CONGRUENCE IDENTITIES INVOLVING SUMS OF ODD DIVISORS FUNCTION

Mircea MERCA
University of Craiova, Department of Mathematics
A. I. Cuza 13, Craiova 200585, Romania
Corresponding author: Mircea MERCA, E-mail: mircea.merca@profinfo.edu.ro

Abstract

In this paper, inspired by a classical connections between partitions and divisors, we investigate some congruence identities involving sums of the odd divisor function $\sigma_{o d d}(n)$ which is defined by $\sigma_{o d d}(n)=\sum_{d \mid n} d$. In

 this context, we conjectured that the congruence$$
\sum_{k=-\infty}^{\infty} \sigma_{o d d}(n-k(3 k-1) / 2) \equiv\left\{\begin{array}{ll}
n & (\bmod m), \\
0 & \text { if } n=j(3 j-1) / 2, j \in \mathbb{Z} \\
0 & (\bmod m),
\end{array}\right. \text { otherwise }
$$

is valid for any positive integer n if and only if $m \in\{2,3,6\}$.
Key words: theta series, partitions, divisors.

1. INTRODUCTION

The object of our investigations is the divisor function $\sigma_{o d d}(n)$ which is defined as the sum of the odd positive divisors of n, i.e.,

$$
\sigma_{o d d}(n):=\sum_{\substack{d \mid n \\ d \text { odd }}} d .
$$

Throughout this paper, we consider $\sigma_{\text {odd }}(n)=0$ for $n \leqslant 0$. Recall that the function $\sigma_{o d d}(n)$ is the coefficient of q^{n} in the following Lambert series expansion

$$
\begin{equation*}
\sigma_{o d d}(n)=\left[q^{n}\right] \sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-1}}{1-q^{2 n-1}}, \quad|q|<1 \tag{1}
\end{equation*}
$$

On the other hand, the function $\sigma_{o d d}(n)$ appears naturally as the coefficients of a modular form. It is related to the eta η-Dedekind function and Eisenstein series $E_{2,2}$.

Recall [2, Chap. 3] that the Dedekind eta function $\eta(\tau)$ is given by

$$
\begin{equation*}
\eta(\tau):=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{2}
\end{equation*}
$$

where $q=e^{2 \pi i \tau}$ and $\operatorname{Im}(\tau)>0$. It is well known that the η-function is a modular form of weight $1 / 2$ and level 1 for a certain character of order 24 of the metaplectic double cover of the modular group. The eta quotient $\eta(\tau) / \eta(2 \tau)$ is equal to

$$
\begin{equation*}
\frac{\eta(\tau)}{\eta(2 \tau)}=q^{-1 / 24} \prod_{n=1}^{\infty}\left(1-q^{2 n-1}\right) \tag{3}
\end{equation*}
$$

By the logarithmic derivative of this formula, we get the Eisenstein series

$$
\begin{equation*}
E_{2,2}(\tau)=-\frac{1}{24}+q \sum_{n=1}^{\infty} \frac{-(2 n-1) q^{2 n-2}}{q^{2 n-1}}=-\frac{1}{24}-\sum_{n=1}^{\infty} \sigma_{\text {odd }}(n) q^{n} . \tag{4}
\end{equation*}
$$

It is known that $E_{2,2}(\tau)$ is a modular form for the congruence subgroup $\Gamma_{0}(2)$ [5, pp. 18-19].
In [4, Chap. 3, Section 3.3], the odd divisor function $\sigma_{o d d}(n)$ is related to the topic of sums of four squares. More details about arithmetic properties of $\sigma_{o d d}(n)$ can be found in [3].

A partition of a positive integer n is a sequence of positive integers whose sum is n. The order of the summands is unimportant when writing the partitions of n, but for consistency, a partition of n will be written with the summands in a nonincreasing order [1]. The Euler partition function $p(n)$ gives the number of ways of writing the nonnegative integer n as a sum of positive integers, where the order of addends is not considered significant. For example, the partitions of 5 are $5,4+1,3+2,3+1+1,2+2+1,2+1+1+1$ and $1+1+$ $1+1+1$. Thus, $p(5)=7$. The generating function of $p(n)$ is given by

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}
$$

and the expansion starts as

$$
\frac{1}{(q ; q)_{\infty}}=1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+11 q^{6}+15 q^{7}+22 q^{8}+30 q^{9}+\cdots
$$

Here and throughout this paper, we use the following customary q-series notation:

$$
\begin{aligned}
& (a ; q)_{n}= \begin{cases}1, & \text { for } n=0, \\
(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), & \text { for } n>0 ;\end{cases} \\
& (a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n} .
\end{aligned}
$$

Because the infinite product $(a ; q)_{\infty}$ diverges when $a \neq 0$ and $|q| \geqslant 1$, whenever $(a ; q)_{\infty}$ appears in a formula, we shall assume $|q|<1$.

