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Abstract. Quantum computing can be used to solve certain problems faster than classical computers. 

One such problem is related to optimal routing in Internet of Things and sensor networks where the 

number of nodes is very high and multiple constraints (energy efficiency, latency, throughput) must 

be met. We propose a quantum implementation of the Modified Dijkstra’s algorithm for finding the 

optimal route between a source node and a destination node in a connected graph. This is a particular 

case of the Travelling Salesman Problem, which is NP hard. Our contribution is two-fold: first of all, 

we encode both the Available Transfer Rate and the One-Way Delay in the controlled unitary 

matrices in order to be able to use Quantum Phase Estimation for computing the composite metric of 

a path. Second, we use an optimized version of the Grover quantum search algorithm to find the path 

with the minimum composite metric with zero failure rate. 

Key words: Grover search, Modified Dijkstra’s Algorithm, Qiskit, quantum routing, quantum phase 
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1. INTRODUCTION 

Over the past few years, requirements in both data storing, processing and transmitting have increased 

in an exponential rate. A forecast by Cisco [1] predicts that global mobile data traffic will reach 77.5 

exabytes per month by 2022 and annual traffic will reach almost one zettabyte. Nearly 80% of this traffic 

will be video. As such, computing devices need to work at higher speeds and with better efficiency. 

Quantum computing takes advantage of quantum mechanical effects in order to solve certain problems faster 

than classical computers. It is especially suitable for solving NP hard problems, such as optimal routing in 

different network topologies. Moreover, reducing transistors size means that their operation becomes highly 

influenced by quantum effects thus making the study of quantum computation systems a top priority. IBM 

for example offers both simulators and real systems in their IBM Q Experience in a gate-based architecture 

up to 65 qubits [16]. A 1000-qubit quantum computer is announced for delivery by 2023. D-Wave’s most 

recent model is called Advantage and offers more than 5000 qubits [17]. 

The main advantage of quantum computing systems stems from their inherent parallelization 

capabilities. A classical bit may either have a value of 0 or 1. A qubit, on the other hand, may have the values 

0 , 1 , or any superposition of the two [2]. The column vector of a quantum state is called the ket 

representation and is denoted by  . For two qubits, the quantum state may have the following four values 

simultaneously: 00 , 01 , 10 , 11 . In a classical n-bit register, only one of the 2n combinations is active 

at any given moment. However, in an n-qubit quantum register, the quantum state is a superposition of all 2n 

values simultaneously. Any quantum operation applied to such a quantum register leads to modifying all 

values at the same time. It is this parallel processing capability that enables quantum algorithms to require 

fewer computational steps or find more suitable solutions for specific problems than their classical 

implementations. 
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This paper proposes a quantum implementation of the Modified Dijkstra’s Algorithm [3] in Qiskit. The 

solution finds the optimal route between given source and destination nodes in a graph using phase 

estimation [10] and a modified version of Grover’s search algorithm [6]. First, we study the feasibility of 

adapting the quantum phase estimation algorithm used in solving the Travelling Salesman Problem in order 

to compute the Composite Metric (CM). Second, the CMs of the paths are encoded in a quantum database 

and the minimum value is computed using an optimized quantum minimum searching algorithm. Compared 

to other solutions [10], the novelty in our approach consists in encoding a second element, the Available 

Transfer Rate (ATR), in the controlled unitary matrices, without using additional qubits. Moreover, we use a 

modified version of the traditional Grover quantum search algorithm to find the path with the lowest CM, 

with zero failure rate. 

The remainder of this paper is organized as follows. Section 2 discusses related work. The architecture 

and design of the system is presented in Section 3. We discuss and evaluate the proposed solution in Section 

4 and conclude in Section 5. 

2. RELATED WORK 

The Travelling Salesman Problem (TSP) represents a classical optimization problem in computer 

science. It involves a salesman who must travel through N cities but can only visit each city once. Moreover, 

the salesman must start and end his travel in the same city. Cities are connected by links with different costs. 

The end goal is to minimize the total cost of the travel in the conditions described above. This problem 

belongs to the class of NP hard problems and the simplest way to solve it is by brute force. However, as the 

number of cities N increases, so does the number of iterations needed to find the solution, which is (N−1)!. 

