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Abstract. This paper formulates and motivates a model for deformation of the surgical needle during 
its insertion into the human liver. The motion equations of the needle are similar to Tzitzeica 
equations of surfaces which are invariant under the group of centro-affine transformations. That 
means the surfaces tend to minimize their area and have a minimal Dirichlet energy of how variable a 
function is. The closed form solutions are obtained for deformation of the needle. In addition, the 
collision between the needle and the tissues is modeled as a minimization problem. 
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1. INTRODUCTION 

Estimation the surgical needle deformation during the insertion into the human liver can be expressed 
as a problem of optimization of the cutting procedures for malignant hepatic tumors [1−3]. The optimization 
includes the minimization of the damage to the patient body by choosing flexible, long and slender surgical 
needle in order to cause minimum needle deflections during insertion procedures [4−7]. 

The treatment of non-respectable hepatic tumors is obtained by transporting into the tumor of an active 
chemical agent with the help of a surgical needle. The trajectories of the needle must not collide with other 
organs or tissues, blood vessels or nerves. In this paper, the Lagrangian formulation is used to model the 
flexible needle as a Euler-Bernoulli beam within the framework of the linear elasticity theory. Fig. 1 presents 
the tumor position and possible collision-free trajectories of the surgical needle. 

Consider a serial surgical robot consisting of two revolute joints, a flexible arm and a flexible needle. 
The configuration of the elastic beam is described by the position and orientation of the frame 1 1 1( , )K x y , 
and the configuration of the needle is described in the frame 2 2 2( , )K x y  (Fig. 2). The position and orientation 

of 1K  and 2K  is given by the shape matrix. The robot has f degrees of freedom r ef f f= + , 
2

1
e ei

i

f f
=

=∑ , 

where 2rf =  are the rigid body degrees of freedom, and 2ef =  are the elastic degrees of freedom resulting 
from the 2D bending of the flexible arm and the needle [8−11]. 

In this paper a surgical robot consisted of a revolute joint and a flexible needle is considered (Fig. 1). 
The Lagrange reference system of coordinates ( , , )X Y Z  of unit vectors 1 2 3( , , )e e e  with the origin O located 
in the entry point of the skin is attached to the needle. A local Euler system of coordinate with the unit 
vectors 1 2 3( , , )d d d  is attached to the flexible needle to describe the position and orientation of the needle 
who must carry drugs to the tumor. The angle between the needle and the axis 1x  is 1θ , which represents the 
generalized coordinate of the rigid system. The serial robot has f degrees of freedom r ef f f= + , where 

rf = 1 is the rigid body degree of freedom, and 3ef =  are the elastic degrees of freedom representing the 
deformations of the needle at bending 1 2,u u  and torsion 3u . The generalized coordinates vector is  

T
1 1 2 3, , ,u u u⎡ ⎤= θ⎣ ⎦q . 
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The environment containing the organs, ribs, blood vessels and the tumor and possible collision-free 
trajectories of the surgical needle are represented in Fig. 2. 

 Different types of needles were analyzed before choosing the surgical needle [12−14]. The flexible bee 
barbed needle proposed by Sahlabadi [14] is chosen for some of its advantages such as: it decreases the most 
the insertion force, that is with 24%, and therefore it decreases the tissue deformation by 17% because of the 
tip deflection. The characteristics of this needle are: the front angle has 157 deg, the back angle, 110 deg, the 
height is 0.5 mm, and the tip thickness 0.15 mm. The honeybee barbed needle model is presented in Fig. 3 
[9, 15, 16]. 
 

 
Fig.1 – Surgical robot consisted of a revolute joint and a flexible needle.  

The Lagrange coordinate system OXY  and the local Euler coordinate systems are attached to flexible needle. 
 

 
Fig. 2 – Tumor position and possible collision-free trajectories of the surgical needle. 

 

2. MODELING THE FLEXIBLE NEEDLE INSERTION INTO THE HUMAN LIVER 

The flexible needle is modeled as an elastic thread within the framework of the elastic theory of the 
thin elastic thread [17, 18]. The limitation of the current methods existing in the literature consists in 
applying only 1D linear elasticity theories to a 3D problem with significant nonlinear properties [19]. 