The divisors of numbers have been studied from the point of view of partitions of integers for a long time. It is well know that Euler's partition function $p(n)$ and the sum of divisors function

$$
\sigma(n):=\sum_{d \mid n} d
$$

satisfy common recursive relations with only $p(0)$ different from $\sigma(0)$:

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} p\left(n-P_{5}(k)\right)=\delta_{0, n}, \quad \text { with } \quad p(0)=1
$$

and

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(-1)^{k} \sigma\left(n-P_{5}(k)\right)=0, \quad \text { with } \sigma(0) \text { replaced by } n, \tag{5}
\end{equation*}
$$

where $\delta_{i, j}$ is the Kronecker delta and

$$
P_{m}(n):=\left(\frac{m}{2}-1\right) n^{2}-\left(\frac{m}{2}-2\right) n
$$

is the nth generalized m-gonal number. It is clear that the divisors functions $\sigma(n)$ and $\sigma_{o d d}(n)$ have the same parity, i.e.,

$$
\sigma(n) \equiv \sigma_{o d d}(n) \quad(\bmod 2)
$$

By identity (5), we easily deduce the following parity results.
THEOREM 1. For $n \geqslant 0$,

$$
\sum_{k=-\infty}^{\infty} \sigma_{o d d}\left(n-P_{5}(k)\right) \equiv 1 \quad(\bmod 2)
$$

if and only if n is an odd generalized pentagonal number.
It is well known that $\sigma_{o d d}(n)$ is odd if and only if n is a square or a twice square. Thus we deduce the following parity result.

COROLLARY 1. Let n be a positive integer. The number of representations of n as the sum of a generalized pentagonal number and a square or a twice square is odd if and only if n is an odd generalized pentagonal number.

The first generalized pentagonal numbers are

$$
0,1,2,5,7,12,15,22,26,35,40,51, \ldots
$$

As we can see, 51 is an odd generalized pentagonal number that can be represented as a sum of a generalized pentagonal number and a square or twice square in five different ways:

$$
51=1+2 \cdot 5^{2}=2+7^{2}=15+6^{2}=26+5^{2}=35+4^{2}
$$

In this article, we investigate the positive integers m for which the following congruence identities are valid for any positive integer n :

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty} \sigma_{\text {odd }}\left(n-P_{m}(k)\right) \equiv \begin{cases}n & (\bmod 2), \\
0 & \text { if } n=P_{m}(j), j \in \mathbb{Z}, \\
0 & (\bmod 2), \\
\text { otherwise },\end{cases} \tag{6}\\
& \sum_{k=-\infty}^{\infty} \sigma_{o d d}\left(n-P_{5}(k)\right) \equiv\left\{\begin{array}{lll}
n & (\bmod m), & n=P_{5}(j), j \in \mathbb{Z} \\
0 & (\bmod m), & \text { otherwise },
\end{array}\right. \tag{7}\\
& \sum_{k=-\infty}^{\infty}(-1)^{P_{3}(-k)} \sigma_{\text {odd }}\left(n-P_{5}(k)\right) \equiv \begin{cases}(-1)^{P_{3}(-j)} \cdot n & (\bmod m), \\
0 & (\bmod m), \\
\text { otherwise }\end{cases} \tag{8}
\end{align*}
$$

It is clear that the case $m=5$ of (6) is the case $m=2$ of (7) and (8). Note that generalized 3-gonal numbers are triangular numbers and generalized 4 -gonal numbers are squares of integers. It is known that generalized hexagonal numbers are identical with triangular numbers. We have the following equivalent form of the congruence (6): The number of representation of n as the sum of a generalized m-gonal number and a square or a twice square is odd if and only if n is an odd generalized m-gonal number.

