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Abstract. This article studies the controllability properties of the heat equation having a memory term with higher
order derivatives. It is know that in the usual setting the diffusion equation with a memory term has poor controllability
properties. We show that these difficulties can be overcome if a moving control is considered.
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1. INTRODUCTION AND MAIN RESULTS

Let M,T > 0, T := R/2πZ be the one-dimensional torus and let Q := (0,T )×T. The aim of this article is
to analyze the controllability properties of the following heat equation involving a memory term: ut(t,x)−uxx(t,x)+M

∫ t

0
uxx(s,x)ds = 1w(t)h(t,x) (t,x) ∈ Q

u(0,x) = u0(x) x ∈ T,
(1)

where the support w(t) of the control h at time t moves in space with a constant velocity c, that is,

w(t) = w0− ct, (2)

with w0 ⊂ T a reference set, open and non empty. The control h ∈ L2(P) is then an applied force localized, at
each instant t ≥ 0, in the set w(t), where P := {(t,x)| t ∈ (0,T ),x ∈ w(t)} . Our equation being defined on the
torus T, there is no need of specifying the boundary conditions which will automatically be of periodic type.

In many problems arising in mathematical physics such as flow of fluid through fissured rocks, diffusion
process of gas in a transparent tube, heat conduction in materials, and viscoelasticity, one may encounter
memory effects that are relevant from a physical point of view and can be modeled by nonlocal terms. Equation
(1) models the heat transfer in isotropic media in which the heat flux depends both on the present value of the
temperature gradient and its history (see, for instance, [3,4,12]). The well-posedness of (1) can be investigated
by using a spectral approach and it will be addressed elsewhere.

Controllability results for the heat equation with memory have been obtained at the beginning by asking
that the temperature be identically equal to zero at time T ,

u(T, ·) = 0, (3)

(or to a pre-established state; see, for instance, [1, 5, 6]). As remarked by [7] (see, also, [9] in the context of
viscoelasticity), (3) represents a kind of “relative null controllability”, which however need not be controllabil-
ity to rest. Indeed, even if the trajectory hits the zero, the solution may leave it in the future due to the memory
effect. Therefore, the following definition of the null-controllability property for problem (1) will be used:
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Definition 1. Equation (1) is said to be memory-type null controllable in time T > 0 if, for each initial data
u0 ∈ L2(T), there exists a control function h ∈ L2(P) such that the corresponding solution of (1) verifies

u(T,x) =
∫ T

0
uxx(s,x)ds = 0 (x ∈ T). (4)

Notice that in (4) to the classical notion of null controllability (3) an extra condition, demanding that the
memory term to be equal to zero, has been added. As mentioned before, this guarantees that, once driven to
zero, the solution stays there for any t > T .

The controllability results for (1) when the support of the control is fixed (c = 0) are known to be very
poor and even the spectral controllability may fail (see Remark 1). To overcome this difficulty, in [2] a new
strategy was proposed, consisting in considering a control with moving support as in (2) with c > 0. With
this approach, [2] proved the memory-type null controllability in time T when the memory term is of the form
M
∫ t

0 u(s,x)ds. The main ingredients used to show this result are Carleman type-inequalities for the typical heat
equation and the compactness of the memory term. Our aim is to study the controllability properties of equation
(1), in which the memory term depends on the second derivative of the temperature. This model is more natural
and closer to the original modified Fourier law proposed in the seventies. As in [2], we shall consider a moving
control with the support given by (2) and c > 0. The main result of this article is the following.

THEOREM 1. Suppose that c > 0 and the control support w is given by (2). Then equation (1) is memory-
type null controllable in any time T > 2π

c .

It is usual in the context of linear controllability problems, like Theorem 1, to reduce their study to an
observability inequality for the adjoint system. However, the analysis is facilitated if we first fix the support of
the control. To do this, we consider the change of variable x+ct = y and we define the new unknown functions

ξ (t,y) := u(t,x), ζ (t,y) := z(t,x) =
∫ t

0
uxx(s,x)ds.

We obtain that (1) is equivalent to ξt(t,y)+ cξy(t,y)−ξyy(t,y)+Mζ (t,y) = 1w0 h̃(t,y), (t,y) ∈ Q
ζt(t,y)+ cζy(t,y) = ξyy(t,y), (t,y) ∈ Q
ξ (0,y) = ξ 0(y), ζ (0,y) = 0, y ∈ T,

(5)

where h̃(t,y) := h(t,y− ct). Now the memory-type null controllability Definition 1 reads as follows.

