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Abstract. An automatic multi-scale image edge detection technique is proposed in this research work. 

The multiscale image analysis used by the proposed approach is based on a nonlinear anisotropic 

diffusion-based scale-space that is constructed by applying the finite difference method-based 

numerical approximation scheme of a novel well-posed second-order anisotropic diffusion model. 

The image boundaries are detected at each scale of the obtained PDE-based scale-space by searching 

for zero-crossings and applying some gradient magnitude thresholding procedures and morphological 

operations. The edges determined at multiple scales are then combined, by using a fine-to-coarse edge 

tracking approach, into the final edge detection result. Some boundary detection simulations and 

method comparisons that prove the effectiveness of the proposed technique are also provided here. 
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1. INTRODUCTION 

Edge detection represents a very important and challenging image analysis domain that has been 

widely researched in the past 60 years. It includes various techniques that identify the image boundaries, 

which contain the points in a digital image where its brightness has sharp discontinuities. These edges 

correspond to the discontinuities in depth or in surface orientation, variations in scene illumination or 

changes in material properties [1]. This boundary detection area has many image analysis and computer 

vision applications, since edge information is required in various fields, such as the object detection and 

tracking, pattern recognition, face, fingerprint and iris detection, biometric authentication, image 

compression and remote sensing. 

A variety of edge detectors have been developed in the last decades. The traditional detectors could be 

grouped into two main categories. The first one includes the boundary detection techniques based on first-

order derivative of the image [2], such as the classical gradient operators introduced by Roberts, Sobel and 

Prewitt. The second category includes the detection approaches based on the second-order derivative [3], 

such as the Laplacian of a Gaussian (LoG) – based edge operator proposed by Marr and Hildreth [4]. The 

most popular edge detector, which still represents the state-of-the-art in this field, is the multi-stage image 

boundary detection algorithm developed by J. Canny [5]. 

Since the image edges represent multi-scales structures in nature and the human vision has also a multi-

scale character, a variety of multi-scale edge detection solutions have been proposed in the last years [6]. The 

multi-scale and multi-resolution image analysis has been applied successfully to many image processing and 

computer vision tasks, providing better results than the traditional approaches in these domains. The multi-

scale representations represent better solutions to extract the boundaries in natural scenes and work properly 

in noisy conditions, reducing considerably the white additive image noise. The early work on multi-scale 

edge detection used 2D Gaussian filtering at multiple scales given by  , and fine-to-coarse and coarse-to-

fine boundary tracking procedures [7, 8]. The edge focusing techniques represent more performant methods 

that detect the edges in a image filtered by a large scale Gaussian filter, by using adaptive thresholding, and 

then combine the edge information by moving from a coarse-to-fine scale [9]. Another improved multiscale 
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edge detection technique, proposed by Williams and Shah [ 10] , used the motion information of the 

boundaries filtered by a Gaussian operator of different sizes, in order to determine how to link the edge 

points detected at various scales. A multi-scale extension of the single-scale Sobel detection technique, 

which is based on Gaussian 2D smoothing and fine-to-coarse edge tracking, was proposed in [11]. The 

multi-scale anisotropic Gaussian kernels (AGKs) represent another effective solution for image boundary 

detection [12]. Besides the Gaussian-based approaches, multi-scale edge detection techniques using other 

filtering solutions have been developed. Thus, some effective multi-scale boundary extraction methods are 

based on Wavelet transforms [13, 14]. Other multiscale edge detection algorithms use nonlinear partial 

differential equation (PDE) - based filters, such as the influential anisotropic diffusion scheme introduced by 

Perona and Malik [15]. The PDE variational models have been also used by the image edge detection 

techniques based on active contour models [16, 17].    

