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Abstract. In this paper the problem of the collision of the rigid solids is generalized for the 

simultaneous multi-point ones. We considered the case of the collision between the rigid solid and 

many impulses and we proved that the problem has a determined solution only if the directions of the 

impulses satisfy certain conditions. We also discuss the case of the collision of a constrained rigid 

solid, as well the collision between two rigid solids. The obtained formulae are given in matrix form 

and they can be easily implemented in different calculation algorithms. The approach is based on 

screw theory. Some examples highlight the theory. 
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1. INTRODUCTION 

The problem of the collision of rigid solids is discussed in many papers. The authors usually consider 

the collision of a rigid solid with one impulse and the collision of two rigid solids at only one point. The 

accepted working hypotheses are those stated in [2, 3, 9, 11, 12, 16, 17]: the values of the impact forces are 

high enough so that one may neglect all other forces acting on the rigid bodies; the collision has two phases: 

the compression and the expansion; the positions of the rigid solids remain constant during the impact; the 

tangential stiffness is infinite. Another problem is the definition of the coefficient of restitution. Three main 

definitions are considered now: Newton, Poisson and energetic. For the collision without friction the equality 

of the three coefficients is proved [4, 11, 12, 16, 17, 22]. The problem of the definition of the coefficient of 

restitution in the case of collision with friction is considered in [3, 4, 11, 12, 19, 22, 23], the authors proving 

that the consideration of the Newton or Poisson variants may lead to inconsistent results. Batlle [1], 

Brogliato [4], Glocker [11, 12], Pandrea and Stănescu [17], Pfeiffer [19] studied the collision with friction of 

two rigid solids for which the values of the three coefficients are not equal. Pandrea and Stănescu [17] 

proved the possibility that one coefficient of restitution may be greater than one in the case of collision with 

friction. Aspects concerning the collision of kinematic chains or multi-body systems are discussed in [1, 9, 

10, 13, 18, 24, 25] for simple examples highlighting the main phenomena that may appear during the 

collision process. Most authors deal with the classic theorems in collision: the theorem of momentum and the 

theorem of moment of momentum obtaining systems of equations, which imply calculation difficulties. 

Brogliato [4] discusses the collisions considering a combination between the classical and the screw 

approaches. Pandrea [14, 15], Pandrea and Stănescu [16, 17], and Stănescu et al. [20] considered the screw 

coordinates for the problems of collision with and without friction, obtaining matrix equation which are 

easily implemented in various algorithms of calculations. Stronge [21] discusses the planar case of collision 

with friction, establishes some relations between different coefficients of restitution and conditions for their 

equality. Chatterjee et al. [5] studied the planar cases with friction at two points using a global energetic 

coefficient of restitution similar to Stronge’s one. Djerassi [8] analyses the five types of planar collision with 

friction, establishes the coherence conditions for each type and proves that Stronge’s hypothesis leads to the 

existence and uniqueness of a coherent and energy-consistent solution. Djerassi [6, 7] studies the five 

possible cases of planar collisions and proves that using the Newton coefficient of restitution the mechanical 

energy may increase in the situations of sticking or reverse sliding. Moreover, Poisson’s coefficient of 

restitution leads to unique solution which is coherent and energy-consistent; there is concordance between 

the Poisson and Stronge coefficients of restitution and the Poisson coefficient of restitution is preferable. 
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The problems of simultaneous multi-point collisions are not generally discussed yet. In this paper we 

consider some aspects of this problem and we prove that a solution of it may be obtained only in some cases 

when the directions of the reaction impulses satisfy certain conditions. The main hypothesis we add to the 

previous ones consists in the simultaneous canceling of the normal velocities at the collision points and no 

jamb phenomenon [2] appears. We use the screw approach in order to obtain the general calculation 

formulae, which are given in matrix form for an easy implementation in calculation algorithms. The paper is 

divided as follows: in section 2 we present the notations used, in section 3 we discuss the case of the 

simultaneous multi-point collision of a free rigid solid, in section 4 is treated the case of the constrained 

rigid, while in section 5 we deal with the case of the collision of two free rigid solids. The last part of the 

paper is dedicated to conclusions. 

