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Abstract. In their famous work [1], L. Accardi and M. Bożejko have introduced a surprising 
convolution among the real probability laws with finite moments of any order, by proving this is 
universal in the sense that any symmetric such probability law is infinitely divisible with respect to it, 
and a central limit law. We present a quick generalization of their construction to the so-called  
Jacobi-Szegő distributions introduced by M. Anshelevich and J.D. Williams [6] in the  
operator-valued non-commutative frame considered by D.-V.Voiculescu [20] or R. Speicher [16] for 
the free probability theory [19]. 

Key words:  non-crossing partitions, complete positivity, algebraic Jacobi-Szegő parameters, 
operator-valued quantum probability space or non-commutative distribution, (pre-) 
Hilbert C*-module. 

1. INTRODUCTION 

If μ  is a probability law on the real line  with finite moments of every order, then, it is well-known 
(see, e.g., [5, 8, 17]), μ  is associated to two scalar sequences { }, ; 0n n nλ α ≥ such that ,n nλ α ∈  , and 

0nα ≥ ; namely, the Jacobi-Szegő parameters corresponding to μ . 
A remarkable concept of convolution among the real probability laws with all moments is defined in 

[1], in terms of the involved Jacobi-Szegő parameters, and the authors prove this convolution is universal, in 
the sense that every symmetric such probability law is infinitely divisible and a central limit law with respect 
to this convolution. Their study emphasized a famous quantum decomposition of any classical random 
variable with all moments as a sum of creation, annihilation and conservation operators on an one-mode 
interacting Fock space. The interacting Fock spaces appeared from the stochastic limit of quantum theory 
applied to the non-relativistic quantum electrodynamics without dipole approximation [3] and generalize 
some well-known second quantization functors (Boson, Fermion, q -deformed) [3, 4]. For this kind of Fock 
spaces, the quanta in the n -particle subspace are not independent: they interact in a highly nonlinear way; 
and the vacuum distribution of the field operators is (not Gaussian, as classically, but) a nonlinear 
deformation of Wigner semi-circular laws; see [3]. The relevance of these concepts and results is reflected by 
a diversity of applications in several fields, involving apparently faraway topics, – as quantum stochastic 
independences, spectral analysis of large graphs or asymptotic representation theory –, illustrated, e.g., by 
the monograph [10] in theoretical and mathematical physics, or the Springer Brief [14] and the rich literature 
referenced therein. 

Moreover, Accardi and Bożejko observed the so-called (generalized) Gaussianization phenomenon; the 
fact that, e.g., every moment of a symmetric probability law as above may be expressed in terms of its 
Jacobi-Szegő parameters involving only non-crossing pair partitions (and singletons, in the non-symmetric 
case), hence it looks as the moment of a (generalized) Gauss law. See, e.g., [1, Corollary 5.1], for details; and 
Th. 3.1 (iii) in section 3 below. 

A first result of Gaussianization (in Accardi and Bożejko’s sense) has been presented in [7]. See also 
[13], for other results in the symmetric case. 
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M. Anshelevich and J.D. Williams [6] have extended the notion of real probability law with finite 
moments of all orders to the operator-valued non-commutative setting considered by D.-V. Voiculescu in [20] 
(or R. Speicher in [16]) for the free probability theory [19], and ipso facto conferring much depth to the 
whole theory. In this frame, with an arbitrary algebra B , the Jacobi-Szegő parameters are sequences n Bλ ∈ , 
and linear maps :n B Bα → , 0n ≥ ; in particular, ,n nλ α  being Hermitian, and, respectively, completely 
positive, when B  is involutive algebra; see, for details, the same section 3. 

In the present Note, we generalize the Accardi-Bożejko universal convolution to the operator-valued 
quantum distributions introduced in [6] and quickly derive (in section 4, Corollaries 4.6-4.7) that any 
symmetric such distribution is infinitely divisible and a quantum central limit law with respect to this general 
convolution. 

