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Abstract. Chaotic systems have a number of applications, digital encryption being one of the most
attracting ones. The present paper aims at taking an analogue nonlinear system prototype to develop
the desired chaotically encrypted communication line in a discrete-time structure. The proposed
discrete nonlinear system is designed based on chaotic synchronization approach. The designed
architecture is intended for secure communication applications and the obtained performance is
estimated both dynamically and statistically.
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1. INTRODUCTION

Nonlinear systems can perform a number of dynamical behaviors such as constant, periodic, quasi-
periodic and chaotic. Chaotic systems have several applications especially in noise and random binary codes
generation [1-3], chaotic modulation [4, 5], spread-spectrum clock signal generation [6] and complex natural
systems modeling [7]. From the engineering point of view, one of the most attracting applications is chaotic
encryption [8-10], due to its communications usefulness and better sensitivity control.

The present contribution intends to present the design of a discrete-time chaotic encryption system
based on a previously developed hysteretic analogue emitter prototype. The presented research is motivated
by the desire to apply the analogue system taken as starting point in encryption applications and the aim of
digitally implement the discrete-time synchronizing communication system. It is also important to highlight
the interest of researchers in studying hysteresis nonlinear systems [11-13], although previous results aim at
much simpler systems and do not approach chaotic synchronization as an application. The proposed discrete
emitter is designed applying the Euler discretization method to the previously introduced [14] fourth order
analog nonlinear circuit, using a Schmitt trigger hysteresis non-linearity. Compared to previously reported
systems, the prototype emitter yields more complex dynamics, with both double scroll and two single scroll
strange attractors, suggesting better encryption performance. The obtained discrete-time emitter preserves the
dynamic complexity of the analog prototype as shown in the bifurcation diagrams and chaotic attractor
projections. The presented statistical properties of the proposed emitter, including histograms and frequency
spectra, also highlight the complexity of the emitted signal. The synchronization short-time transient and
state error decreasing to zero sustain the proposed chaotic encryption application of the digital
communication system. In order to use this analogue nonlinear prototype for secure communication, a
synchronizing receiver is designed based on the emitter system partitioning method. The implementation of
the proposed design is programable digital, with advantages studied in previous references [15, 16].

The paper is structured in four sections. The next one presents the design of the proposed discrete-time
encryption emitter and receiver nonlinear systems. The third section shows the results of the encryption line
simulations, including parameter determination and synchronization errors. The concluding remarks
highlight the performance of the designed system.
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2. THE DISCRETE-TIME SYSTEM DESIGN

In order to design the discrete emitter-receiver pair for secure data transmission, an analog model is
used as starting point. The analogue chaotic emitter (Ea:), first introduced in [13], is a modulated generator
with hysteresis nonlinearity, described by the fourth order state equations:
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In the differential equations (1), the modulating signal, m(t), is the useful signal chaotically encrypted
to be securely transmitted and the algebraic function sat(-) is:
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-1 x<-L

In the referenced paper [13], the b, c, and d coefficients are calculated based on physical values related
to analog implementation. Due to the digital version intended here, they will remain generic values,
independent to physical measurements.

The analogue receiver, (Ra:), designed by using the emitter partitioning method, is characterized by
the state equations:
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Notably, the transmitted signal from the chaotic emitter to the synchronizing receiver, is the third
emitter state variable ze(t). The demodulator used at the receiver end of the channel, recovers the useful
signal m(t), as a difference between emitter and receiver z state variables:

M(t) = ze (1) - zx (1) - (4)

In order to preserve the order of the emitter and receiver systems, we choose to use the Euler
discretization method to deduce the state equations of the discrete-time communication system:
dx 1
—~—(x(t,.,)—x(t.)). 5
™ T((m) (t)) ()

In equation (5), x is a generic state variable and T denotes the clock period of the discrete-time emitter
and receiver systems, equal to the sampling period of the discrete-time signals:

x[kl=x(t); xk+=x(t.); T=t,-t., keZ... 6)
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By applying the approximation in (5) to the analogue emitter state equations (1), we obtain the state
equations of the discrete-time emitter, (Eq:), as detailed in equation (7)

Xe [k +1] = Xg [K]+ T (-a- X [K]+ 0 - Ye [k] - 2 [K])