As such, different strategies to tackle this problem must be found. A possible approach involves the use of 

quantum computing. Moylett et al. [8] proved a quadratic quantum speedup can be achieved by applying a 

quantum backtracking algorithm to a classical approach. Markevich and Trushechkin [9] propose a quantum 

branch-and-bound algorithm which uses the quantum nested searching algorithm. They prove that in most 

cases, a classical approach is quicker than the quantum algorithm due to greater adaptability. However, the 

operation time of the quantum algorithm is the same for all problems, while the classical algorithm may run 

very slowly for certain cases. This makes the quantum branch-and-bound algorithm more efficient as the 

number of cities increases. The authors of [10] use the phase estimation technique and the Durr-Hoyer search 

algorithm [7] on four cities, using IBM’s quantum simulator. Paper [11] presents a Quantum Approximate 

Optimization Algorithm implemented in pyQuil which uses mixer operators based on hard and soft 

constraints.  Warren [12] analyzes four software programs that solve the TSP problem on a quantum annealer 

and provides a pertinent list of strength and weaknesses for each of them. An entirely different framework is 

the adiabatic quantum computation AQC. Kieu [13] provides such an algorithm for the TSP which may be 

implemented in quantum optics or quantum field theory. However, this algorithm is not meant for quantum 

computers using unitary gates acting on qubits. 

3. ARCHITECTURE AND DESIGN 

The graph on which we apply Modified Dijkstra’s Algorithm is illustrated in Fig. 1. Considering node 

1 as the source and node 4 as the destination, there are three possible paths between these nodes: 1−>4, 

1−>2−>4 and 1−>3−>4. As described in [3], the ATR and OWD are computed globally for each path. 

Measuring the ATR on each link can be done by using the active measurement technique and Kalman 

Filtering described in [14]. For estimating the OWD several cyclic measurements are performed, as 

described in [15]. Note that in our implementation we disregard the BER for the reasons mentioned in [3]. 

Our goal is to find the path with the minimum composite metric/cost between nodes 1 and 4. This is a 

two-step process: first, we use quantum phase estimation to compute the cost of each path. As explained in 

[10], instead of encoding the cost of each link as an element of a matrix, we represent them as phases. This 
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way the tensor products used in quantum computing will lead to the summation of these costs, ultimately 

providing the composite metric for an entire path. The second step involves employing Quantum Maximum 

or Minimum Searching Algorithm (QUMMSA) [6], which enables us to find the path with the minimum 

cost. The following paragraphs provide a thorough description of the phase estimation and QUMMSA 

algorithms. Both algorithms were implemented in Python and executed on simulators using the Qiskit 

framework. 

 

 
Fig. 1 – Graph for Modified Dijkstra’s Algorithm. 

3.1. Quantum Phase Estimation 

We propose an original version of the phase estimation algorithm used to solve the Travelling 

Salesman Problem [10]. The input is represented as a matrix A where ij
j

ijA e


=  and  ij is the cost of 

travelling from node i  to j .  Next, we construct unitaries Uj from matrix A :  

 
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U A

N
  =  . (1) 

N  represents the number of nodes and  , 1,j k N . The main difference from [10] is the fact that we use a 

composite metric which involves both the ATR and the OWD. Moreover, the ATR of a path is not additive 

like the OWD. Consequently, we must find a way of also encoding it into matrix A. The solution we 

proposed consists in using the elements on the main diagonal of this matrix. This is possible because the cost 

of going from node i to node i is 0 and therefore not used in computing the cost of the path. Note however 

that in this approach we can only encode N additional elements. This number increases to ( )1 / 2N N +  if 

we consider symmetrical links. Matrices Uj are diagonal unitary matrices, with all the other elements 

initialized to 0. Matrix U can now be computed as the tensor products of all unitaries Uj: 

1 2 3 ... NU U U U U=     . Matrix U is also diagonal and its eigenvalues represent the costs of the paths 

from source and destination. 

These eigenvalues can be estimated using the quantum phase estimation algorithm [4]. It is important 

to normalize the phases in unitaries Uj such that the eigenvalues are bound between 0 and 2π. Out of the 
NN  

diagonal elements of matrix U we are only interested in the ones corresponding to the possible paths between 

the source and destination nodes, in our case the three paths presented earlier. We extract these elements by 

carefully preparing computational basis eigenstates corresponding to the desired locations and performing 

phase estimation as proposed in [10]. The results are obtained in binary form on the n control qubits. 

A Qiskit quantum circuit used for phase estimation, such as the one presented in Fig. 2, must be 

designed for each eigenstate corresponding to a certain path. 
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Fig. 2 – Phase estimation quantum circuit implemented in Qiskit. 