There is a substantial amount of numerical evidence to conjecture the following assertions.
CONJECTURE 1. The congruence (6) is valid for any positive integer n if and only if $m \in\{5,6\}$.
CONJECTURE 2. The congruence (7) is valid for any positive integer n if and only if $m \in\{2,3,6\}$.
CONJECTURE 3. The congruence (8) is valid for any positive integer n if and only if $m \in\{2,4\}$.
In Section 2, we prove one implication of Conjecture 1, i.e., if $m \in\{5,6\}$, then (6) holds for any positive integer n. We remark that, the case $m=6$ of this implication reads as follows.

THEOREM 2. For $n \geqslant 0$,

$$
\sum_{k=0}^{\infty} \sigma_{o d d}\left(n-P_{3}(k)\right) \equiv 1 \quad(\bmod 2)
$$

if and only if n is an odd triangular number.

The other implication has been verified for all integers m with $m<100000$. In Section 3, we prove one implication of Conjecture 2, i.e., if $m \in\{2,3,6\}$, then (7) holds for any positive integer n. In Section 4, we prove one implication of Conjecture 3, i.e., if $m \in\{2,4\}$, then 8 holds for any positive integer n.

2. PROOFS OF THEOREMS 1 AND 2

As usual, we denote by $Q(n)$ the number of integer partitions of n into odd parts. For example, $Q(7)=5$ because the five partitions of 7 odd parts are $7,5+1+1,3+3+1,3+1+1+1+1,1+1+1+1+1+1+1$. We remark that the generating function of $Q(n)$ is given by

$$
\sum_{n=0}^{\infty} Q(n) q^{n}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}=(-q ; q)_{\infty}
$$

The logarithmic differentiation of the generating function for $Q(n)$ gives:

$$
\frac{d}{d q} \frac{1}{\left(q ; q^{2}\right)_{\infty}}=-\frac{1}{\left(q ; q^{2}\right)_{\infty}^{2}} \frac{d}{d q}\left(q ; q^{2}\right)_{\infty}=\frac{1}{\left(q ; q^{2}\right)_{\infty}} \sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-2}}{1-q^{2 n-1}}
$$

On the other hand, we have

$$
\frac{d}{d q} \frac{1}{\left(q ; q^{2}\right)_{\infty}}=\frac{d}{d q} \sum_{n=0}^{\infty} Q(n) q^{n}=\sum_{n=1}^{\infty} n Q(n) q^{n-1}
$$

Thus we deduce that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n Q(n) q^{n}=(-q ; q)_{\infty} \sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-1}}{1-q^{2 n-1}}=(-q ; q)_{\infty} \sum_{n=1}^{\infty} \sigma_{o d d}(n) q^{n} \tag{9}
\end{equation*}
$$

The following theta identity is often attributed to Gauss [1], p.23, eqs. (2.2.13)]:

$$
\begin{equation*}
1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}}=\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \tag{10}
\end{equation*}
$$

By (9) and (10), we obtain

$$
\begin{aligned}
n Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k}\left(n-k^{2}\right) Q\left(n-k^{2}\right) & =\left[q^{n}\right]\left(\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \cdot(-q ; q)_{\infty} \sum_{n=1}^{\infty} \sigma_{o d d}(n) q^{n}\right)= \\
& =\sum_{k=-\infty}^{\infty}(-1)^{k} \sigma_{o d d}(n-k(3 k-1) / 2)
\end{aligned}
$$

where we have invoked Euler's pentagonal number theorem

$$
\begin{equation*}
(q ; q)_{\infty}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2} \tag{11}
\end{equation*}
$$

In this way, we deduce that

$$
n Q(n) \quad \text { and } \quad \sum_{k=-\infty}^{\infty}(-1)^{k} \sigma_{o d d}(n-k(3 k-1) / 2)
$$

have the same parity. According to [6, Corollary 4.7], $Q(n)$ is odd if and only if n is a generalized pentagonal
number. This concludes the proof of Theorem 1 .
In order to prove Theorem 2, we consider another theta series identity of Gauss: [1] p.23, eqs. (2.2.13)]

$$
\begin{equation*}
\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=\sum_{n=0}^{\infty} q^{n(n+1) / 2} \tag{12}
\end{equation*}
$$