We also consider a nonlinear PDE-based edge-based image segmentation approach in this paper. So, 

we proposed some anisotropic diffusion-based [18] and active contour (level-set) based [19] boundary 

detection techniques in our past works. Here we introduce a novel multi-scale edge detection framework 

based on a well-posed second-order nonlinear anisotropic diffusion-based model that is detailed and then 

solved numerically in the next section. The scale-space representation constructed using the finite difference-

based approximation algorithm that solves this PDE model, and the fine-to-coarse edge tracking algorithm 

combining edges identified at multiple scales are described in the third section. Our numerical experiments 

and method comparison are discussed in the fourth section and the conclusions are drawn in the final section.    

2. NONLINEAR ANISOTROPIC DIFFUSION SCHEME FOR MULTISCALE IMAGE ANALYSIS 

The proposed edge detection framework uses a multiscale image analysis based on anisotropic 

diffusion. A nonlinear diffusion-based filtering approach is used to create the scale-space representation, 

since it provides more efficient scale spaces than the classic 2D Gaussian filter. The considered PDE-based 

filter is described in the next subsection and its numerical approximation is performed in the subsection 2.2. 

2.1 Parabolic Second-order PDE-based Denoising Model 

We have conducted a high amount of research in the PDE-based image restoration domain, many 

anisotropic diffusion and variational denoising models being developed by us in the last decade [20]. Some 

of them have been used for multi-scale analysis [21]. Here we introduce a nonlinear second-order anisotropic 

diffusion-based filtering model that is composed of the following parabolic partial differential equation and 

its boundary conditions: 
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We propose the next diffusivity function, which is positive, monotonic decreasing and converges to 0, for the 

PDE model (1): 
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where ( 0,1 , 4, 1      and 5  . The component ( )u   has the role of controlling the 

speed of this diffusion procedure. The positive function used by it has the following form: 
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where  ) ( ), 1,5 , 0,0.5     and ( )0,1  . 

 So, the nonlinear PDE model given by (1) – (3) combines the anisotropic diffusion to a 2D Gaussian 

filter in order achieve an effective white additive noise removal. The diffusivity function given by (2) is 

properly chosen for an efficient denoising [15, 20]. This PDE-based filter removes successfully the white 

additive Gaussian noise (AWGN) from the image and preserves and sharpens its boundaries that have to be 

detected. It overcomes the undesired side effects, such as the image blurring. 

 This second-order nonlinear diffusion-based model is non-variational, since it cannot be derived from 

the minimization of an energy cost functional. Also, the proposed PDE model is well-posed, since it exists a 

unique weak, or variational, solution, for it. That solution is computed numerically by applying a numerical 

approximation algorithm for (1) that converges to it. This discretization scheme that solves numerically the 

PDE model is detailed in the next subsection.  

 

2.2 Numerical Approximation Algorithm 

The considered nonlinear anisotropic diffusion-based model is then solved numerically using an 

approximation scheme that is constructed by applying the finite difference method [22]. Thus, one quantizes 

the spatial coordinates as    , , 1,..., , 1,...,x ih y jh i I j J= =    and the time coordinates as 

 , 0,...,t n t n N=   , where h is the space size and t is the time step of the considered grid and 

 JhIh  is the dimension of the support image.  

Thus, the nonlinear second-order anisotropic diffusion equation given by (1) could be re-written as 

following: 
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 First, one approximates the left component in (4), by using the central finite differences [22], as 

following: 
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 Next, the right term of (4) is discretized. The component ( )u   is approximated as 
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     One may consider here the values 1== th . Then, by using all these discretizatons, one obtains the 

following explicit iterative numerical approximation algorithm: 
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(8)  

        The iterative numerical approximation scheme given by (8) is stable and consistent to the second-order 

nonlinear diffusion-based model (1) and converges in N steps to its variational solution that represents the 

smoothing result. This numerical algorithm that solves the PDE-based filtering model is succesfully used to 

construct an effective image scale-space for edge detection that is described in the next section.  