2. PRELIMINARIES 

We recall some well-known general notions as in, e.g., [1, 4, 6, 10, 16] or [11], and send to [15, 12] for 
more information about complete-positivity or the involved (pre-)Hilbert C*-modules. 

If S  is a finite totally ordered set, we denote by 1,2 ( )NC S  the non-crossing partitions of S  for which 
every block has at most two elements; calling blocks the non-void subsets defining a partition (in general). 
We call pair a block having only two elements; and singleton a block having a single element. For ,k l S∈ , 
denote by ~k lπ  the fact that k  and l  belong to the same block of a partition π . Remind that a partition π  
is called non-crossing if there are not 1 1 2 2k l k l< < <  in S  such that 1 2~k kπ π 1 2~l lπ . When π  is non-
crossing, and V  is a block of π , say V  is inner, if there exists another block W  of π  containing V  (i.e., 
there are ,k l W∈ , such that k v l< < , for all v V∈ ). For a block V  in 1,2 ( )NC Sπ∈ , the depth in π  of V  is 
the number, denoted ( , )d V π , equal to the number of all the blocks of π  containing V . If S   is a disjoint 
union of non-empty subsets iS , and 1,2 ( )NC Sπ∈  such that π = i∪π , with some 1,2 ( )i iNC Sπ ∈ , we write 
π = iπ . When S  is a set with n  elements, abbreviate 1,2 ( )NC S  by 1,2 ( )NC n . 

We consider an involutive algebra as being a (complex) associative algebra with an involution ∗  (i.e. a 
conjugate linear anti-automorphism). If A  is an involutive algebra, an element a A∈  is Hermitian if 
a a∗= . The cone A+  of positive elements in A  consists of finite sums i ia a∗∑ , with .ia A∈  Denote by 

( )nM A  the involutive algebra of n n×  matrices [ ]ija with entries from A . When A  is C*-algebra, then 

A+ ={ };a a a A∗ ∈ ; and ( )nM A  becomes C*-algebra. 

If Q : A B→  is a linear map between involutive algebras, this is Hermitian if ( ) ( )Q a Q a∗ ∗=  for 
all a A∈ ; it is positive if ( )Q A B+ +⊂ ; and it is completely positive, if all maps ( ) ( )n n nQ  : M A M B  →  given 
by ([ ]) [ ( )]n ij ijQ a Q a= , if [ ]ija ( )nM A∈ , are positive. If A  and B  are involutive algebras, A  being unital, 
any positive linear map Q : A B →  is Hermitian. When B A⊂  is an inclusion of (involutive) algebras, a 
(positive) conditional expectation of A  onto B  is a (positive) B - B -bimodule map, which is a projection on 
B . If B A⊂  is an inclusion of involutive algebras, but B  is C*-algebra, then any positive conditional 
expectation of A  onto B  is completely positive. 

If B  is an involutive algebra, a semi-inner product B -module M  is a (right) B -module endowed with 
a sesquilinear map , : M M B< ⋅ ⋅ > × →  linear in its second variable such that 

, ,x yb x y b< >=< > ; , * ,x y y x< > =< > ;  ,x x B+< >∈ ; for any ,x y M∈  and b B∈ . 

We denote by ( )L M  the set of the adjointable operators on M . 
When B  is C*-algebra, we remind that a semi-inner product B -module M  is a (pre-)Hilbert module 

if the semi-norm 
1

2,x x x< >  is (in-)complete norm on M . 
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If B A⊂  is an inclusion of algebras, and φ  is a conditional expectation of A  onto B , we consider 
( , , )A Bφ  as quantum or non-commutative B -probability space, and the elements of A  as B -valued 
quantum random variables, according, e.g., to [19, 20]; see also [16]; and send to these references for more 
information. For operator-valued distributions in non-commutative context we send to [20] (see also [16]). 

We recall the general frame from [20] and include the type of convergence for distributions used by us 
in the final section. 

