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Abstract. The change of the capacitance of a parallel-plate capacitor as a result of roughness of the plates is perturba-
tively calculated. It is seen that the roughening of the plates increases the capacitance, as expected. However, the result
is different from the one used in the literature. The inconsistency is explained.

Key words: capacitance, rough plates, perturbation.

1. INTRODUCTION

Surface roughness affects the physical properties of micro/nanoelectromechanical systems, for example
[1–9]. Among the properties affected by roughness is the capacitance of a parallel-plate capacitor. In [10], this
problem has been studied and a perturbative expression has been found for the capacitance of a parallel plate
capacitor, when one of the plates is rough. Here it is argued that the result found in [10] is not correct. The
correct result is given, and the inconsistency is explained. One of the places where having a correct theoretical
expression for the capacitance of a parallel plate capacitor could be important, is measuring the dielectric
constant of a material using capacitance measurements: an incorrect theoretical expression for the capacitance
leads to a wrong value of the dielectric constant obtained from the measured value of the capacitance. As
the capacitance is roughly (exactly, if the plates are smooth) proportional to the inverse of the thickness, for
example a surface of roughness about 10% of the thickness of the capacitor, say (10nm) roughness compared
to (100nm) thickness, could change the capacitance by about the same 10%, and neglecting the roughness in
the theoretical expression for the capacitor could lead to an error of the same (10%) magnitude in measuring
the dielectric constant.

The scheme of the paper is the following. In section 2 the geometry and conventions are introduced. In
section 3 the perturbative form of the electric potential inside the capacitor is found. In section 4 a perturbative
expression for the capacitance is found, using two methods: the energy method and the charge method. Finally,
section 5 is devoted to the discussion, specifically the reason for the discrepancy between the results found here
and in [10].

2. THE GEOMETRY AND THE CONVENTIONS

The position vector is (ρρρ + ẑzz z), where ρρρ is perpendicular to ẑzz. ∇∇∇ and D denote differentiations with respect
to ρρρ and z, respectively. The (two-dimensional) Fourier transformation of X is denoted by X̃:

X̃(kkk) =
∫

d2
ρ exp(−ikkk ·ρρρ)X(ρρρ). (1)

The electrodes of the capacitor are two plates: the first the plane z = 0, and the second a perturbed plane with

z = Z +h(ρρρ). (2)
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Z is the unperturbed thickness of the capacitor, and h is the perturbation of the thickness, as indicated in figure
(1).

Fig. 1 – The parallel plate capacitor with a rough plate.

The surface area of the planar plate is S. It is assumed that

|h| � Z� L, (3)

where L is the typical length size of the plates. The potential of first plate is 0 and that of the second is (−E0 Z).

3. THE PERTURBATIVE SOLUTION FOR THE POTENTIAL

The potential φ satisfies the Laplace equation (in the region between the plates), and the boundary condi-
tions

φ(ρρρ,0) = 0. (4)

φ [ρρρ,Z +h(ρρρ)] =−E0 Z. (5)

For the corresponding field EEE,

EEE =−∇∇∇φ − ẑzzDφ . (6)

A perturbative expansion for φ reads
φ = φ0 +φ1 +φ2 + · · · , (7)

where φ j is of the order j in h. The boundary conditions become

φ j(ρρρ,0) = 0. (8)

φ1(ρρρ,Z) =−[(Dφ0)(ρρρ,Z)]h(ρρρ). (9)

φ2(ρρρ,Z) =−[(Dφ1)(ρρρ,Z)]h(ρρρ)−
(D2 φ0)(ρρρ,Z)

2
[h(ρρρ)]2. (10)

Of course φ j’s satisfy the Laplace equation for 0 < z < Z. These Laplace equations, and the above boundary
conditions, are used to obtain the Fourier transformations of the perturbation terms:

φ̃ j(kkk,z) =
sinh(k z)
sinh(k Z)

φ̃ j(kkk,Z). (11)

One has

φ0(ρρρ,z) =−E0 z. (12)