3. SCALE-SPACE REPRESENTATION FOR BOUNDARY EXTRACTION 

  The described nonlinear anisotropic diffusion-based filtering model is used to construct a proper scale-

space representation for edge detection. As we already mentioned, the anisotropic diffusion smoothing 

schemes represent better scale-space creation tools than the 2D Gaussian filter [6, 8].  

  While the Gaussian operator generates the blurring effect that deteriorates the image boundaries, the 

anisotropic diffusion-based filters, such as the one proposed here, preserve successfully the edges and other 

essential details and even enhance them [20]. Also, while the additive denoising using Gaussian filters of 

increasing variances causes the boundaries to move from their actual locations in the images, the anisotropic 

diffusion preserves properly the edge localization as the scale is increased.  

The proposed anisotropic diffusion-based scale-space is created by applying the nonlinear PDE-based 

filter (1) on the gray-level image until various moments of time and computing the absolute differences 

between the filtered images and the initial observation. The iterative numerical approximation algorithm 

given by (8) is used for this multi-scale image analysis process. Thus, one generates a multi-scale 

representation with K scales, by considering the smoothing output provided by the numerical scheme (8) at K 

properly selected iteration moments. The scale-space is obtained as the next set of image subtraction results: 

  0 2 0 0, ,..., KS u u u u u u  = − − −                                              (9) 

where 10K  , the time step  30,50  , 0u  represents the discrete observation and each ku  , where 

 1,...,k K , is determined from (8). 

 An edge detection process based on this scale-space is then performed. So, the image at each kth scale 

of S, which is denoted 0k kU u u= − , is then analyzed in order to extract the boundaries at that scale. 

Thus, the zero-crossing points of kU  are determined first, the binary image representing them being denoted 

( )kE U . Since we are interested only by those zero-crossings that are essential for the edge detection task, 

that binary image is further processed. Only the zero-crossing points corresponding to the pixels in kU  that 

are characterized by a gradient magnitude exceeding a properly selected threshold value are kept in 

( )kE U . This procedure can be expressed as follows: 

( )       , : 0, 1,..., , 1,..., , 1,...,k k
ij kU T E U i j k K i I j J   =               (10) 

where k
ijU  is computed by (6) and a good threshold value is ( )2 k

kT U=  .  

Also, because only the real boundaries have to be extracted, our approach discards the very small white 

spots in the binary image that could represent noise in the grayscale image. Therefore, the connected 

components of ( )kE U  whose areas (number of pixels) are smaller than a properly chosen threshold c must 

be removed from it. We have detected empirically an optimal threshold value: c = 25. 

Next, one applies some morphological operations on the obtained binary image to enhance the edge 

detection process [23]. Thus, an image closing operation, representing a dilation followed by an erosion, is 

applied first, as following: 
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( ) ( )( ):k kE U E U Sq Sq=                                                         (11) 

where Sq is a  11  square structuring element. Next, a morphological thinning process is performed on the 

closed image given by (11) by applying the Zhang-Suen algorithm [24], its skeleton thus being determined. 

The obtained thinned ( )kE U  image represents the boundary detection result at the kth scale of S. Then, the 

edges extracted at multiple scales have to be combined into the final boundary detection output. Here we 

consider a fine-to-coarse edge tracking method for this task. At lower scales, given by small k values, the 

edge maps ( )kE U  correspond to finer image details and some of their white pixels may not represent real 

edges, but some noise or clutter. At higher scales, given by larger k values, the ( )kE U  maps do not contain 

undesired false edges, but, since they correspond to coarser details, they could miss some real boundaries and 

dislocate others. So, the proposed edge tracking algorithm starts at the finest scale of S and runs until it 

reaches the coarsest scale, analyzing all edges of the images of this scale-space and identifying the real ones. 