Let B  be a unital algebra (over the complex field ). Let B X< >  be the algebra freely generated by 
B  and an indeterminate X . Denote :BΣ = { : ;  B X Bν < >→ ν  conditional expectation onto }B . We regard 

BΣ  as the set of all possible distributions of random variables in a B -probability space ( , , )A Bφ , as above. 
When B  is an involutive algebra, we endow B X< >  with the natural involution such that X X∗ = , and 
regard :B

+Σ = { ;Bν∈Σ ν positive} as the set of positive distributions. For Bν∈Σ , quantities as 

1( ... )jbXb X b X cν , with , , kb c b B∈ , are interpreted as moments of ν . 
If ( , , )A Bφ  is such a B -probability space, and a A∈  is a random variable, the distribution of a  with 

respect to φ  is :a aφ = φ τ , where :a B X Aτ < >→  is the unique homomorphism such that a BB idτ = , and 
( )a X aτ = . Thus, quantities as 1( ... )jbab a b acφ , with , , kb c b B∈ , are called moments of a , with respect to φ . 

We may consider in section 4, Corollary 4.7, any Hausdorff topology on BΣ . When B  is a Hausdorff 
topological algebra, we may use, in particular, the weak convergence for distributions, as in [20, 16]. If 

Nμ ,μ B∈Σ , for every non-negative integer N , we denote limN N→∞ μ = μ , if μ  is the limit of ( )N Nμ  in 

BΣ . 

3. OPERATOR-VALUED QUANTUM DISTRIBUTIONS CORRESPONDING  
TO ALGEBRAIC JACOBI-SZEGO PARAMETERS 

Let μ  be a probability law on  with finite moments of all orders. Then remind, by famous classical 
theorems [5, 8, 17], μ  is associated to two scalar sequences { }, ; 0n n nλ α ≥ , where ,n nλ α ∈   , and 0nα ≥ . 
These Jacobi-Szegő parameters appear, for example, in the well-known three-term recurrence relations 
involving the monic orthogonal polynomials with respect to μ . 

Moreover, the moment generating function of μ  admits a continued fraction expansion of Jacobi-
Stieltjes type 

0
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The moments of μ  are obtained from the Jacobi-Szegő parameters by sums over non-crossing 
partitions or Motzkin paths; e.g., 

[ ]nxμ =
1,2

( , ) ( , )
( )

1 2

d V d V
NC n V V

V V

π π
π∈ ∈π ∈π

= =

λ ⋅ α∑ ∏ ∏ , 

where 1,2 ( )NC n  and ( , )d V π  have the meaning before, V being the cardinality of the block V  (see, e.g., 
[1, 7, 9, 10, 18] and also [11], for details). 

Remind μ  may be considered as a (positive) linear functional on the (involutive) algebra [ ]X  of 
polynomials over the complex numbers. 

We recall the next basic theorem (see, e.g., [1, 5−8, 17]; and also [9−11, 14, 18] for more information). 
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THEOREM 3.1. Consider two scalar sequences { }, ; 0n n nλ α ≥ , where ,n nλ α ∈ , and 0nα ≥ , and a 
probability law μ  on    with finite moments of all orders. The following statements are equivalent. 

(i)  The monic orthogonal polynomials corresponding to μ  satisfy the three-terms recurrence relations 

1 1 1( ) ( ) ( ) ( )n n n n np X X p X p X+ − −= − λ −α ;  1 00,  1p p− = = . 

(ii) μ  is the distribution of the Jacobi-Stieltjes type tridiagonal matrix  

0 0

1 1

2 2

3

0 0
1 0
0 1
0 0 1

λ α⎛ ⎞
⎜ ⎟λ α⎜ ⎟
⎜ ⎟λ α
⎜ ⎟

λ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

with respect to the vector state corresponding to the vacuum : (1,0,0,0,...)e = . 
(iii) For every n  

[ ]nxμ =
1,2

( , ) ( , )
( )

1 2

d V d V
NC n V V

V V

π π
π∈ ∈π ∈π

= =

λ ⋅ α∑ ∏ ∏ . 

