDP across 

provinces and cities, yielding regression coefficients of 0.547,  0.431, 0.6[ 63]Rc CI = =  and 

 0.435,  0.319, 0.551Lc CI = = , with 95% confidence intervals shown in square brackets. 

Table 3 

Results of the multiple linear regression with GDP as the dependent variable for 31 Chinese provinces and cities in 2018. 

Model maxVIF  AIC  2R  

Rc + Lc 2.246 -306.24 0.867 

Rc + Gc 3.675 -284.87 0.853 

Lc + Gc 6.478 -266.63 0.851 

Rc + Lc + Gc 13.631 -324.43 0.881 

 

The obtained model and regression coefficients are used to predict the data on China's railroad 

passenger network and the GDP of 31 Chinese provinces and cities in 2019. Better results were obtained 

with a coefficient of determination value of 0.851, explaining 85.1% of the variance. In addition to verify 

that the bivariate model of regional connectivity and local centrality is the best model, multiple linear 

regressions are conducted for four models. The results obtained as seen in Table 4 are the same as those of 

the 2018 data and the best model is still the model consisting of regional connectivity and local centrality. 

Meanwhile, the regression coefficients of the 2019 model were obtained as  Rc 0.541,  0.417, 0.665CI = =  

and  c 0.442,  0.318, 0.566L CI = = , with 95% confidence intervals shown in square brackets, and the 

results were also similar in magnitude to those of the 2018 model. 

Table 4 

Results of the multiple linear regression with GDP as the dependent variable for 31 Chinese provinces and cities in 2019 

Model maxVIF  AIC  2R  

Rc + Lc 2.223 -298.67 0.858 

Rc + Gc 3.827 -278.78 0.841 

Lc + Gc 6.726 -257.51 0.836 

Rc + Lc + Gc 15.428 -307.34 0.868 

3.3. Discussion 

As an important network in transportation, the structure of China's railway passenger network is 

closely linked to the regional GDP. The position of a province or city in the railway passenger transportation 

network not only provides a reference basis for the train schedule design of the railroad bureau, but more 

importantly, affects the regional GDP. Based on the comprehensive Chinese railroad passenger 

transportation network dataset, the railroad passenger transportation network structure is constructed and the 

regional connectivity, local centrality and global centrality of this network structure are obtained. These three 

indices explain the regional GDP quite well, with the bivariate model consisting of regional connectivity and 

local centrality being the best model for predicting regional GDP in the railway passenger transportation 

network. Therefore, it can be concluded that the provinces and cities that are more integrated into China's 

railroad passenger network also have better regional economic development. 
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4. CONCLUSION 

Transportation networks originate from the diverse designs of service routing by various freight and 
passenger transport companies worldwide. The structure of the transportation network physically supports 
and influences the regional development indicators in the network. Based on this, the transportation network 
is constructed in space P and shows that the position of a region is a strong indicator for the development of 
the region. In particular, regional connectivity, local centrality and global centrality are proposed. They make 
use not only of the structure in the network, but more importantly, take into account the regional attributes of 
the nodes. Where regional connectivity reflects the extent to which a region is connected to other regions, 
local centrality reflects the extent to which a region acts as a transit centre for the transport of goods between 
different regions. A structural hole in a network is the absence of connections between a pair of nodes in an 
egocentric network. The local centrality of the transportation network quantifies the number of structural 
holes in the nodes of a given region, in particular the open triangle consisting of three nodes located in 

different regions for min 2L = . As the local centrality supports the structural hole theory, nodes with more 

structural holes can better explain the regional indicators, and therefore the strong correspondence between 
the local centrality and the regional development indicator suggests that structural holes occupying between 
nodes in other regions may yield higher regional development indicators. A multiple linear regression of the 
four models with a linear combination of the three explanatory variables was performed and the best model 
obtained was used to predict regional development indicators for the same transportation network containing 
the new data. 

In addition, it is important to note that the model can be applied for transportation networks that 
contain at least three nodes belonging to different regions on a single transport route. However, for 
transportation networks that contain only start and end nodes, it is expected that the obtained indices will not 
provide a good prediction of regional development indicators. Furthermore, many transportation networks 
are not single networks, but rather composite networks formed by superimposing multiple transport sub-
networks. Therefore, it will be a future work to analyze in depth the causal relationship between composite 
transportation network and regional development indicator. 
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