Considering this identity, we can write

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty}(-1)^{k} Q(n-k(3 k-1)) & =\left[q^{n}\right]\left(\left(q^{2} ; q^{2}\right)_{\infty} \cdot \frac{1}{\left(q ; q^{2}\right)_{\infty}}\right)= \\
& =\left[q^{n}\right] \sum_{n=0}^{\infty} q^{n(n+1) / 2}= \\
& = \begin{cases}1, & \text { if } n \text { is a triangular number } \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Thus we deduce that

$$
\begin{equation*}
n \sum_{k=-\infty}^{\infty} Q(n-k(3 k-1)) \equiv 1 \quad(\bmod 2) \tag{13}
\end{equation*}
$$

if and only if n is an odd triangular number.
On the other hand, taking into account (9), we can write

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty}(-1)^{k}(n-k(3 k-1)) Q(n-k(3 k-1)) & =\left[q^{n}\right]\left(\left(q^{2} ; q^{2}\right)_{\infty} \sum_{n=1}^{\infty} n Q(n) q^{n}\right)= \\
& =\left[q^{n}\right]\left(\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \sum_{n=1}^{\infty} \sigma_{o d d}(n) q^{n}\right)= \\
& =\sum_{k=0}^{\infty} \sigma_{o d d}(n-k(k+1) / 2)
\end{aligned}
$$

By this identity, taking into account that $k(3 k-1)$ is even, we deduce that

$$
\sum_{k=0}^{\infty} \sigma_{o d d}(n-k(k+1) / 2) \equiv n \sum_{k=-\infty}^{\infty} Q(n-k(3 k-1)) \quad(\bmod 2)
$$

The proof of Theorem 2 follows easily considering (13).

3. CONGRUENCES MODULO 2, 3 AND 6

The congruence provided by Theorem 1 motivates us to look for other similar results involving the divisor function $\sigma_{o d d}$ and generalized pentagonal numbers. We experimentally found that the coefficient of q^{n} in the series

$$
\begin{align*}
& (-q ; q)_{\infty} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}} \sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-1}}{1-q^{2 n-1}}= \tag{14}\\
& =q+2 q^{2}+6 q^{3}+6 q^{4}+11 q^{5}+12 q^{6}+19 q^{7}+18 q^{8}+24 q^{9}+30 q^{10}+36 q^{11}+36 q^{12} \\
& \quad+36 q^{13}+48 q^{14}+57 q^{15}+60 q^{16}+60 q^{17}+66 q^{18}+72 q^{19}+84 q^{20}+84 q^{21}+106 q^{22}+\cdots
\end{align*}
$$

is congruent to 0 modulo 6 if and only if n is not a generalized pentagonal number or n is a generalized pentagonal number congruent to 0 modulo 6 . For $0<r<6$ we notice that the coefficient of q^{n} in (14) is congruent to r modulo 6 if and only if n is a generalized pentagonal number congruent to r modulo 6. Considering the Jacobi triple product identity

$$
(q ; q)_{\infty}(z ; q)_{\infty}(q / z ; q)_{\infty}=\sum_{n=-\infty}^{\infty}(-1)^{n} z^{n} q^{n(n-1) / 2}, \quad|q|<1, z \neq 0
$$

we deduce that

$$
(-q ; q)_{\infty} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}=\left(-q ; q^{3}\right)_{\infty}\left(-q^{2} ; q^{3}\right)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}=\sum_{n=-\infty}^{\infty} q^{n(3 n-1) / 2} .
$$

Thus we can state the following result.
THEOREM 3. For $n>0, m \in\{2,3,6\}$,

$$
\sum_{k=-\infty}^{\infty} \sigma_{o d d}\left(n-P_{5}(k)\right) \equiv\left\{\begin{array}{lll}
n & (\bmod m), & \text { if } n=P_{5}(j), j \in \mathbb{Z} \\
0 & (\bmod m), & \text { otherwise }
\end{array}\right.
$$

Proof. The proof of this theorem is quite similar to the proof of Theorem2. We have