3.2. Optimized Quantum Maximum or Minimum Searching Algorithm 

The Optimized Quantum Maximum or Minimum Searching Algorithm (QUMMSA), introduced in [6] 

allows finding the maximum or minimum element from an unsorted database with N items. It is based on the 

Grover-Long algorithm which initially finds M ≥ 1 solutions: a random value d0 is taken as threshold and all 

M =d0+1 solutions will be less than or equal to this value. Out of the M solutions one is selected as the new 

threshold and the algorithm is repeated until M =1. All M solutions are given with the same probability and, 

after each step, the number of solutions reduces by half, on average. Therefore, the number of steps needed 

to find the minimum is, in theory, 2log N . The first step in the Grover-Long algorithm is preparing the initial 

state by using the W  operator: 

1
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good  stores the desired solutions while bad  stores other values. When 2nN = , n – the number of 

qubits, the initial state is a uniform superposition state and W becomes 
nH 

, which is the Walsh-Hadamard 

transformation. Next, each iteration of Grover is divided into four operators: 

1
0 G W I W O−= . (3) 

O is the oracle which performs a phase inversion on good  and I0 is a conditional phase shift operator used 

to perform a phase inversion on 0 . 

Instead of using phase inversion, Grover-Long [5] rotates the phase with an adjustable angle ϕ :  

sin
4 22arcsin
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J

 
 + =  

 
 

, (4) 

where sin
M

N
 = . In the J-th iteration, one of the marked states is obtained with zero failure rate as 

explained and demonstrated in [5]: 

2floor 1J

 −
  +
 
 

. (5) 

The exact values for β,  and J can be computed using the number of solutions M and the database 

size N. The Oracle can recognize the solutions of the searching problem and apply a phase rotation to them. 

If only one solution is needed, the Oracle can be described as the diagonal matrix having only one ei  : 
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where ν is the position of eiϕ in the diagonal matrix. If M solutions are needed, the Oracle becomes: 
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
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where the number of eiϕ is M and the set of eiϕ positions is V={ν1, ν2, …, νM}. In conclusion, an Oracle 

marking multiple quantum states is ultimately composed of several Oracles marking just one quantum state. 

The Qiskit quantum circuit used for the implementation of QUMMSA is presented in Fig. 3. 
 

 

 

Fig. 3 – QUMMSA circuit implemented in Qiskit, 

4. EVALUATION 

We start by measuring the ATR and OWD for each link of the graph. In order to simplify the 

experiment, we assume that the links are symmetrical, i.e. the ATR and OWD are equal in both ways of the 

link. The measured values are presented in Table 1. Note that they were obtained in our previous work and 

we use them to validate the quantum solution by comparing the results to the ones obtained in the legacy 

approach. The composite metrics corresponding to the three different paths between node 1 and node 4 are 

computed using  K0 =109
 bps and  K1 =10−5

 s. Since the value of the ATR is the same for all links, it is very 

easy to compute the first term of the CM: 12.18778. If the ATR for the links is different, we can compute the 

ATR of each path, using either QUMMSA, in a quantum approach, or offline, using legacy methods. For the 

second term however, we need to add the OWDs for all the links composing a certain path. Moreover, to 

compute the CM we also need to add the term corresponding to the ATR, computed earlier. 

This is where we take advantage of the Quantum Phase Estimation Algorithm described in the previous 

paragraphs. First, we need to map the scaled OWDs of each link and the ATR of the entire path into phases, 

making sure that the CM doesn’t exceed 2π. For example, the CM for path 1−>2−>4 translates to: 

9

1 2 4 5 5

10 0.000030 0.000039
12.18778 3 3.9

82,049,400 10 10
CM → → − −

= + + = + + . (8) 

First, each term is rounded to the nearest integer and then scaled by multiplying with a factor of π/32. 

This value was chosen taking into account that we represent the phases on 6 qubits. Thus, the maximum 

value that can be represented is 63, corresponding to 2π. As such, the least-significant qubit has a value of 

π/32. Note that both rounding and quantization steps introduce errors. A solution is increasing the number of 

qubits for a more precise phase representation. In our case, the three terms in (8) round to 12, 3 and 4 and 

then are scaled into 12π/32, 3π/32 and 4π/32. Similarly, all other ATRs and OWDs are obtained: 
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Table 1 

Values of the ATR, OWD and corresponding phases for each link 

Link ATR [kbps] OWD [s] ATR [rad] OWD [rad] 

1 −>2 82,049.4 0.000030 12π/32 3π/32 

2 −>4 82,049.4 0.000039 12π/32 4π/32 

1 −>4 82,049.4 0.000144 12π/32 14π/32 

1 −>3 82,049.4 0.000131 12π/32 13π/32 

3 −>4 82,049.4 0.000044 12π/32 4π/32 

 

In order to obtain the CMs for all three paths, we construct four unitary matrices U1, U2, U3 and U4. 