Yelk +1]=ye[K]+T (_030 Xy [K]+ ZE[k])

ze [k +1] = 2 [K]+ T (—Xe [K] - Ve [K] - o, - 2 [K] +sat(ve [K]) + m[K])
Velk +1]=ve[k]+T(b-xe[k]—c- Ve [k]+d -sat(ve[k]))

(Ea2) (7)

Correspondingly, the state equations of the discrete-time receiver, (Rq:), are obtained by applying the
approximation (5) to the analogue receiver (Ra:) state equations (3):

Xg [k +1] = Xg [K]+ T (—a- Xg[k]+ @ - Y [K] - z¢ [K])
yrlk+1]= YR[k]+T(_(D0 X [K]+ ZE[k])

(Ra?) ®
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The synchronization error for the discrete emitter-receiver case is given by the error vector:
e, [K] Xe [K]— Xg[K]
k k]- yg[k
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Combining the discrete-time state equations of the emitter (7) and receiver (8) with the error vector
definition (9), the error dynamics (&:) equations are obtained:

e [k +1=g,[K]+T(-a [kl + 0, -, [K])

g [k+1]=¢,[K]+T (-0, &,[K])

g [k +1] = (1- g - T) &, [K]+ T (&, [k] - &, [k] + sat(ve [k]) - sat(vg[K]) + m[K]
e Jk+1]=¢,[K]+T (b -g,[k]—-c-g, [k]+d-sat(veg[k]) —d -sat(vR[k]))

(10)

The linearized version of the error dynamics equations is obtained by considering the small signal
approximation of the nonlinear function sat(-), (11), to be applied to the equations (10):

sat(ve [K]) —Sat(va[K]) ~ Ve [K] v [K] = &, [K]. (11)

Taking this approximation into account, we obtain the linearized, non-autonomous error dynamics
equations:
g,k +1]=(1- aT)aX[k] +o,T -g,[K]
g [k +1]=-0,T -g,[K]+&,[K]
“in’) e [k +1]=(1-wy - T)e, [K]+T (~e,[k] - &, [K] + &, [k]+m[K])
g [k +1]=-bT -, [k]+(1+dT —cT)g, [k]

(12)

The resulting state-transition matrix, Ac, for the linearized error dynamics system (12), results as
presented in equation (13):
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This leads to the eigenvalues vector Ac:
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In most usual application cases, the damping coefficient, a, is small enough compared to the natural
oscillating frequency, mo, allowing the approximation:

0<a<2m, = a’—-4-w, <0. (15)
In such cases, the state transition matrix eigenvalues are:

Ay ;1—%1 j%/moz ~a’ell
A, =l-0,Tel (16)
dy =1+T(d =c)ell

The linear error dynamics system (12) is stable, with synchronization errors deceasing to zero if the
modulus of the state transition matrix eigenvalues is under unit:

Ay, |=y1-aT +0,2T% <1

X,y
%)<l = O<w,<2/T (17)
|n|<1 = -2/T<d-c<0.

The previous conditions ensure emitter-receiver systems synchronization. If these conditions are
fulfilled, the nonlinear synchronization error vector (9) decreases to zero, as suggested by the three-
dimensional projection example depicted in Fig. 1, for the system parameters: wo=1.1, a=0.1, b=10%,
c=3.51,d=0.11and T=0.01.

w,= 1.1, a= 0.1, b= 10°, c= 351 d= 011 T= 0.01. (18)

x10°

V error
(=]

Y error -4 X error

Fig. 1 — Three-dimensional projection on the x-y-v sub-space of the discrete synchronization error.
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Although the error equations (10) are nonlinear, the decease is dominated by the linear part and the
depicted spiral is not visibly distorted. More important for communication applications, the demodulating
process has small errors after a short synchronization transient. The example in Fig. 2, shows the correct
demodulation after a transient of approximatively 3 200 samples, i.e. 32 seconds for T = 0.01.
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Fig. 2 — Modulating signal m[K] (a) and demodulated signal ~m[K] (b).
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3. DIGITAL IMPLEMENTATION

For the digital implementation, we chose a processor of the ARM Cortex M4 core with 32-bit
architecture that allows high level language programming. The processor used in the tested implementation
is STMicroelectronics STM32F334R8T6 and the generated signals were acquired with a Tektronix
TDS2002B oscilloscope, digital results being saved and graphically represented. This processor has
sufficient computing power to perform the calculations imposed by the nonlinear algebraic functions
comprised in the difference state equations of the nonlinear system to be implemented. The D/A converters,
included in the microcontroller structure, have 12 bits conversion capability, reasonable for interfacing the
tested digital system with the analogue world. Due to the high enough number representation in the chosen
processor, the number of bits in the conversion structure leads to the dominating differences between floating
point simulation results and the corresponding digital measurements.