2. NOTATIONS 

We denote: O – the center of weight of the rigid solid; Oxzy  – the system of the principal central axes 

of inertia; m – the mass of the rigid; xJ , yJ , zJ  – the moments of inertia; 0
v , v  – the velocities of the point 

O before and after collision; 0
ω , ω  – the angular velocities of the rigid solid before and after collision; iA , 

1,  i n=  – the points at which the rigid solid is collided; iP , 1,  i n=  – the magnitudes of the impulses at the 

points iA ; iu , 1,  i n=  – the unit vector of the impulse at the point iA ; ir , 1,  i n=  – the vector iOA ; ia , ib , 

ic , and di , ie , if  – the projections of the vectors iu  and i ir u , respectively, on the axes Ox , Oy , Oz ; 

 iU  – the column matrix of the screw coordinates of the straight line of the impulse at the point iA , 

1,  i n= ;  P  – the column matrix of the impulses;    
T

1 ... nP P=P ; 0
inv , inv , 1,  i n=  – the projections 

of the velocities of the points iA  on the directions of the impulses before and after collision;  U  – the 

matrix given by      1 ... nU U =  U ; ik , 1,  i n=  – the coefficients of restitution at the points iA ;  K  – 

the matrix given by   ( )diag ik=K ;  iS , 1,  i n=  – the matrix of the screw coordinates of the simple 

restrictions of the reaction impulses;  iQ , 1,  6i n= −  – the matrix of the screw coordinates of the possible 

motions;  S  – the matrix      1 ... n =  S S S ;  Q  – the matrix      1 6... n− =  Q Q Q ; i , 1,  i n=  

– the scalar values of impulses; i , 1,  6i n= −  – the scalar values of the velocities;  ζ  – the column matrix 

   
T

1 ... n=  ζ ;    – the matrix column    
T

1 6... n−=  ξ . The rest of notations may be found in 

[4, 14, 15, 16, 17]. 

3. THE SIMULTANEOUS COLLISION OF THE FREE RIGID AT MANY POINTS 

The working schema is captured in Fig. 1. The theorems of momentum and moment of momentum lead 

to the matrix relation 

        
10 −

− =V V M U P . (1) 

Pi

Ai

 
Fig. 1 – Working schema. 
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We assume that the rank of matrix  U  is equal to n. If this condition does not hold true, then [9] the 

support straight lines of the impulses must satisfy the following requirements: a) two straight lines do not 

coincide; b) three straight lines are not coplanar, concurrent or parallel; c) four straight lines are not: i) the 

generatrices of the same ruled quadric, ii) concurrent in space, iii) parallel in space, iv) situated in the same 

plane; c) five straight lines must: i) not intersect two given straight lines, ii) a part of them intersect a straight 

line, the rest of them being parallel to a given plane, iii) a part of them are situated in a plane, the rest being 

concurrent at a point of the plane, iv) some of them are situated in a plane, the rest of them being parallel to a 

straight line of the plane, v) some of them are parallel to a straight line, the rest of them being the straight 

line from infinite of the space; e) six straight lines must not: i) be normal to a family of helices of same step; 

ii) intersect the same straight line, iii) be parallel to a plane, iv) form two stars of concurrent straight lines,  

v) belong to two stars of parallel straight lines, vi) form a star of concurrent straight lines and a star of 

parallel straight lines. 
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Fig. 2 – Examples of determined (a) and c)) and undetermined cases (b) and d)). 

Based on these statements, it results that cases presented in Fig. 2a and Fig. 2c may be solved, while 

the cases presented in Fig. 2b and Fig. 2d are not determined ones. For instance, for the situation captured in 

Fig. 2d one may write the equation             0
1 1 2 2 3 3P P P− = + +M V V U U U . Since the directions of 

the impulses 1P , 2P  and 3P  are parallel, one may write      3 1 1 2 2= +U U U , and the previous equation 

leads us to        ( )  ( ) 0
1 1 3 1 2 2 3 2P P P P− = +  + + M V V U U . It results that one can determine only the 

expressions 1 1 3P P+  and 2 2 3P P+ , the impulses 1P , 2P  and 3P  remaining undetermined. In Fig. 2b we 

have the case of a table with four feet. The coordinates of the point iA  are ix , iy  and iz , 1,  4i = , while the 

unit vectors of the direction of impulses are i =u k , 1,  4i = . It results i i i iy x = −OA u i j , 