 Thus, the boundaries that disappear fast when the scale is increased should be discarded, since they 

may represent false edges, while those that exist at both fine and coarse scales have to be favored, because 

they represent salient image structures. So, our fine-to-coarse tracking algorithm considers all the edge 

(white) pixels of ( )1E U  and track them through the scale-space. If they appear in a large enough number 

of following consecutive edge images ( )kE U , they are considered to belong to real boundaries and 

labeled as such, otherwise they are suppressed. Then, the tracking process continues the same way, by 

considering the unlabeled edge pixels of ( )2E U , tracking them and labeling or discarding them, and so on, 

until there are not enough remaining scales such that the unlabeled edges of the current ( )kE U  to appear in 

a large enough number of them. A good choice for that number is the ceiling of the half of the total number 

of scales, 
2

K 
 
 

. The labeling process means updating a binary matrix that is initialized E (S) : = 0, by 

marking with 1 the real edge pixels. This boundary tracking process can be formulated as following: 

    ( )  ( )  ( ) 1,..., , 1,..., , 1,..., : , ... , 1& , : 1
2 2

k k mK K
k i I j J E U i j E U i j m E S i j+    

    = = =  = =    
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 Although the proposed anisotropic diffusion-based scale-space representation S preserves the image 

boundary localization very well, the fine-to-coarse edge tracking process given by (12) could be improved by 

searching in small edge neighborhoods at higher scales. Thus, to address any possible edge displacement that 

may occur at large scales, an edge pixel of a map could be accepted as valid even if it is not found at the 

same location in the edge map of the next scale, but in a 4 or 8-neighborhood of it. That can be formulated as 

    ( )  ( ) 11, , 1 , 1, , 1 : , , 1,  k ka i i i b j j j E U i j E U a b k high threshold+  − +  − + = =          (13) 

and may be incorporated in (12). The obtained binary image E (S) represent the final multi-scale edge 

detection result. It contains the extracted boundaries of the initial observed gray-level image, 0u . 
  

 

Fig. 1 Edge detection using a scale-space with K=10 scales  
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Fig. 2 The pseudocode algorithm of the multi-scale image boundary detector  
 

 A multi-scale edge detection example is provided in Fig. 1. The  256 256  Trui image displayed in a) 

is analyzed using the proposed detector. The boundaries extracted at the K = 10 scales of S are displayed in 

b) – k) and the final edge detection result is depicted in l). The pseudocode describing all the main steps of 

this automatic edge detection algorithm is represented in Fig. 2.  

4. EXPERIMENTS AND METHOD COMPARISON 

The proposed automatic anisotropic diffusion-based multi-scale edge detection approach has been 

successfully tested on several hundreds of digital color and gray-level images. Some well-known image 

collections, such as the USC-SIPI Image Database and the Berkeley Segmentation Dataset (BSD), have been 

used in our experiments. The boundary detection simulations have been performed using MATLAB on an 

Intel (R) Core (TM) i7-6700HQ CPU 2.60 GHz processor on 64 bits, running Windows 10. 

Given the nonlinear second-order PDE-based filter used to create its scale-space, this multi-scale edge 

detector identifies properly the image boundaries in both normal and noisy conditions. Because of its high 

computational complexity, it does not execute very fast. A proper edge detection process requires a number 

of scales K that cannot be low and a step   that is quite high. Optimal boundary extraction results have been 

achieved for 15K =  and 40 = , which means hundreds of iterations of the numerical approximation 

algorithm (8). However, the running time of the proposed technique depends on the analyzed image size, too. 

The proposed approach has been assessed by applying various evaluation measures that combine the 

true edge, false edge and missed edge numbers and use the ground truth of the test images, like Precision, 

Recall, F1, Map Quality (MQ) and Performance Ratio (PR) [25, 26]. The images of the BSD database and the 

respective ground truths have been used for this method evaluation [26]. Our detection technique achieves 

satisfactory values of these performance evaluation metrics and Peak Signal to Noise Ratio (PSNR) measure. 
 