Definition 2. System (5) is said to be memory-type null controllable in time T > 0 if, for each initial data
ξ 0 ∈ L2(T), there exists a control h̃ ∈ L2((0,T )×w0) such that the corresponding solution of (5) verifies

ξ (T,y) = ζ (T,y) = 0 (y ∈ T). (6)

We remark that the control h̃ in Definition 2 has fixed support in time, w0. Moreover, let us emphasize that
(1) is memory-type null controllable in time T > 0 if and only if (5) is so.

As mentioned before, the proof of Theorem 1 uses the well-known duality of the concepts of controllability
and observability. More precisely we have the following result whose proof is omitted.

THEOREM 2. System (5) is memory-type null controllable in a time T > 0 if there exists a constant K > 0
such that the following observability inequality holds

‖ϕ(0)‖2
L2(T) ≤ K

∫ T

0

∫
w0

|ϕ(t,y)|2 dydt, (7)

for any
(

ϕT

ψT

)
∈
(
L2(T)

)2, where
(

ϕ

ψ

)
is the unique solution of the following adjoint system

−ϕt(t,y)− cϕy(t,y)−ϕyy(t,y)+ψyy(t,y) = 0, (t,y) ∈ Q
−ψt(t,y)− cψy(t,y)−Mϕ(t,y) = 0, (t,y) ∈ Q
ϕ(T,y) = ϕT (y), ψ(T,y) = ψT (y), y ∈ T.

(8)
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The remaining part of the paper is devoted to the proof of the observability inequality (7) under the assump-
tion that T > 2π

c . In this endeavor, the spectral analysis of the differential operator corresponding to the adjoint
system (8) will play a fundamental role. Firstly, we notice that system (8) can be equivalently written as

−
(

ϕ

ψ

)
t
+A ?

(
ϕ

ψ

)
=

(
0
0

)
;
(

ϕ

ψ

)
(T ) =

(
ϕT

ψT

)
, (9)

where

A ? =

(
−∂ 2

yy− c∂y ∂ 2
yy

−MId −c∂y

)
.

In the following theorem we introduce the spectral properties of the operator A ?. Its proof is mostly a straight-
forward, if somehow tedious, computation and we omit it.

THEOREM 3. The eigenvalues of the operator A ? are given by the family (λ±n )n∈Z∗ ∪{λ0}, where λ0 = 0
and

λ
±
n =

1
2

(
n2±|n|

√
n2 +4M

)
− icn := µ

±
|n|− icn (n ∈ Z∗). (10)

Each eigenvalue λ±n has an associated eigenvector

Φ
?,±
n = γ

±
n

(
1
− M

µ
±
|n|

)
einy, where γ

±
n =

( M
µ
±
|n|

)2

+1

− 1
2

(n ∈ Z∗). (11)

The eigenvalue λ0 = 0 is algebraically double, with one eigenvector, Φ
?,+
0 =

(
0
1

)
, and one generalized

eigenvector, Φ
?,−
0 = M√

M2+1

(
− 1

M
1

)
, verifying A ?Φ

?,−
0 = M√

M2+1
Φ

?,+
0 . Moreover,

(
Φ

?,±
n
)

n∈Z is a Riesz basis

in the space
(
L2(T)

)2.

Remark 1. In the case c = 0 and M 6= 0, the spectrum of the operator A ? is purely real and the subfamily of
eigenvalues (λ−n )n≥1 has an accumulation point at −M. It is known that the presence of an accumulation point
in the spectrum makes a system not even spectrally controllable. This is why the controllability properties
of the heat equation with memory (1) and fixed support control are very poor. The situation changes when
c > 0, i. e. when a moving control is considered. In this case, due to its imaginary part, the subfamily
(λ−n )n≥1, becomes well-separated and we are able to show that the resulting system is controllable, if the time
T is sufficiently large. From the spectral point of view, the problem becomes similar to the one studied in the
context of viscoelasticity [10].