In what follows, we present some results which fill a gap in the simulation of the surgical needle 
deformation because, despite the current methods in the modeling of the needle response during its insertion 
into the tumor, no realistic methods and results have been identified. 
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Let us consider the case of a tumor located in a difficult place to be reached in the vicinity of the portal 
tree in the vascular territory of the liver. Location of the tumor, the vascular territory and the vessel branches 
in the vicinity of the tumor are displayed in Fig. 4. 

Figure 4a represents the location of the tumor and Fig. 4b the vascular territory and the vessel branches 
in the vicinity of the tumor. It is assumed that the collision-free needle trajectory towards the tumor can take 
any form even if physically they cannot be realized. 

 
Fig. 3 – Honeybee barbed needle model inspired from [13]. 

 
The medical robot is designed for interventions that are difficult to perform in the classic way. In this 

sense, the restrictions refer to the minimal destruction of healthy tissues (no wrong cuts, no sectioning of 
blood vessels or nerves). The simplest and most natural shape of the needle trajectory is the straight line 
which connects the point of entry into the skin to the tumor. But in the most cases, the trajectory can take 
different forms due to the restriction of avoiding collisions with organs and tissues. Possible such trajectories 
are displayed in Fig. 5, but the optimal shape of  the trajectories is obtained from an optimization problem. 
 

 
Fig. 4 – a) Location of the tumor; b) vascular territory (1) and the vessel branches in the vicinity of tumor (2). 

 
The optimization problem of determining the free-collision trajectories of the surgical needle must take 

into account all difficulties which occur in such operation: (1) the needle must solve its task of transporting 
drugs into the tumor, (2) the insertion trajectory of the needle should avoid the ribs, blood vessels, and other 
tissues and organs in the abdominal cavity. 

The minimum distance problem can be modeled as a minimization problem that checks the minimum 
distance between the needle and the tissue [7, 19] 
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T
1 2 1 2

1min ( ) ( )
2

⎛ ⎞− −⎜ ⎟
⎝ ⎠

r r r r , (1)

with 1 2,r r  the position vectors of two points belonging to the needle and the tissue. The interference distance 
or penetration is expressed as 

1 1 2 2min( ),  ( ) ,   ( )
2 2
d dd g g− ≤ − ≤ −r r , (2)

where d  is the penetration and 1g , 2g  are the surfaces to the needle and the tissue, respectively. 
 

 
Fig. 5 – Different shapes for a trajectory. 

 
Let s be the coordinate along the central line of the natural state of the needle. The simulation is 

performed for a bee needle made from shape memory alloys with 55% Nickel and 45% titanium, with 
density ρ = 6.5 3kg/m , the modulus of elasticity E = 32.3 GPa at bending, and the Poisson’s ratio ν = 0.48. 

The Lagrange technique is used to obtain the motion equations of the needle with the ends fixed by the 
force = −F f  with 1 2 3( , , )f f f=f . This force describes the contact between the needle and the tissue cp=f n . 
The prime means the partial differentiation with respect to s. The motion equations of the surgical needle are 
obtained as [7, 17] 

0′−ρ − =r f  (3)

2 2
1 2

1 2 3
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f f f
′ ′′ ′ ′ ′ψ θ θ−θ − ϕ+ψ θ ψ θ− ψ θ θ−θ + ϕ +ψ θ ψ θ−
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∂ ∂ ′ ′ ′− ψ θ+ ϕ+ψ θ θ + ψ θ+ ϕ +ψ θ θ +
∂ ∂

+ θ ψ − θ ψ =
 (5)

2 ( cos ) ( cos ) 0k C
t s
∂ ∂ ′ ′− ϕ+ψ θ + ϕ +ψ θ =
∂ ∂

. (6)

where ,θ ψ  and ϕ  are the Euler angles, ( , )r s t is the position vector which can be interpreted as the image of 
the central axis in the Euler configuration, 1 2 3( , , )f f f f= is the force applied to the needle, ρ  is the mass 
density per unit volume,  A and C are the bending stiffness and respectively the torsional stiffness of the 

needle, related to the Lamé constants λ , μ  by 4 41 1, ,
4 2

A a E C a= π = π μ where E   is the  flexural Young's 

modulus, and a  is the radius of the cross section of the needle.  The dot means the differentiation with 
respect to time.  
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The unknowns in the motion equations (3−6) are the Euler angles ,θ ψ  and ϕ . The system of equations 
(3−6) are solved by the cnoidal method [17]. The method is reducible to a generalization of the Fourier series 
with the cnoidal functions as the fundamental basis function. This is because the cnoidal functions are much 
richer than the trigonometric or hyperbolic functions, that is, the modulus m  of the cnoidal function, 
0 1m≤ ≤ , can be varied to obtain a sine or cosine function ( 0)m ≅ , a Stokes function ( 0.5)m ≅  or a solitonic 
function, sech or tanh ( 1)m ≅ . 