So,

φ̃1(kkk,z) = E0
sinh(k z)
sinh(k Z)

h̃(kkk). (13)
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(D2 φ0) is zero. So,

φ̃2(kkk,Z) =−
∫ d2 k′

(2π)2 [(̃Dφ1)(kkk′,Z)] h̃(kkk− kkk′),

=−E0

∫ d2 k′

(2π)2 [k
′ coth(k′Z)] [h̃(kkk′)] h̃(kkk− kkk′), (14)

which results in

φ̃2(kkk,z) =−E0
sinh(k z)
sinh(k Z)

∫ d2 k′

(2π)2 [k
′ coth(k′Z)] [h̃(kkk′)] h̃(kkk− kkk′). (15)

4. THE CAPACITANCE

The permeability of the medium between the electrodes is denoted by ε . One could calculate the capaci-
tance C through the energy or the charge.

4.1. The energy method

One has

C (E0 Z)2

ε
=
∫
V

dV EEE ·EEE,

= 2 I1 + I2− I3, (16)

where

I1 =
∫
V

dV EEE ·EEE0. (17)

I2 =
∫
V

dV (EEE−EEE0) · (EEE−EEE0). (18)

I3 =
∫
V

dV EEE0 ·EEE0. (19)

One has

I1 =−
∫
V

dV (∇∇∇φ) ·EEE0,

= ∑
a

ψa

∫
Sa

dS n̂nn ·EEE0, (20)

where ψa is the value of the potential on the surface Sa, n̂nn is the unit vector normal to the boundary of V pointing
inside V, and use has been made of the fact that the (∇∇∇ ·EEE0) vanishes. Using the same fact, one arrives at∫

Sa

dS n̂nn ·EEE0 =
∫
Sa0

dS n̂nn ·EEE0. (21)

So there is no effect of the perturbation in I1. That is,

I1 =
∫
V0

dV EEE0 ·EEE0. (22)
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Or,

I1 =
C0 (E0 Z)2

ε
. (23)

So,

(C−C0)(E0 Z)2

ε
= I1 + I2− I3. (24)

I1− I3 =−E2
0

∫
d2

ρ h(ρ). (25)

Up to the second order in h,

I2 =
∫
V0

dV EEE1 ·EEE1 + · · · . (26)

So,

I2 =
∫ d2 k

(2π)2

∫ Z

0
dz |ẼEE1(kkk,z)|2. (27)

Using

ẼEE1(kkk,z) =−E0
ikkk sinh(k z)+ ẑzzk cosh(k z)

sinh(k Z)
h̃(kkk), (28)

one arrives at

I2 = E2
0

∫ d2 k
(2π)2 [k coth(k Z)] |h̃(kkk)|2 + · · · . (29)

So,

C−C0 =
C0

SZ

{∫ d2 k
(2π)2 [k coth(k Z)] |h̃(kkk)|2−

∫
d2

ρ h(ρρρ)
}
+ · · · , (30)

Or,

C−C0 =
C0

Z

{∫ d2 k
(2π)2 [k coth(k Z)]σ(kkk)− h̃(000)

S

}
+ · · · , (31)

where

〈|h̃(kkk)|2〉=: Sσ(kkk). (32)

4.2. The charge method

One has

C (E0 Z)
ε

=
∫

d2
ρ ẑzz ·EEE(ρρρ,0). (33)
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So, up to the second order in h,

(C−C0)(E0 Z)
ε

=−
∫

d2
ρ [(Dφ1)(ρρρ,0)+(Dφ2)(ρρρ,0)]+ · · · ,

=−[(̃Dφ1)(000,0)+ (̃Dφ2)(000,0)]+ · · · . (34)

C−C0

ε
=

1
Z2

{
−h̃(000)+

∫ d2 k′

(2π)2 [k
′ coth(k′Z)] [h̃(kkk′)] h̃(−kkk′)

}
. (35)

This is the same as (30) or (31), as expected.