Moreover, μ  has all its moments of odd order null if and only if all 0nλ = ; and μ  has finite support if 
and only if some 0nα = ; in any of  (i)−(iii). � 

An operator-valued non-commutative version of the previous fact is given by the following two 
statements from [6, Prop. 3.1 and 3.3] (see also [11], for some more general versions); involving algebraic 
Jacobi-Szegő parameters. In [6], Prop. 3.1 is stated for a unital C*-algebra B , but is true more generally. 

PROPOSITION 3.2. Let B  be a unital involutive algebra, let n Bλ ∈ , and let :n B Bα →  be 
(generally, non-unital) linear maps; 0n ≥ . On the vector space B X< >  define the B -valued sesquilinear 
map 

* * *
0 1 0 1 0 1 0 0 1, : ( (... ( ) ...) )k l kl k k kb Xb X b Xb c Xc X c Xc b b b c c c cα< ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ > = δ α α α , 

                            and *, :b c b cα< > = , if ,i jb c , ,b c B∈ . 

When all nα  are completely positive, this sesquilinear map is a semi-inner product. Let E  be the B -
B -bimodule B X< >  endowed with , ,α< ⋅ ⋅ >  but omit α  in this notation, when no confusion is possible. On 
E  define the operators ( , jb b B∈ ) : 

0 1( ... ) :jl b Xb X b Xb∗ = 0 1 ... jXb Xb X b Xb ;  0 1( ... ) :jl b Xb X b Xb = 0 1( ) ...j jb b X b Xbα ,  ( ) : 0l b = ; 

0 1( ... ) :jP b Xb X b Xb = 1 0 1 ...j jb Xb X b Xb+λ , ( ) : oP b b= λ ; and x := ( )l l P L E∗+ + ∈ , when all nα  and 

all n Bλ ∈  are Hermitian. 
Thus, in this case, x  is symmetric; in the sense that  , ,xu v u xv< >=< > ,  for all , .u v E∈  
Therefore the distribution : xμ = ϕ  of x , where : eϕ = ω  is the conditional expectation (with respect to 

the vacuum : 1Be = ) given by ( ) : ,e T e Teω =< > , if ( )T L E∈ , is a positive B - B -bimodule map, when all nλ  
are Hermitian, and all nα  are completely positive. � 

We denote by μ = ( , ; 0)n nJ nλ α ≥  the B -valued distribution given by the previous statement and call this 
the Jacobi-Szegő distribution with Jacobi parameters { }, ; 0n n nλ α ≥ , preserving the terminology from [6]. 

We can even define these Jacobi-Szegő distributions as in the next statement, assuming only B   is a 
unital algebra.  

The moments of the distribution μ = ( , ; 0)n nJ nλ α ≥  in BΣ , as before, are described in the following 
way (see Prop. 3.3 in [6], for details). 
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PROPOSITION 3.3. Let B  be a unital involutive algebra, let n Bλ ∈ , and let :n B Bα →  be 
(generally, non-unital) linear maps; 0n ≥ . Then the Jacobi-Szegő distribution μ = ( , ; 0)n nJ nλ α ≥ B∈Σ  may 
be given by 

μ 1( ... )jXb X b X =
1,2

1
( 1)

( , ,..., )j
NC j

k X b X b Xπ
π∈ +
∑ ,  for all j , and all 1,..., jb b B∈ ; 

the quantities 1( , ,..., )jk X b X b X Bπ ∈  being defined, by the parameters { }, ; 0n n nλ α ≥ , in the way indicated 

in [6, Prop. 3.3], which involves the depth in π  of the blocks belonging to π . � 

Namely, these 1( , ,..., )jk X b X b X Bπ ∈ , for 1,2 ( 1)NC jπ∈ + , can be described as follows. 