According to Theorem 3, given the initial data
(

ϕT

ψT

)
= ∑n∈Z a±n Φ

?,±
n , the corresponding solution of the

adjoint system (9) is given by(
ϕ(t, ·)
ψ(t, ·)

)
= ∑

n∈Z∗
a±n eλ±n (t−T )

Φ
?,±
n +a+0 Φ

?,+
0 +a−0

(
Φ

?,−
0 +

M√
M2 +1

(t−T )Φ?,+
0

)
, (12)

and the observability inequality (7) is equivalent to

∑
n∈Z∗

∣∣∣a+n γ
+
n e−T µ

+
|n|+a−n γ

−
n e−T µ

−
|n|
∣∣∣2 + ∣∣a−0 ∣∣2

M2 +1
≤ K

∫ T

0

∫
w0

∣∣∣∣∣ ∑
n∈Z∗

a±n γ
±
n eλ±n (t−T )+iny−

a−0√
M2 +1

∣∣∣∣∣
2

dydt. (13)

In the sequel C represents a positive constant which may change from one row to another and we denote
Λ :=

(
eλ±n t

)
n∈Z∗
∪
{

eλ0t
}

. We recall that a sequence (Θ±m)m∈Z∗ ∪{Θ0} ⊂ L2
(
−T

2 ,
T
2

)
is biorthogonal to the
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family Λ in L2
(
−T

2 ,
T
2

)
if the following relations hold

∫ T
2

− T
2

Θ
±
m(t)e

λ
±
m t dt =

∫ T
2

− T
2

Θ0(t) = 1,
∫ T

2

− T
2

Θ
±
m(t)e

λ
∓
m t dt =

∫ T
2

− T
2

Θ
±
m(t)dt = 0 (m ∈ Z∗),

∫ T
2

− T
2

Θ
±
m(t)e

λ
±
n t d t =

∫ T
2

− T
2

Θ
±
m(t)e

λ
∓
n t dt =

∫ T
2

− T
2

Θ0(t)eλ
±
m t dt = 0 (m,n ∈ Z∗, n 6= m). (14)

The concept of biorthogonal sequence will be useful to prove the observability inequality (13).

2. CONSTRUCTION OF A BIORTHOGONAL SEQUENCE

In this section we construct and evaluate a biorthogonal sequence to the family of exponential functions Λ

in L2
(
−T

2 ,
T
2

)
. Firstly, let us define the infinite products

P0(z) := ∏
n∈Z∗

λ
+
n + zi

λ
+
n︸ ︷︷ ︸

P̃+
0 (z)

∏
n∈Z∗

λ
−
n + zi

λ
−
n︸ ︷︷ ︸

P̃−0 (z)

, P±m (z) :=− zi

λ
±
m

∏
n∈Z∗
n 6=m

λ
±
n + zi

λ
±
n −λ

±
m︸ ︷︷ ︸

P̃±m (z)

∏
n∈Z∗

λ
∓
n + zi

λ
∓
n −λ

±
m︸ ︷︷ ︸˜̃P±m(z)

(m ∈ Z∗), (15)

where (λ±n )n∈Z∗ are the eigenvalues given by (10). The convergence of products (15) is a consequence of the
estimates given by the following result.

THEOREM 4. There exist positive constants C1, C2 and C3, independent of m, such that the products P±m and
P0 given by (15) verify the following estimates

∣∣P±m (z)
∣∣≤C1

∣∣∣z− iλ∓m
∣∣∣C2

exp

(
C3

√∣∣∣z− iλ±m
∣∣∣+ π

c

∣∣∣ℑ(z− iλ−m )
∣∣∣) (z ∈ C, m ∈ Z∗), (16)

|P0(z)| ≤C1 exp
(

C3
√
|z|+ π

c
|ℑ(z)|

)
(z ∈ C). (17)

Proof. Let us consider that m ∈ Z∗ and Z := z−iλ−m
c . With the notation introduced in (15) we have

∣∣∣P̃−m (z)
∣∣∣=
∣∣∣∣∣∣∣∏n∈Z∗n 6=m

(
1− cZ

iλ−n − iλ−m

)∣∣∣∣∣∣∣=
∣∣∣∣∣∣ ∏n∈Z∗

n≤m−1

∏
n∈Z∗

n≥m+1

1− Z
m−n

+Z
i
(

µ
−
|n|−µ

−
|m|

)
(m−n)(iλ−n − iλ−m )

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞

∏
k=1

k 6=|m|

1− Z
k
+Z

i
(

µ
−
|m−k|−µ

−
|m|

)
k(iλ−m−k− iλ−m )

1+
Z
k
−Z

i
(

µ
−
|m+k|−µ

−
|m|

)
k(iλ−m+k− iλ−m )


∣∣∣∣∣∣∣

≤
∞

∏
k=1

k 6=|m|

(∣∣∣∣∣1−
(

Z
k

)2
∣∣∣∣∣+ 4M

ck2 |Z|+
2cM+4M2

c2k3 |Z|2
)
. (18)