5. DISCUSSION

Equation (30) is not the same as equation (33) in [10]. Apart from some constant coefficients, equation (33)
in [10] reads

C−C0 =
C0

S
(K +L+M)+ · · · , (36)

where

K =− 1
Z

∫
d2

ρ h(ρρρ). (37)

L =
∫ d2 k

(2π)2 [(k/Z) coth(k Z)] |h̃(kkk)|2. (38)

M =
∫ d2 k

(2π)2 k2 |h̃(kkk)|2. (39)

The result of the present text is

C−C0 =
C0

S
(K +L)+ · · · (40)

K is the first order term, while L and M are second order. In fact K is assumed to be zero in equation (33) in [10].
The difference between our result and equation (33) in [10] is the presence of M in equation (33) in [10].

The origin of M in [10] is the first integral on the right-hand side of (32a) in [10]. There equation (32b) has
been used to calculate those terms. And the problem is the first equality in equation (32b) there. The correct
equation is ∫

d2
ρ h∇∇∇ ·∇∇∇h =−

∫
d2

ρ (∇∇∇h) · (∇∇∇h). (41)

The minus sign on the right-hand side is missing in the first equality of (32b) in [10]. The correct equation
ensures that the first integral on the right-hand side of (32a) in [10] vanishes. Hence M won’t appear in the final
result.

An example which shows M shouldn’t be there is provided with

h(ρρρ) = h0

(
1− ρ2

R2

)µ

Θ(R−ρ), (42)

where Θ is the Heaviside (step) function. This h describes a plate which is smooth except for a bump of the
radius R and the height |h0|. µ = (1/2) corresponds to a hemispheroid, and decreasing µ makes the bump more
like a step. One arrives at

h̃(kkk) = π h0 R2
Γ(µ +1)(k R/2)−(µ+1) Jµ+1(k R), (43)
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So,

|h̃(kkk)|2 ∼ k−2 µ−3, (k R)� 1. (44)

This shows that L is finite but M is infinite for

0 < µ ≤ 1
2
. (45)

So, with the condition (45) our expression gives a finite value for (C−C0), while the expression in [10] produces
an infinite value. But (45) corresponds to a finite and continuous bump on one of the plates, which should result
in a finite change for the capacity. So M should not be there.

Alternatively,

M =
∫

d2
ρ |∇∇∇h|2, (46)

which is infinite if the derivative of h behaves like sµ−1 with

µ ≤ (1/2), (47)

where s is the distance from some curve. Obviously, if (45) holds then (47) holds and M is infinite.
The relative importance of the terms L and M can be simply deduced for cases where the Fourier transform

of h is narrowly peaked around some wave number km, that is, the perturbations are mainly of wavelength km.
In that case,

M
L

=

{
(km Z)2, (km Z)� 1
(km Z), (km Z)� 1

(48)

As an example, consider

h(ρρρ) = h0 exp
(
− ρ2

2σ2

)
cos(kkk0 ·ρρρ), (49)

where σ and kkk0 are constants. This is a sinusuidal roughness with an amplitude which decreases as the distance
from the center of the plate increases. One arrives at

h̃(kkk) = 2π h0 σ
2 exp

[
−σ2

2
(k2 + k2

0)

]
cosh(σ2 kkk0 · kkk). (50)

Defining the dimensionless parameters a and b through

a = σ k0, (51)

b =
σ

Z
, (52)

and the dimensionless functions L and M through

L = h2
0 L , (53)

M = h2
0 M , (54)

it is seen that L depends on a and b while M depends on only a. Figure 2 shows the behavior of L and M
for some parameter ranges.
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Fig. 2 – The correct (L ) and redundant (M ) contributions to the second order perturbation.

These arguments show that the effect of the redundant term is negligible for small wave numbers, but
increases as the wave number increases. So for small wave numbers the additional term M (which should not
be there) doesn’t affect the result. But for large wave numbers this term becomes important and completely
changes the result (wrongly, of course).
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