   
T

0 0 1 0i i iy x= −U . On the other hand, the point 4A  belongs to the plane determined by the 

points 1A , 2A  and 3A ; consequently 4A  may be written as an affine combination of the points 1A , 2A  and 3A , 

that is, there exist the constants 1 , 2  and 3 , 2 2 2
1 2 3 0 + +  , such that 4 1 1 2 2 3 3P P P P= + + ; it results 

the matrix relation        4 1 1 2 2 3 3= + +U U U U  and the linear system of three equations with four 

unknowns ( 1 , 2 , 3 , and 4 ) 4 1 2 3 = + + , 4 4 1 1 2 2 3 3x x x x = + + , 4 4 1 1 2 2 3 3y y y y =  + + . 

Since the points 1A , 2A  and 3A  are not collinear, one deduces that the determinant of the system is not equal 

to zero; hence the system is compatible determined. This situation corresponds to the case in which the 

directions of the impulses are four parallel straight lines in space. 
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Taking into account the relations     
T

in iv = U η V  and     T0 0
in iv = U η V , where  η  is a square 

sixth order matrix given by  
   
   

 
=  
 

0 I
η

I 0
, one gets 

      0
n n− =V V G P . (2) 

Using the Newton model (for the simplicity of calculation), one obtains the equalities 0
in i inv k v= − , that 

is in matrix form, 

         0 0
n n n − = − + V V I K V  (3) 

and from the expression (2), we deduce the matrix of impulses 

         1 0
n

−
 = − + P G I K V . (4) 
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Fig. 3 – Planar collision of a bar. 

As an example we consider the situation captured in Fig. 3, in which one knows: 2a l= , 2b l= , 

1 2B O OB l= = , the mass of the homogeneous bar m , 0v , 0 , the coefficients of restitution 1k , 2k ; 

numerically: 1 ml = , 12 kgm = , 1 2 0.7k k k= = = , 0 10 m sv = − , 0 2 rad s = . One successively obtains 

the values: 1 =u j , 2 =u j ,  1 1 0.5a = − = −OA u k k ,  2 2 0.5b = =OA u k k , 2 23 4 kgmzJ ml= = , 
 

 
T T T

0 1 0 0 0 0 1 0 0 0 2 0 1 0 0 0 0.5

0 1 0 0 0 0 1 0 0 0 2 0 1 0 0 0 0.5

a l

b l

− − −     
= = =     
     

U ,  

 

 

2

1

2

1 1 7 1

7 114 4
 kg

1 7 1 7481 1

4 4

z z

z z

a ab

m J m J m m

ab b

m mm J m J

−

   + −      = = =        
 − +     

G ,   0 0 0
1 8 m snv v l= +  = − , 

 

0 0 0
2 12 m snv v l= −  = − ,    

( ) ( )

( ) ( )

0 0
1 1 2 2

0 0
1 1 2 2

7 1 1 74.8
 Ns

129.212 1 7 1

n n

n n

k v k vm

k v k v

 + − +  
= − =   

− + + +    

P ,  

 

  ( )  
T

T0 0 1 2
1 2

3
0 0 0 0 0 0 4.375 0 7 0

8

P P
P P v

ml m

+ 
=  − + + = − 
 

V ,   0 rad sx = ,  

 

0 rad sy = ,  4.375 rad sz = − ,  0 m sxV = , 7 m syV = ,  0 m szV = . 

After the collision, the center of weight of the bar has a vertical velocity equal to yV , while the bar 

clockwise rotates with the angular velocity z . One may also calculate the velocities of the points 1A  and 2A  
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before and after collision, obtaining 
1

0 11 m sAv = − , 
2

0 9 m sAv = − , 
1

9.1875 m sAv = , 
2

4.8125 m sAv = . 

The velocities satisfy the Euler relation, and cannot be obtained directly by 
0

i iA i Av k v= − , 1,  2i = . 