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} \sigma_{o d d}(n-k(3 k-1) / 2) & =\left[q^{n}\right]\left(\left(\sum_{n=-\infty}^{\infty} q^{n(3 n-1) / 2}\right)\left(\sum_{n=1} \sigma_{o d d}(n) q^{n}\right)\right)= \\
& =\left[q^{n}\right]\left((-q ; q)_{\infty} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}} \sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-1}}{1-q^{2 n-1}}\right)= \\
& =n Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k}\left(n-3 k^{2}\right) Q\left(n-3 k^{2}\right)= \\
& =n\left(Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k} Q\left(n-3 k^{2}\right)\right)-6 \sum_{k=1}^{\infty}(-1)^{k} k^{2} Q\left(n-3 k^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k} Q\left(n-3 k^{2}\right) & =\left[q^{n}\right]\left((-q ; q)_{\infty} \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(-q^{3} ; q^{3}\right)_{\infty}}\right)= \\
& =\left[q^{n}\right] \sum_{n=-\infty}^{\infty} q^{n(3 n-1) / 2}= \\
& = \begin{cases}1, & \text { if } n \text { is a generalized pentagonal number, } \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

For $m \in\{2,3,6\}$, we deduce that

$$
\sum_{k=-\infty}^{\infty} \sigma_{\text {odd }}(n-k(3 k-1) / 2) \equiv\left\{\begin{array}{lll}
n & (\bmod m), & \text { if } n \text { is a generalized pentagonal number, } \\
0 & (\bmod m), & \text { otherwise }
\end{array}\right.
$$

This concludes the proof.

4. CONGRUENCES MODULO 2 AND 4

In this section, we prove the following congruence identity.
THEOREM 4. For $n>0, m \in\{2,4\}$,

$$
\sum_{k=-\infty}^{\infty}(-1)^{P_{3}(-k)} \sigma_{\text {odd }}\left(n-P_{5}(k)\right) \equiv \begin{cases}(-1)^{P_{3}(-j)} \cdot n & (\bmod m), \\ 0 \quad(\bmod m), & \text { otherwise } .\end{cases}
$$

Proof. The proof of this theorem is quite similar to the proof of Theorem3. Considering Euler's pentagonal number theorem (11), we deduce that

$$
(-q ; q)_{\infty} \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q^{2} ; q^{2}\right)_{\infty}}=\left(-q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}=\sum_{n=-\infty}^{\infty}(-1)^{n(n-1) / 2} q^{n(3 n-1) / 2} .
$$

We can write

$$
\begin{aligned}
Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k} Q\left(n-2 k^{2}\right) & =\left[q^{n}\right]\left((-q ; q)_{\infty} \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q^{2} ; q^{2}\right)_{\infty}}\right) \\
& = \begin{cases}(-1)^{j(j-1) / 2}, & \text { if } n=j(3 j-1) / 2, j \in \mathbb{Z}, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty}(-1)^{k(k-1) / 2} \sigma_{o d d}(n-k(3 k-1) / 2) & =\left[q^{n}\right]\left(\left(\sum_{n=-\infty}^{\infty}(-1)^{n(n-1) / 2} q^{n(3 n-1) / 2}\right)\left(\sum_{n=1} \sigma_{o d d}(n) q^{n}\right)\right) \\
& =\left[q^{n}\right]\left((-q ; q)_{\infty} \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q^{2} ; q^{2}\right)_{\infty}} \sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-1}}{1-q^{2 n-1}}\right) \\
& =n Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k}\left(n-2 k^{2}\right) Q\left(n-2 k^{2}\right) \\
& =n\left(Q(n)+2 \sum_{k=1}^{\infty}(-1)^{k} Q\left(n-2 k^{2}\right)\right)-4 \sum_{k=1}^{\infty}(-1)^{k} k^{2} Q\left(n-2 k^{2}\right) .
\end{aligned}
$$

The proof follows easily.

REFERENCES

1. G.E. ANDREWS, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998 (reprint of the 1976 original).
2. T.M. APOSTOL, Modular functions and Dirichlet series in number theory, Second edition, Graduate Texts in Mathematics, vol. 41, Springer-Verlag, New York, 1990.
3. C. BALLANTINE, M. MERCA, Jacobi's four and eight squares theorems, Mediterr. J. Math., 16, p. 26, 2019.
4. B.C. BERNDT, Number theory in the spirit of Ramanujan, Student Mathematical Library, vol. 34, AMS, Providence, Rhode Island, 2006.
5. F. DIAMOND, J. SHURMAN, A first course in modular forms, Springer-Verlag, New York, 2005.
6. M. MERCA, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, J. Number Theory, 160, pp. 60-75, 2016.