From (18) it follows immediately that P̃−m verifies the following estimate∣∣∣∣ zi

λ
−
m

P̃−m (z)
∣∣∣∣≤C (|Z|< 1). (19)
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Now, suppose that |Z| ≥ 1 and let b|Z|c := kz,
⌊
|Z|
2

⌋
:= k1

z ,
⌊

3|Z|
2

⌋
:= k2

z . From (18) we deduce that∣∣∣∣ zi

λ
−
m

P̃−m (z)
∣∣∣∣≤ ∣∣∣∣ zi

λ
−
m

∣∣∣∣ ∞

∏
k=1

k 6=|m|

(∣∣∣∣∣1−
(

Z
k

)2
∣∣∣∣∣+Ck−2 |Z|+Ck−3 |Z|2

)

≤C
∣∣∣∣ zi

λ
−
m

∣∣∣∣ ∞

∏
k=1

k 6=kz,|m|

∣∣∣∣∣1−
(

Z
k

)2
∣∣∣∣∣
(

1+
k2

|k2−Z2|

(
Ck−2 |Z|+Ck−3 |Z|2

))

≤C
∣∣∣∣ zi

λ
−
m

∣∣∣∣ ∣∣∣∣sin(πZ)
πZ

∣∣∣∣ (kz)
2∣∣∣(kz)

2−Z2
∣∣∣ m2

|m2−Z2|

∞

∏
k=1
k 6=kz

(
1+

k2

|k2−Z2|

(
Ck−2 |Z|+Ck−3 |Z|2

))
︸ ︷︷ ︸

P1
m(z)

. (20)

We remark that ∣∣∣∣ zi

λ
−
m

∣∣∣∣ ∣∣∣∣sin(πZ)
πZ

∣∣∣∣ (kz)
2∣∣∣(kz)

2−Z2
∣∣∣ m2

|m2−Z2| ≤C exp(π |ℑ(Z)|) , (21)

and it remains to estimate the product P1
m from (20). We remark that

ln
(

1+
k2

|k2−Z2|

(
Ck−2 |Z|+Ck−3 |Z|2

))
≤C×


1
k k ≤ k1

z −1
1

||Z|−k| k1
z ≤ k ≤ k2

z
|Z|
k2 k2

z +1≤ k.

From the above estimates we immediately deduce that∣∣P1
m(z)

∣∣≤C |Z|C (|Z| ≥ 1). (22)

Now, taking into account (20), (21) and (22) we obtain that∣∣∣∣ zi

λ
−
m

P̃−m (z)
∣∣∣∣≤C |Z|C exp(π |ℑ(Z)|) (|Z| ≥ 1). (23)

From this and (19) we deduce that there exists a positive constant C, independent of m, such that∣∣∣∣ zi

λ
−
m

P̃−m (z)
∣∣∣∣≤
 C

∣∣∣z− iλ−m
∣∣∣C exp

(
π

c

∣∣∣ℑ(z− iλ−m )
∣∣∣) if

∣∣∣z− iλ−m
∣∣∣≥ c

C if
∣∣∣z− iλ−m

∣∣∣< c
(z ∈ C, m ∈ Z∗). (24)

To estimate the product ˜̃P−m(z) we proceed as follows∣∣∣∣˜̃P−m(z)∣∣∣∣≤ ∣∣∣z− iλ+
m

∣∣∣∏
n∈Z∗
n 6=m

∣∣∣∣∣1+ λ
−
m + zi

λ
+
n −λ

−
m

∣∣∣∣∣≤ ∣∣∣z− iλ+
m

∣∣∣exp

∑
n∈Z∗
n 6=m

ln

(
1+

∣∣∣∣∣ λ
−
m + zi

λ
+
n −λ

−
m

∣∣∣∣∣
)

≤
∣∣∣z− iλ+

m

∣∣∣exp

(
∑

n∈Z∗

∫ ∣∣∣λ−m +zi
∣∣∣

0

dt
t +
∣∣λ+

n −λ
−
m
∣∣
)

=
∣∣∣z− iλ+

m

∣∣∣exp

(∫ ∣∣∣λ−m +zi
∣∣∣

0
∑

n∈Z∗

∫
∞

|λ+
n −λ

−
m |

ds
(t + s)2 dt

)