4. THE COLLISION OF THE CONSTRAINED RIGID 

The space of the possible motions is conjugate to the space of the reaction impulses; consequently [9], 

      
T

=S η Q 0 ,       
T

=Q η S 0 . The matrices of the screw coordinates of the rigid solid’s velocities 

and of the reaction impulses are   Q ξ  and   S ζ , respectively. The general theorems read now 

             0− = +M Q ξ ξ U P S ζ , (5) 

where we assumed that the constraints are independent. 

Multiplying the relation (5) by    
T

Q η  and denoting        
T

dre =M Q η M Q , one gets 

            
1 T0

dn re

−
− =v v Q M Q η U P . (6) 

Multiplying the last expression by    
T

U η  and taking into account the relation 

          0 0
n n n − = − + v v I K Q v , it results the impulses at the collision points 

                      
1

T 1 T T 0
dre n

−
− = − +   

P U η Q M Q η U U η I K V . (7) 

Now we calculate the velocities after collision, using equation (6). 

Moreover, the expression (5) leads to 

                
1

T 1 T 1
−

− − = −
 

ζ S η M S S η M U P , (8) 

while   S ζ  gives us the screw coordinates of the impulses in the linkages. 

If the matrices  U  and  S  are not independent, then        
T

 =Q η U 0  and it results    0=ξ ξ  and 

   0=V V ; hence, the motion remains unchanged. 
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Fig. 4 – a) Spatial undetermined collision of a bar; b) spatial determined collision of a shell. 

For instance, the case presented in Fig. 4a in which 2OA OB l= =  leads to the following values: 

     
T

0 0 1 2 0 0l= =U U ,      
T

1 1 0 0 0 0 2l=S ,      
T

2 0 1 0 0 0 0=S ,  
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   
T

3 0 0 1 2 0 0l= −S ,      
T

4 0 0 0 1 0 0=S ,      
T

5 0 0 0 0 1 0=S ,  
 

     
T

0 0 1 2 0 0l= = −Q Q . 

One may easily observe that      3 4l= +U S S , that is, the direction of the impulse P is situated in the 

space defined by the composed linkage at A ; hence the collision at the point B along the axis Oz  does not 

influence the motion. 

Let us consider now the case presented in Fig. 4b in which a homogeneous shell spherically jointed at the 

point A  is collided at the points 1A  and 2A . One knows: 0.5 ma b= = , 120 kgm = , 0 0 rad sz = , 0 0 m sxv = , 

0 0 m syv = , 0 8 rad sx = , 
0 2 rad sy = − , 0 5 m szv = − , 1 2 0.7k k= = . One successively obtains: 

 

2

3
x

ma
J = ,  

2

3
y

ma
J = ,  

22

3
z

ma
J = ,   

2

d

4 3 0

3 4 0
3

0 0 2

re

ma
− 

 
= −

 
  

M ,     

T
1 0 0 0 0

0 1 0 0 0

0 0 1 0

a

a

a a

− 
 

= =
 
 − 

S Q ,  

 
T

0 0 1 0

0 0 1 0

a a

a a

− − 
=  

− 
U ,         

T
=S η Q 0 ,   

 
( )( ) ( )

( ) ( ) ( )

0 0 0
2 21

0 0 0
2 1 2 1 2 1 2

1 1 11907
 Ns

380812 3 4 5 4 3 4

x y z

x y z

a k k vP m

P a k k a k k k k v

 +  − − +   
 = = =   −     − + −  + + +  + − + 

P ,   

 

1 2

0
1

0
56

8 40P P

 
 

= −
 
 − 

ζ ,   
   ( ) ( )

 

T

1 2 1 2 1 2

T

1
0 0 8 40 8 40 8 40 0

56

          0 0 2890 1445 1445 0 .

P P P P a P P a = − − − − − = 

= − −

S ζ
 

There is only one component of reaction impulse at the point A along the z -axis. One may easily 

verify the theorems of momentum and moment of momentum at the collision. Moreover, a convenient 

selection of the kinematic and dynamic parameters may lead to     =S ζ 0 , that is, point O may be 

considered a center of impulses (similar to the case of singular collision). 