1) If π  has only one block, then: ( , )k X bXπ := 0 ( )bα , when π  reduces to a pair; ( )k Xπ := 0λ , when π  
reduces to a singleton; 

2) If π =σ ρ , with 1,2 ({0,..., })NC sσ∈  and 1,2 ({ 1,..., })NC s jρ∈ + , then 

1( , ,..., )jk X b X b Xπ := 1 1( , ,..., )s sk X b X b X bσ +⋅ 2( , ,..., )s jk X b X b Xρ +⋅ ; 

3) If π  consists of the block (1, 1)j + and the subpartition { }: 2,..., jσ = π∩ , then 

1( , ,..., )jk X b X b Xπ := 0 1 2 1( ( , ,..., ) )j jb l X b X b X bσ −α ⋅ ⋅ ;  and  ( ,..., )lσ ⋅ ⋅  have the following sense. 

More generally, for a subpartition σ  of 1,2 ( 1)NC jπ∈ + , therefore with 1,2 ( )NC Sσ∈ , and 

S ⊂ { }1,..., 1j + , the quantities 2( , ,..., )sl X b X b X Bσ ∈  can be described as below. 
1) If σ  has only one block, then that is an inner block (also denoted) σ  of π , thus the depth in π  of 

that block ( , ) 1d σ π ≥ , and ( , )l X bXσ := ( , ) ( )d bσ πα , when σ  is a pair; but ( )l Xσ := ( , )d σ πλ , when σ  is a 
singleton; 

2) If σ=ρ τ , with 1,2 ( )NC kρ∈  and 1,2 ({ 1,..., })NC k sτ∈ + , then 

2( , ,..., )sl X b X b Xσ := 2 1( , ,..., )k kl X b X b X bρ +⋅ 2( , ,..., )k sl X b X b Xτ +⋅ ; 

3) If σ  consists of the block (1, )s and the subpartition { }: 2,..., 1sτ = σ∩ − , 3s ≥ , then 

2( , ,..., )sl X b X b Xσ := ( ) 2 3 1( ( , ,..., ) )d s s sb l X b X b X b
π τ −α ⋅ ⋅ , denoting by ( )d sπ  the depth of the inner block 

(1, )s  in π . � 

Denote by ;J BΣ  the set of the Jacobi-Szegő distributions in BΣ , defined as in the previous statement. 

When B  is involutive algebra, denote by ;J B
+Σ  the set of all ( , ; 0)n nJ nλ α ≥  in ;J BΣ  such that all nλ  are 

Hermitian, and all nα  are completely positive. When all 0nλ = , we denote (0, ; 0)nJ nα ≥  by 
( ; 0)nJ nα ≥ and call it the symmetric Jacobi-Szegő distribution with Jacobi parameters { }; 0n nα ≥ . We send 

to [6, section 3] for concrete examples of distributions in ;J BΣ , including B -valued versions of Bernoulli, 
arcsine, semi-circular, free Poisson, free binomial, and, more generally, free Meixner distributions. 

4. ACCARDI-BOZEJKO UNIVERSAL CONVOLUTION  
FOR OPERATOR-VALUED QUANTUM DISTRIBUTIONS 

Let B  be a unital (non-necessary involutive) algebra in the sequel. 
Let ( , ; 0)i i

i n nJ nμ = λ α ≥  be two Jacobi-Szegő distributions in BΣ . 
We define their quantum (universal) convolution as follows, extending Accardi and Bożejko’s 

definition in [1, section 6] from the case when B  is the complex field . 
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Definition 4.1. The (universal) convolution of 1μ  and 2μ  is the unique Jacobi-Szegő distribution, 
denoted 1 2μ ×μ , in BΣ  with the Jacobi parameters { }1 2 1 2, ; 0n n n n nλ + λ α + α ≥ , in the natural sense. � 

We need the next notion of dilation of a general distribution in BΣ  (see, e.g., [16, Def. 4.2.1]).  

Definition 4.2. For t∈ , the dilation t BD μ∈Σ  of the distribution Bμ∈Σ  is given for any monomial 

1 ... jp Xb X b X B X= ∈ 〈 〉  by ( )( )tD pμ = 1 ( )jt p+ μ . � 

The dilation of an operator-valued Jacobi-Szegő distribution has the form below, in agreement to the 
scalar Jacobi parameters case (see, e.g., [1, 10]). 

