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Abstract. In this paper, we propose that the progeny of supermassive black holes occur due to the collapse of dark
matter consisting of dark bosons at ultra-cold temperatures. For this purpose, supermassive black holes were modeled
as attractive cosmological Bose-Einstein condensates and described by the Gross-Pitaevskii equation within the scope
of the mean-field theory. The study developed in this paper was motivated by the possibility of observing the formation
of supermassive black holes through the behavior of the chemical potential as a function of the number of dark bosons.
The results demonstrated, through variational formalism, that the formation of supermassive black holes is possible.
The results obtained in this paper can open the way for a better understanding about supermassive black holes and
motivate new studies related to cosmological Bose-Einstein condensates such as supermassive Kerr black holes and
quarks stars.
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1. INTRODUCTION

The advent of the experimental realization of Bose-Einstein condensate (BEC) opened the way for a better
understanding of ultracold atoms trapped [1–3]. Both dynamic and static properties of BECs consisting of
dilute atomic gases in the ultracold temperature regime are well described by the mean-field equation known as
the Gross-Pitaevskii equation (GPE) [4, 5].

In recent years, there has been an effort by the scientific community to understand the behavior of robust
cosmic structures modeled as cosmological BECs [6, 7]. Among these cosmological BECs, we can mention
the main constituents of the dark universe, i.e., dark matter and dark energy [8–13], supermassive black holes
[14–16], neutron stars [17, 18], white dwarfs [19], primordial universe [20, 21], etc.

Nowadays, supermassive black holes (SMBH) have attracted interest from the scientific community. The
Nobel Prize in Physics 2020 was divided, one half awarded to Roger Penrose "for the discovery that black hole
formation is a robust prediction of the general theory of relativity", the other half jointly to Reinhard Genzel
and Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy".

SMBHs can result from a variety of complex processes that occur at the center of galaxies [22]. Some
current perspectives, however, propose that galaxies were formed around SMBHs which were the result of the
gravitational collapse of dark matter (DM). In addition, dynamical evidence supports the existence of SMBHs
in the centers of most nearby galaxies [23].

Recently, Gupta et al [15] studied collapse of ultra-light bosonic halo DM that is in a BEC phase to give rise
to SMBHs on dynamical time scales, using the GPE in the framework of time-dependent variational method.
Morikawa et al [16] explored the possibility that black holes form from the coherent waves of BEC which are
supposed to form the DM for the Axion case with attractive interaction.

Thus, we propose in this paper a model that predicts the progeny of SMBHs through the gravitational
collapse of DM, assuming that SMBHs can be described as attractive BECs. However, in order to corroborate
the results obtained in Ref. [15], we investigated the collapse of the dark matter BEC from the behavior of the
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chemical potential as a function of the number of dark bosons in the stationary regime. For this purpose, the
variational method formalism [24] is used to determine the wave function that describes the BECs from the
GPE.

This paper is organised as follows. In Sec. 2, we propose a model described by the GPE, which is based
on the mean-field theory. In Sec. 3, we present the variational formulation in order to solve the GPE using
a Gaussian ansatz. In Sec. 4, we report the variational results regarding the collapse of cosmological BECs.
Finally, in Sec. 5, we present the conclusions and final considerations.

2. THE MODEL

The scope of this paper is to investigate the possibility of the formation of SMBHs through the collapse
of DM. For this, we propose that DM be constituted by bosonic particles called dark bosons, which have
attractive interactions with each other. Thus, assuming ultra-low temperatures, it becomes possible to describe
the behavior of SMBHs as cosmological BECs.

BECs are well described by the GPE, in the context of the mean-field theory. The GPE is similar to the
nonlinear Schrödinger equation (NLSE) [25]:

ih̄
∂

∂ t
ψ (r, t) =− h̄2

2m
∇

2
ψ (r, t)+Vext (r)ψ (r, t)+Γ |ψ (r, t)|2 ψ (r, t) , (1)

where i =
√
−1 is the imaginary unit, h̄ = h/2π is the reduced Planck constant, m is the mass of each dark

boson, ∇2 denotes the 3D Laplacian, Vext (r) is the external trapping potential and Γ = 4π h̄2as/m describes the
strength of the coupling constant characterized by the s-wave scattering length as; it is positive for repulsive
interactions and negative for attractive interactions1. The quantity ψ (r, t) is the wave function, whose norm is
equal to the number of particles: ∫ +∞

−∞

|ψ (r, t)|2 dr = N, (2)

where N is the total number of dark bosons.
The external potential Vext (r) responsible for the trapping of dark bosons is given by the gravitational

potential energy due to a spherically symmetrical central compact remnant [15]:

Vext (r) =−
GM0m

r
, (3)

where G is the universal gravitational constant and M0 is the mass of the compact remnant.

3. VARIATIONAL FORMULATION

In general, Bose-Einstein condensation is a macroscopic occupation of the ground state of a bosonic quan-
tum gas. In this context, it becomes reasonable to use a variational approach to deal with this quantum system.
The variational method is based on choosing a trial wave function (ansatz) with some variational parameters.
Such parameters are adjusted in order to minimize the energy of the system. Moreover, the fact that the uni-
verse is expanding creates a favorable environment for dark bosons to be in the BEC state [15]. Therefore, it is
plausible that a considerable fraction of the DM is in the ground state.