5. THE SIMULTANEOUS MULTI-POINT COLLISION OF TWO FREE RIGIDS 

The situation is presented in Fig. 5. We index by 1i =  or 2i =  the two rigid solids and use the previous 

formulae. In addition, we denote:  G  – the matrix      1 2= +G G G ;  12nV  and  0
12nV  – the column 

matrices given by      12 1 2n n n= −V V V  and      0 0 0
12 1 2n n n= −V V V . 

 

Pj

ju

1z

1x

1y

jA

2x

z2

Aj

2y

jP

O2

O1

 
Fig. 5 – Simultaneous multi-point collision of two rigid solids. 
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For the two rigid solids one obtains the matrix equations 

         0
1 1 1 1− = −M V V U P ,            0

2 2 2 2− = −M V V U P , (9) 

wherefrom 

        
10

1 1 1 1

−
− = −V V M U P ,         0

1 1 1n n− = −V V G P , (10) 

        
10

2 2 2 2

−
− =V V M U P ,         0

2 2 2n n− =V V G P . (11) 

It results 

      0
12 12n n− = −V V G P . (12) 

Applying the Newton model, one gets 

    0
12 12n n= −V K V . (13) 

wherefrom 

         1 0
12n

−
 = + P G I K V . (14) 

Replacing the column matrix  P  in the expression (10) and (11), one gets the velocities after 

collision. 
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Fig. 6 – Numerical example. 

As numerical example we consider the collision of two frames as in Fig. 6. One knows: 1 120 kgm = , 

2 96 kgm = , 0.5 ma = , 0.25 mb = , 0
1 2 rad sx = , 

0
1 4 rad sy = , 0

1 0 rad sz = , 0
1 0 m sxv = , 

0
1 0 m syv = , 

0
1 10 m szv = , 0

2 0 rad sx = , 
0
2 4 rad sy = , 0

2 0 rad sz = , 0
2 0 m sxv = , 

0
2 0 m syv = , 0

2 8 m szv = − , 

1 0.7k = , 2 0.7k = . One obtains the following values: 
1

280 kgmxJ = , 
1

280 kgmyJ = , 
1

240 kgmzJ = , 

2

25.333 kgmxJ = , 
2

24.666 kgmyJ = , 
2

24.666 kgmzJ = ,    
 T0

1 10 12 m sn =V ,    
T0

2 9 7 m sn = − −V , 

 

 
T

1

0 0 1 0.5 0.25 0

0 0 1 0.5 0.25 0

− 
=  

− 
U ,   

T

2

0 0 1 0 0.25 0

0 0 1 0 0.25 0

− 
=  
 

U ,    1
1

0.01224 0.01068
 kg

0.01068 0.01224

− 
=  
 

G ,   

 

  1
2

0.02381 0.00298
 kg

0.00298 0.02381

−− 
=  

− 
G ,     

T
738.286 738.286  Ns=P ,   

   
T

1 0.7714 4 0 0 0 2.3048= −V ,     
T

2 0 4 0 0 0 7.3810=V . 
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For the second frame the motion remains unchanged, the value of the velocity along the z -axis being 

different, while for the first frame a new component appears for the rotation about the x -axis. Calculating 

the velocities at the points iA  for each frame, before and after collision, one may state that the simple 

formula 
0

i iA i Av k v= − , 1,  2i = , is no longer valid. 

6. CONCLUSIONS 

In this paper we presented the theory for the simultaneous multi-point collisions of rigid solids. The 
impulses at the collision points, the reaction impulses and the distribution of velocities are deduced in all 

possible cases. Using the screw coordinates, the formulae were developed in matrix form and they could be 
easily implemented in various algorithms of calculations. The above theory is valid in the case when the 

collision is without friction, all normal velocities at the collision points vanish simultaneously and no jamb 

phenomenon is allowed. We also highlight the situations in which the problems are not determined. For each 
case examples are presented. The case of the simultaneous multi-point collisions with friction is more 

complicate due to the existence of the invariant directions of sliding at each collision point. The jamb 
phenomenon (existence of more than one phase of compression and restitution during the collision) was 

poorly studied in the literature. In future papers we will study the simultaneous multi-point collisions 
between more than two rigid bodies and will extend the theory to kinematic chains. 
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