Table 1 Method comparison: average PR and PSNR values achieved by several edge detectors  

Edge detection technique Average PR Average PSNR (in dB) 

The proposed multi-scale edge detector 11.0217                       20.1742 
 

Canny filter 12.1304 22.3817 

Laplacian of Gaussian (Log) 9.3267 19.4837 

Roberts operator 6.5486 15.6745 

Sobel detector 7.4251 16.7802 

Prewitt filter 8.5139 16.9837 
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Fig. 3 Edge detection method comparison example  
 

Method comparison have been also performed. The multiscale boundary extraction technique proposed 

here outperforms the classic edge detectors, achieving better values of the performance metrics. Thus, the 

average PR (the ratio of true to false edges) and PSNR scores obtained for 175 BSD testing images 

(www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds) by this anisotropic diffusion-based approach 

and other edge detection methods are displayed in Table 1. So, the proposed PDE-based multi-scale 

boundary detector performs better than mono-scale detectors Roberts, Sobel and Prewitt, and even than the 

Laplacian of a Gaussian (LoG) edge detection filter, achieving higher average PR and PSNR values. It also 

outperforms a past diffusion-based detector introduced by us [18], but it is slightly outperformed by the still 

state-of-the-art Canny filter that obtains somewhat better values of these measures. However, the described 

algorithm has the disadvantage of running a bit slower than those edge detectors, due to its high complexity.  

An edge detection method comparison example is described in Fig. 3. The edges of grayscale Lenna 

image in a) are extracted using the mentioned detectors, their results being displayed in b) to g). The edge 

map produced by the proposed multi-scale detector for K = 12 looks much better than the edge detection 

output of Roberts, Sobel and Prewitt operators and even more natural than that produced by Canny method. 

5. CONCLUSIONS 

A novel and effective image boundary detection technique has been developed using the anisotropic 

diffusion-based multi-scale analysis. Although we have performed much research in the multi-scale and 

PDE-based image processing and analysis fields in the last 15 years [20, 21], the diffusion-based multi-scale 

edge detection domain has not been seriously approached by us until now. Thus, the automatic edge detector 

described here represents a new direction in our PDE-based image analysis research, combining the multi-

scale analysis to nonlinear diffusion equations. It makes a much better edge detection solution than our past 

PDE-based single-scale approaches [18]. While its components are inspired by our previous PDE-based 

multiscale analysis results, they represent new anisotropic diffusion schemes and scale-space models. 

So, the scale-space representation that has been created by using a non-variational well-posed nonlinear 

second-order diffusion model proposed here represents the main contribution of this research paper. A stable 

approximation algorithm that is consistent to the PDE-based model and solves it numerically by converging 

to its variational solution is constructed by applying the finite difference method and then used to create the 

scale-space. The edge detection procedure that is applied at each scale and the fine-to-coarse tracking 

technique that combines successfully the boundaries identified at multiple scales represent other new 

contributions of this research. The performed edge detection simulations and method comparisons illustrate 

the effectiveness of the proposed approach and the benefits of the multi-scale image analysis using nonlinear 

diffusion schemes in the boundary extraction field. The PDE-based multi-scale edge detector presented here 

outperforms clearly the single-scale edge detection methods, especially for the natural images, and also 

provides better results than multi-scale techniques based on Gaussian filters, given the much better 

preservation of the edge strength and localization provided by the anisotropic diffusion filtering. 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds
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The proposed edge detection framework can be applied successfully to image segmentation, since very 

good region segmentation results could be achieved by linking the edges detected by it. The segmentation 

results can be next applied to other computer vision areas that have been also widely investigated by us, such 

as the face detection [27] or the object detection and tracking. Also, this automatic multi-scale technique 

could be transformed it into an improved multi-resolution edge detection method, by considering a different 

image resolution at each scale and creating an anisotropic diffusion-based pyramid as scale-space. This 

method improvement and its application fields will make the focus of our future research.  
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