The algorithm used in the program implementation is suggested by the system state equations and leads
to the following emitter-receiver pseudo code:

// emitter

initialize (emitter actual state vector);

while switch not pressed;
convert A/D modulating signal m(t) -> m[k];
compute state function (emitter actual state vector);
store result in (next state vector);
transfer (next state vector) > (actual state vector);
convert D/A transmitted signal z[k] -> z(t);

end while;

// receiver

initialize (receiver actual state vector);

while switch not pressed;
convert A/D received signal z(t) -> z[k];
compute state function (receiver actual state vector);
store result in (receiver next state vector):;
transfer (next state vector) > (actual state vector);
convert D/A demodulated signal ~m[k] -> ~m(t);

end while;
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The data structures needed for this simple algorithm is based upon two vectors with four floating point
components, implemented for both emitter and receiver:

emitter actual state vector;
emitter next state vector;,
receiver actual state vector;
receiver next state vector;

Added to the vector data structures, the scalar system parameters a, w, b, ¢, and d are also needed for
correct program flow.

To develop the proposed nonlinear discrete design in a quantitative way, a parametric analysis can lead
us to the equation coefficient values aiming the chaotic dynamics useful for encryption. By using bifurcation
diagrams, we highlight the fact that the emitter behaves chaotically for a large range of values of the
parameters, with small intervals of periodic behavior. Examples of such diagrams are presented in Fig. 3, for
the ¢ and d system coefficients. Similar results were obtained for the a and b parameters.

Using the equation coefficient sets in the value ranges suggested by the bifurcation diagrams, the
emitter state variables highlight their chaotic evolution, as suggested in the example two-dimensional
projections of the obtained attractor depicted in Fig. 4 for parameter choice (18).
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Fig. 3 — Bifurcation diagrams for the state variables y[k] and z[k] at the variation of parameters c (a) and d (b).
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Fig. 4 — Two-dimensional projections of the chaotic attractor for the discrete-time system on planes x-y (a), x-z (b), and y-z (c).



Discrete implementation of chaotic encryption system

From the statistical point of view, the emitter behavior was analyzed and examples of the obtained
results are shown in Figs. 5, for histograms and Figs. 6, for frequency spectra, using the same parameter set

of values (18) tested in the dynamic analysis too.

In the histograms depicted in Figs. 5, the large probability of extended ranges of values, mainly

negative ones are obvious. The ranges may be approximated as —0.25, ... ,0 for x[k] and y[K], — 0.8, ..

v[K], finally — 0.7, ... — 0.4 for z[k]. Except for the last estimated state variable, z[k], all other three exhibit

two probability maxima, as a result of the chaotic attractor shape.

In the frequency domain, the power spectra estimations depicted in Fig. 6, exhibit a sufficiently large
spectral extension, especially toward low frequencies, to justify uncorrelated state variables values, resulting

from the chaotic emitter behavior.
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Fig. 5 — Digital emitter state variables histograms for all four state variables x, y, z, v.
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Fig. 6 — Emitter spectra for the discrete state variables x[k] (a), y[k] (b), and z[K] (c).
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4. CONCLUSION

The proposed discrete-time encrypted communication system is designed starting from a hysteretic
analogue prototype for the chaotic emitter. The corresponding receiver is designed based on the
synchronization method of the emitter partitioning system. From the analog emitter-receiver channel, the
desired discrete version is deduced by applying the Euler sampling approximation, leading to a discrete
communication system of the same order of complexity as the analog model. The obtained discrete-time
state equations confirm the synchronization process, analyzed by the error dynamics method and showing
short-time transient and state error decreasing to zero. The dynamic complexity of the discrete-time emitter
is highlighted by bifurcation diagrams and strange attractor projections. The synchronization communication
system performance is also sustained by statistical properties, such as histograms and frequency spectra.

The obtained discrete system leads to an algorithm allowing the desired programable digital
implementation on an ARM processor. The high order of the emitter generator and the relatively high
number of encryption key parameters ensure a secure transmission of the useful modulating signal.
Estimating the resulting digital encryption system performance is important for application purposes and it is
performed both dynamically and statistically, highlighting its possible application in secured, low frequency
biomedical and sound transmission.
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