These matrices are diagonal and the four elements of the main diagonal correspond to the phases associated 

to the OWDs of the links. The difference from other approaches [10] is that we also have to include the ATR 

in these matrices. There are two options here: we can either use element [Uj]jj since there is no link from 

node j to itself or we can use the other elements of the matrix which are associated to non-existing links e.g. 

2 −>3 and 3 −>2. Herein, we used the second approach. Next, we computed 1 2 3 4U U U U U=    . U is 

also a diagonal matrix which has 256 eigenstates on the main diagonal. Out of these 256 elements, we are 

only interested in the 3 associated to the 3 desired paths. We constructed 3 different circuits in Qiskit, one for 

each eigenstate corresponding to a path. The 8 bits of an eigenstate are grouped into four 2-bit groups and 

each group represents the position of an element in Uj : the first group corresponds to U1, the second to U2 

and so on. By carefully setting the eigenstate, we can select the combinations of OWD and ATR involved in 

certain path and thus compute the CM, as seen in Fig. 4. 

 

 
Fig. 4 – Quantum phase estimation for Composite Metric of path 1−>2−>4. 

Out of 4 096 simulations, for the Composite Metric of path 1 −>2 −>4 state 010110 was obtained with 

the highest probability. The eigenstates, the theoretical and experimental values of the CMs for the 3 paths 

are presented in Table 2. 

Table 2 

Theoretical and experimental values for the composite metrics of the paths 

Path Eigenstate Theoretical Experimental 

1 −>4 00010100 011010 011010 

1 −>2 −>4 01110111 010011 010110 

1 −>3 −>4 00100010 011101 011110 
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As described in [10], in order to accurately obtain the phase up to n bits with a probability of success at 

least 1–ε, we need to use t qubits: 

1
 log 2  

2
t n

 
= + + 

 
. (9) 

In our case, we used t = 6 qubits. From Table 2 it is easy to observe that for the second and for the third 

path 2 bits are erroneous. One way of increasing the accuracy is by increasing the number of phase 

estimation qubits t. This however does not eliminate the error entirely and even one single wrong bit (e.g. the 

MSB) is enough to compromise the result. Next, we need to find the minimum of the three CMs. For this, we 

constructed another Qiskit circuit implementing QUMMSA. The first step was to encode the three values into a 

6-qubit unsorted database. The rest of the 61 values of the database are initialized to 0. We then randomly 

selected a reference value from the database: 0111002 = 28. In the first iteration of the algorithm we should 

obtain M  = 28+1 solutions less than or equal to this reference value. However, since there are only 3 

elements of interests in the database from now on we will only refer to them and ignore all other solutions 

equal to zero. Using M  = 29 and N  = 64 from (4) and (5) we obtain β = 0.738, J ≥2 and   = 0.956. The 

two elements less than 28 are marked having the highest probability (Fig. 5a). For the second iteration we 

chose another reference value from the two solutions obtained earlier: 0101102  = 22. M  becomes 23, N  is 

still 64 while β = 0.643, J ≥2 and   = 1.086. Using these parameters, only one solution (the minimum 

value in the database) was obtained, 0101102  = 22, which is marked correctly as having the highest 

probability (see Fig. 5b). 

 

 

Fig. 5 – Results: a) after the first iteration, respectively (b) after the second and last iteration of QUMMSA. 

The algorithm now stops and the best path is the one corresponding to eigenstate 01110111, namely 

path 1 −>2 −>4. This result is coherent with the one obtained using the classical non-quantum method. Even 

though our example is admittedly simplistic, the same approach can be used for a larger database, with the 

same performance, as shown in [6]. Moreover, we designed our approach as a proof-of-concept. As such, we 

only executed the algorithms on the local simulator and we were not particularly interested in optimizing 

simulation time, number of executions, etc. The code for this project is available at [18]. 

5. CONCLUSIONS 

This paper presents a quantum implementation of the Modified Dijkstra’s algorithm used for finding 

the best path between a source and a destination node in a connected graph. The composite metric for each 

path is computed using the ATRs and OWDs of the links. First, quantum phase estimation is used to 

compute this metric. The novelty herein consists in the encoding of both ATR and OWD in the controlled 
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unitary matrices. Next, an optimized version of Grover quantum search algorithm (QUMMSA) is used to 

find the path with the lowest composite metric. Experimental results obtained from simulations in Qiskit 

validate our approach: the best path is the same as the one computed using the legacy approach described in 

[3] for the same input data. However, improvements are still possible, by increasing the number of qubits 

used for phase estimation and extending the solution for all non-symmetrical graphs, regardless of the 

number of nodes/links. For future work, we plan on adding multi-path routing algorithms and performing 

experiments on physical quantum platforms. 
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