PROPOSITION 4.3. The dilation tD μ  of the Jacobi-Szegő distribution ( , ; 0)n nJ nμ = λ α ≥  in BΣ , 

t∈ , is the distribution in ;J BΣ  with the Jacobi parameters { }2, ; 0n nt t nλ α ≥ , in the natural sense. 

Proof. Denote 2: ( , ; 0)n nJ t t nμ = λ α ≥ . It remains to check that ( )( )tD pμ = ( )pμ , for any monomial 

1 ... jp Xb X b X B X= ∈ 〈 〉 . Let kπ , lσ , and kπ , lσ  be the quantities corresponding to μ  and μ , described (in  

section 3) in terms of { }, ; 0n n nλ α ≥ , and { }2, ; 0n nt t nλ α ≥ , respectively. In view of Def. 4.2 , we may 

conclude due to the next properties, by the very definition of a Jacobi-Szegő distribution as in Prop. 3.3; 
namely: 

i) 1
1( , ,..., )j

jt k X b X b X+
π = 1( , ,..., )jk X b b Xπ , for all 0j ≥ , all 1,2 ( 1)NC jπ∈ + , and all 1,..., jb b B∈ ; 

ii) 2( , ,..., )s
st l X b X b Xσ = 2( , ,..., )sl X b X b Xσ , for all 0j ≥ , all subpartition 1,2 ( )NC Sσ∈ , with 

{ }1,...,S s= , of 1,2 ( 1)NC jπ∈ + , and all 2 ,..., sb b B∈ . 
Indeed, firstly remark these three details: 
1) If π  reduces to a pair, then ( , )k X bXπ := 0 ( )bα  and ( , )k X bXπ := 2

0 ( )t bα ; but, if π  reduces to a 
singleton, then ( )k Xπ := 0λ  and ( )k Xπ := 0tλ ; 

2) If π =σ ρ , with 1,2 ({0,..., })NC sσ∈  and 1,2 ({ 1,..., })NC s jρ∈ + , 0 s j≤ < , then 

1( , ,..., )jk X b X b Xπ := 1 1( , ,..., )s sk X b X b X bσ +⋅ 2( , ,..., )s jk X b X b Xρ +⋅  and 

1( , ,..., )jk X b X b Xπ := 1 1( , ,..., )s sk X b X b X bσ +⋅ 2( , ,..., )s jk X b X b Xρ +⋅ . 

3) If π  consists of the block (1, 1)j + and the subpartition { }: 2,..., jσ = π∩ , 2j ≥ , then 

1( , ,..., )jk X b X b Xπ := 0 1 2 1( ( , ,..., ) )j jb l X b X b X bσ −α ⋅ ⋅ , and similarly 

1( , ,..., )jk X b X b Xπ : 2
0 1 2 1( ( , ,..., ) )j jt b l X b X b X bσ −= α ⋅ ⋅ . 

Therefore, the property i) results by a natural induction, via the property ii); for s j< . 
Secondly, remark the other three details: 
1) If σ  reduces to a pair, then ( , )l X bXσ := ( , ) ( )d bσ πα  and ( , )l X bXσ := 2

( , ) ( )dt bσ πα ; but, if σ  reduces to 

a singleton, then ( )l Xσ := ( , )d σ πλ  and ( )l Xσ := ( , )dt σ πλ ; denoting by ( , )d σ π  the depth of the block σ  in π . 
2) If σ=ρ τ , with 1,2 ({1,..., })NC kρ∈  and 1,2 ({ 1,..., })NC k sτ∈ + , 1 k s≤ < , then 

2( , ,..., )sl X b X b Xσ := 2 1( , ,..., )k kl X b X b X bρ +⋅ 2( , ,..., )k sl X b X b Xτ +⋅  and 

2( , ,..., )sl X b X b Xσ := 2 1( , ,..., )k kl X b X b X bρ +⋅ 2( , ,..., )k sl X b X b Xτ +⋅ . 