In order to solve Eq. 1, we can formulate our model through variational formalism corresponding to mini-
mizing the action:

S =
∫ +∞

−∞

∫ +∞

−∞

L drdt, (4)

1Due to attractive interactions, we describe the nonlinearity coefficient as Γ→−Γ = 4π h̄2 |as|/m.
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where Lagrangian density L is given by:

L =
ih̄
2
(ψψ̇

∗−ψ
∗
ψ̇)+

h̄2

2m
(∇ψ)2− GM0m

r
ψ

2− Γ

2
ψ

4. (5)

The choice of the ansatz is very important. Regarding what is known about the shape of the BEC wave
function, a Gaussian is probably a very reasonable ansatz for the case of BECs with attractive interactions
(as < 0) [24]. Thus, variational solutions for Eq. 1 were obtained by assuming a nomalized Gaussian ansatz:

ψ (r, t) =
√

N
π3/2σ3 e−r2/2σ2

e−iµt/h̄, (6)

where µ is the chemical potential and both norma N and width σ are variational parameters. The choice of this
Gaussian ansatz is motivated by the interest in investigating the collapse of the BEC through the behavior of
the chemical potential as a function of the number of dark bosons in the stationary regime.

After choosing ansatz, our goal is to determine the Euler-Lagrange equations for the variational parame-
ters. To this aim, we calculate an effective Lagrangian L by integrating the Lagrangian density over the space
coordinates:

L = 〈L 〉=
∫ +∞

−∞

L dr =
∫ +∞

−∞

[
ih̄
2
(ψψ̇

∗−ψ
∗
ψ̇)+

h̄2

2m
(∇ψ)2− GM0m

r
ψ

2− Γ

2
ψ

4
]

dr. (7)

So, the substitution of ansatz (Eq. 6) in Eq. 7 yields:

L = N
[

3h̄2

4mσ2 −
2GM0mN√

πσ
− ΓN

4
√

2π3/2σ3
−µ

]
. (8)

Euler-Lagrange equations for variational parameters can be obtained by minimizing the effective Lagrangian:

∂L
∂q

= 0, (9)

where q are the generalized coordinates q≡ {σ ,N}. Thus, ∂L/∂σ = 0 and ∂L/∂N = 0 provide, respectively,
the following variational equations:

0 =
3h̄2

2mσ3 −
2GM0m√

πσ2 −
3ΓN

4
√

2π3/2σ4
, (10)

µ =
3h̄2

4mσ2 −
2GM0m√

πσ
− ΓN

2
√

2π3/2σ3
. (11)

4. RESULTS

4.1. Critical number of particles

The equation for energy can be obtained through the thermodynamic definition of the chemical potential:

µ =
∂E
∂N

. (12)

Substituting Eq. 11 in Eq. 12, the following expression is obtained:

E =
3h̄2N
4mσ2 −

2GM0mN√
πσ

− ΓN2

4
√

2π3/2σ3
. (13)

In the case of attractive BECs, it is observed that the energy diverges as sigma tends to zero. This behavior
occurs due to the dominance of the negative interaction energy. Consequently, a solution that minimizes energy
is a wavepacket of zero width.
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Fig. 1 – Variational results for a spherically symmetrical cosmological BEC with attractive interactions.

Fig. 1a illustrates energy per particle as a function of the variational parameter. As N→ Ncrit , the collapse
of the BEC becomes inevitable. Fig. 1b shows the dependence of the chemical potential as a function of the
number of particles. Stable (solid green line) and unstable (dotted green line) solutions were obtained using the
variational method for a Gaussian ansatz. Here, the following parameters were considered to be dimensionless:
c = G = h̄ = Γ = m = M0 = 1.

However, if the number of particles is less than a certain critical number, the existence of a local minimum
of the system energy is observed, which predicts the possibility of a stable BEC with a non-zero width, as
illustrated Fig. 1a. In fact, stability occurs when gravitational trapping potential and attractive interactions
between dark bosons are counterbalanced by repulsive quantum pressure (Heisenberg’s uncertainty principle).
As N → Ncrit , the minimum local energy tends to disappear, giving rise to a narrower BEC. In other words,
the equilibrium condition ceases to exist because quantum pressure cannot counterbalance the potential grav-
itational trapping potential and attractive self-interactions between particles. In this limit, stable solutions do
not exist and the collapse of the BEC becomes inevitable.