The relationship between the Euler angles and the needle deformation is given by 

1 sin sin cosu ′ ′= θ ϕ−ψ θ ϕ , 

2 cos sin sinu ′ ′= θ ϕ+ψ θ ϕ , 

3 cosu ′ ′= ϕ +ψ θ . 

(7)

The functions 1 2 3( , , )u u u  measure the bending and torsion of the needle. 

3. RESULTS 

The minimization problem (1, 2) is solved by using a genetic algorithm [18]. The objective function is 
minimized 

2
T

1 2 1 2
1

1 ( ) ( )
2

N

i i i i
i=

⎡ ⎤⎛ ⎞ℑ= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ r r r r , (8)

subjected to restrictions 

1 1 2 2min( ),  g ( ) ,   g ( )
2 2
d dd− ≤ − ≤ −r r . (9)

Three locally 2D optimal collision-free trajectories for the surgical needle corresponding to three 
different entry points into the skin A, B and C are displayed in Fig. 6 [11]. 

The motion equations (3−6) possess a special type of solutions. These solutions known as solitons are 
localized functions that conserve their properties even after interaction among them, and then act somewhat 
like particles [17]. In addition, these equations are invariants under the group of centro-affine 
transformations, being similar to the partial differential equations which arise in the Tzitzeica surfaces theory 
[19]. Tzitzeica surfaces that have the essential property to be invariant under the group of centro-affine 
transformations [17, 19]. That means that the surfaces locally tend to minimize their area and to have a 
minimal Dirichlet energy that measures of how variable a function is. With other words, the surfaces have 
only local optima, not global optima and the functions are stable with no tendency towards the chaos. 

The closed form solutions of the Euler angles θ ,ψ  and ϕ  are given by [17] 

[ ]
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third kind. Functions 1 2 3, ,ζ ζ ζ  are solutions of the Weierstrass equation 
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which admits the soliton solutions [17]. 
 

 

Fig. 6 – Three 2D optimal collision-free trajectories for the needle robot. 
 

The deformation of the needle during navigation into the liver towards the tumor is represented in 
Fig. 7. The bending deformation 1u  and 2u  are shown in Fig. 7a and the torsion deformation 3u  of the 
needle in Fig. 7b, respectively. While the deformation of the surgical needle has been extensively studied 
[9, 15−18] many features of the needle behavior remain to be investigated. 

Important characteristics of the needle deformation are obtained by intersection of the surfaces 

1 2 3, ,u u u  with constz = . The 2D hyperbolic manifolds ( , )x y  with the curvature 4const / a are obtained. We 
recognize here the Tzitzeica surfaces which have only local optima not global optima [13]. That means that 
the deformation of the needle has periodicity properties. The mechanical properties of the human liver are 
investigated in [9, 15−19] by using a basic functional unit of the liver which comprises a hexagonal and a 
portal triad -portal vein, hepatic artery, bile duct. The sonification technique for hardly detectable details in 
the medical images is also applied for the microscopic investigation of the human liver [15]. The 3D 
manifold of the Tzitzeica variety includes a solid torus and three thickened deformation surfaces, as shown in 
Fig. 8. Details on this issue can be found in [20−27]. 
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Fig. 7 – a) The bending deformation 1u  and 2u ; b) the torsion deformation 3u  of the needle. 

 

 
Fig. 8 – The 3D manifold of a Tzitzeica surface. 

4. CONCLUSIONS 

The surgical bee needle deformation during the insertion into the human liver is considered difficult 
because of the complexity and variability of the liver. Based on the thin elastic thread theory, the 
deformation of the bee needle during insertion into the human liver is analyzed.  

The motion equations of the needle are similar to equations which arise in the Tzitzeica surfaces and 
therefore, these equations reveal their invariant properties under the group of centro-affine transformations.  

This trend is to minimize the surface area and the Dirichlet energy that measures the stability of the 
needle deformations. The closed form solutions are obtained for bending and torsion of the needle. The 
modeling of the collision between the needle and the tissues as a minimization problem that checks the 
minimum distance between the needle and the tissue is also developed. 
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