3) If σ  consists of the block (1, )s  and the subpartition { }: 2,..., 1sτ = σ∩ − , 3s ≥ , then 

2( , ,..., )sl X b X b Xσ := ( ) 2 3 1( ( , ,..., ) )d s s sb l X b X b X b
π τ −α ⋅ ⋅ , and also 

2( , ,..., )sl X b X b Xσ : 2t= ( ) 2 3 1( ( , ,..., ) )d s s sb l X b X b X b
π τ −α ⋅ ⋅ ; where ( )d sπ  is the depth of the inner block 

(1, )s  in π . 
In consequence, the property ii) follows by a natural induction, too. � 
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The analogue of the infinite-divisibility with respect to the above convolution is clear. Infinite-
divisibility being relevant in the frame of positive distributions, we require B be involutive algebra in the 
next 

Definition 4.4. Let B be an involutive algebra. Then B
+μ∈Σ  is infinitely-divisibile with respect to the 

above convolution, if, for every positive integer n , there exists 1 ;n J B
+μ ∈Σ  such that μ = 1 1

times

( )
n n

n

μ ×⋅ ⋅ ⋅×μ . � 

The next statement generalizes [1, Th.6.1] from the scalar-valued case B = . Then we infer the 
announced facts. 

THEOREM 4.5. The quantum (universal) convolution introduced before has these properties: 
i) commutativity and associativity; 
ii) positivity: if  B  is an involutive algebra, and ,μ ν∈ ;J B

+Σ , then μ×ν ;J B
+∈Σ ; 

iii) ( ) ( ) ( )t t tD D Dμ×ν = μ × ν , for all t∈ , and ;, J Bμ ν∈Σ ; 

iv) for any symmetric distribution ( ; 0)nJ nμ = α ≥ ∈ ;J BΣ , and any positive integer N , it results 

1 1

times

( ) ( )
N N

N

D Dμ ×⋅⋅ ⋅× μ = μ . 

Proof. As in [1], remark i) and (by Prop. 4.3) iii) are obvious. The positivity property ii) is immediate 
via Prop. 3.2. Denote by ( )NS μ  the left hand side of the conclusion in iv). Therefore, since 

1

times

( ) ( )
N

N
N

S Dμ = μ×⋅⋅ ⋅×μ , by i) and iii), and Def. 4.1 implies
timesN

μ×⋅ ⋅ ⋅×μ = ( , ; 0)n nJ N N nλ α ≥ , for any 

( , ; 0)n nJ nμ = λ α ≥  in ;J BΣ , we get that ( )NS μ = μ , via Prop. 4.3, when μ  is symmetric. � 
Consequently, by Prop. 3.2, the quantum universal convolution ‘× ’ introduced before confirmes its 

name. 

COROLLARY 4.6. Let B be a unital involutive algebra. Then any symmetric distribution μ∈ ;J B
+Σ  is 

infinitely divisible with respect to the quantum convolution ‘× ’, defined above. � 

Moreover, any such symmetric distribution can be realized as a quantum central limit for the involved 
convolution. Results of this kind are called universal central limit theorems in [2] (this remarkable work 
including a constructive approach, even for the non-symmetric case). See [7] for a first such theorem, [13] 
for similar statements; and also [11] for some operator-valued versions. 

COROLLARY 4.7. Let B be a unital Hausdorff topological algebra, and consider any Hausdorff 
topology on BΣ . Let μ∈ ;J BΣ  be any symmetric distribution. Then 1

times

lim ( )
N

N
N

D→∞ μ×⋅⋅ ⋅×μ = μ ; i.e., μ  is a 

(quantum) central limit law with respect to the quantum universal convolution ‘× ’. � 

We send to [11] for a more general version of these facts, and not only, in multivariate frame. 
Some results from [11] have been presented at the 19th and 20th Conference of Probability and 

Statistics Society of Romania in 2016, respectively 2017. 
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