The Ncrit satisfies the condition that both the first and second derivative of E with respect to the variational
parameter σ is equal to zero [26]:

∂E
∂σ

= 0→ 3ΓN2

4
√

2π3/2σ4
+

2GM0mN√
πσ2 − 3Nh̄2

2mσ3 = 0, (14)

∂ 2E
∂σ2 = 0→ 3ΓN2

√
2π3/2σ5

+
4GM0mN√

πσ3 − 9Nh̄2

2mσ4 = 0. (15)

When the equations to the first (Eq. 14) and the second (Eq. 15) derivate are equal to each other, the critical
variational parameter is given by:

σcrit =
3
√

π h̄2

8GM0m2 . (16)

Using this critical parameter in Eq. 14, the critical value of particle number is given by:

Ncrit =
3
√

2π2h̄4

8ΓGM0m3 . (17)
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4.2. Chemical potential

With respect to variational equations, Eq. 11 can be rewritten as the following quadratic equation:

σ
2− 3

√
π h̄2

4GM0m2 σ +
3ΓN

8
√

2πGM0m
= 0, (18)

whose analytical solution is trivial:

σ j =
3π3/2h̄2±

√
9π3h̄4−12

√
2πΓGM0m3N

8πGM0m2 , (19)

where j ≡ {−,+}. Here, σ− and σ+ represent, respectively, unstable and stable solutions. Substituting Eq. 19
in Eq. 11, we obtain the chemical potential µ± whose dependence on the number of particles can be seen in
Fig. 1b. The stability of solution σ+ can be verified by the well-known Vakhitov-Kolokolov (VK) criterion.
The VK criterion predicts the existence of regions of stability in BECs, provided the following condition is
satisfied:

∂ µ

∂N
< 0. (20)

Fig. 1b illustrates the stability regions for solution σ+. As the number of particles increases, the chemical
potential tends to decrease, satisfying Eq. 20. However, when N = Ncrit , the BEC inevitably collapses, making
it unstable. At this limit, the VK criterion is not satisfied.

4.3. Collapse and formation of SMBHs

The formation of SMBHs can occur similarly to the collapse of attractive BECs. As mentioned in Sec. 4.1,
the critical parameter determines the threshold between the stability and the collapse of the BEC. However, the
critical parameter that determines the formation of SMBHs can be described by the Schwarzschild radius:

rs ≡
2GMe f f

c2 , (21)

where c is the speed of light and Me f f is the total effective mass.
It is important to note that we use a non-relativistic formalism in this paper. However, if the size of the

BEC decreases beyond a certain limit, its density will be so great that the effects of General Relativity cannot
be neglected.

Assuming spherical symmetry, we can consider the mass of the BEC enclosed within a sphere Ω of radius
σ for the purpose of estimating the total effective mass of the BEC confined within a Gaussian of width σ [15]:

Me f f ≡ m
∫

Ω

|ψ (r, t)|2 dr =
4mN√

πσ3

∫
σ

0
r2e−r2/σ2

dr =
4mN√

π

∞

∑
n=0

(−1)n

(2n+3)n!
= ΛmN, (22)

where Λ≡ erf(1)−2
(
e
√

π
)−1.

According to Morikawa et al [16], BECs of dark bosons can collapse to form SMBHs when the width
of the BEC becomes smaller than the Schwarzschild radius. Therefore, it becomes reasonable to define the
Schwarzschild radius (Eq. 21) as being equal to the critical parameter (Eq. 16):

σcrit = rs. (23)
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Fig. 2 – Illustration referring to the formation of SMBHs from the collapse of attractive BECs of dark matter. The Schwarzschild
radius is the physical parameter that determines the extension of the event horizon, which delimits the boundaries of SMBHs.

Similarly, the critical parameter determines the width of the attractive BECs on the verge of collapse.

From Eq. 23, the following relation between the number of particles and the mass of each dark boson is
obtained:

N =
3
√

π

16Λ

m4
P

M0m3 , (24)

where mP ≡
√

h̄c/G is the Planck mass. Thus, when the total number of particles tends to the critical number,
it becomes possible to determine the relation between the mass of each dark boson and the the absolute value
of scattering length:

N→ Ncrit 99K m =

√
2
π

G |as|m4
P

Λh̄2 . (25)

4.4. Entropy

In addition to establishing the conditions for the formation of SMBHs, it becomes interesting to determine
its entropy. Indeed, entropy can be quantified through the event horizon [27]. In the context of Schwarzschild’s
SMBHs, entropy is given by:

SBH =
kBc3

Gh̄
A
4
, (26)

where A = 4πr2
s is the area of the event horizon and kB is the Boltzmann constant. Thus, replacing Eqs. 21, 24

and 25 in Eq. 26, we obtain:

SBH =

(√
3πΛ

4
lP
as

√
mP

M0

)4

kB, (27)

where lP ≡
√

h̄G/c3 is the Planck length. The results obtained predict that, in the event horizon, entropy can
be determined in terms of the scattering length due to the attractive interactions between the dark bosons.
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5. CONCLUSIONS

In this paper, we considered a scenario where the progeny of SMBHs occurs through the collapse of DM
modeled as an attractive cosmological BEC. For this, the SMBH was described by the Gross-Pitaevskii mean-
field equation, which was solved through variational formalism using a Gaussian trial wave function. The
variational results demonstrated that it is possible to occur the collapse of DM for the formation of SMBHs as
proposed in this paper. In addition, we demonstrated that, in the event horizon, the mass of each dark boson can
be described in terms of the scattering length, which led us to determine the entropy of the SMBH. The results
obtained in this paper can open the way for a better understanding about SMBHs and motivate new studies
related to cosmological BECs.
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