≤
∣∣∣z− iλ+

m

∣∣∣exp

(
2
∫ ∣∣∣λ−m +zi

∣∣∣
0

∫
∞

0

K(s)
(t + s)2 dsdt

)
≤
∣∣∣z− iλ+

m

∣∣∣exp

(
C
∫ ∣∣∣λ−m +zi

∣∣∣
0

1√
t

dt

)
,

where K(s) := ∑n2+r̃<s
n∈N

1≤
(

1+
√

2M+1
M

)
√

s and r̃ = 2M
1+
√

1+4M
. From the above estimate we obtain that

∣∣∣∣˜̃P−m(z)∣∣∣∣≤ ∣∣∣z− iλ+
m

∣∣∣exp

(
C

√∣∣∣λ−m + zi
∣∣∣) (25)
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The estimate of the product P̃+
m (z) is similar to the one of the product ˜̃P−m(z) and we obtain that∣∣∣P̃+

m (z)
∣∣∣≤ exp

(
C

√∣∣∣λ+
m + zi

∣∣∣) . (26)

To estimate the product ˜̃P+

m(z) we remark that

∣∣∣∣ zi

λ
+
m

˜̃P+

m(z)
∣∣∣∣=
∣∣∣∣∣∣∣

zi

λ
+
m

λ
−
m + zi

λ
−
m −λ

+
m

P̃−m (z)∏
n∈Z∗
n 6=m

λ
−
n −λ

−
m

λ
−
n −λ

+
m

∣∣∣∣∣∣∣≤
∣∣∣∣∣ zi

λ
+
m

λ
−
m + zi

λ
−
m −λ

+
m

P̃−m (z)

∣∣∣∣∣≤ ∣∣∣z− iλ−m
∣∣∣ ∣∣∣∣ zi

λ
−
m

P̃−m (z)
∣∣∣∣ .

From the last estimate, (24), (25) and (26) we deduce that the product P±m verify (16).
Finally, in the case case m = 0, we remark that P̃+

0 (z) can be estimated with the same arguments as P̃+
m (z)

while P̃−0 (z) is similar to the term − zi
λ
−
m

P̃−m (z). Hence, estimate (17) follows immediately. The proof of the
theorem is complete.

Remark 2. According to (16) and (17), P±m and P0 are entire exponential functions of type π

c .

We can pass to construct the desired biorthogonal sequence (Θ±m)m∈Z∗∪{Θ0} to the family Λ in L2
(
−T

2 ,
T
2

)
.

THEOREM 5. Let T > 2π

c and ε > 0 such that T > 2π

c +2ε . There exist a biorthogonal sequence (Θ±m)m∈Z∗∪
{Θ0} to the family Λ in L2

(
−T

2 ,
T
2

)
and a positive constant K̃ such that the following inequality holds

∫ T
2

− T
2

∣∣∣∣∣ ∑
m∈Z∗

β
±
m Θ

±
m(t)+β0Θ0(t)

∣∣∣∣∣
2

dt ≤ K̃

[
∑

m∈Z∗

∣∣β±m ∣∣2 exp
(

2ε

∣∣∣µ±|m|∣∣∣)+ |β0|2
]
, (27)

for any finite sequence (β±m )m∈Z∗ ∪{β0} ⊂ C.

Proof. Let T ′ > 0 such that T > T ′ > 2π

c + 2ε . Let P±m and P0 be the products given by (15). Taking into

account Theorem 4 and the fact that
∣∣∣x− iλ−m

∣∣∣ ≤ ∣∣∣x− iλ+
m

∣∣∣ we deduce immediately that there exist positive

constants C4 and C5 such that the products P±m and P0 verify the following estimates on the real axis

|P0(x)| ≤C4 exp
(

C5
√
|x|
)
,
∣∣P±m (x)

∣∣≤C4 exp

(
C5

√∣∣∣x− iλ±m
∣∣∣) (x ∈ R, m ∈ Z∗). (28)

Now, given β ∈ (0,1), we consider the entire function ĥ from [8, Lemma 2.1] with the properties that

ĥ(0) = 1,
∣∣∣ĥ(z)∣∣∣≤C exp

(
−ε |z|β + ε |y|

)
(z = x+ iy ∈ C), (29)

and we define the functions

Ψ0(z) = P0(z)ĥ(z), Ψ
±
m(z) = P±m (z)ĥ(z− iλ

±
m) (m ∈ Z∗). (30)

Since P±m and P0 are functions of exponential type π

c and ĥ is a function of exponential type ε we deduce that
Ψ±m and Ψ0 are entire functions of exponential type T ′

2 . Furthermore,

Ψ0

(
iλ
±
n

)
= 0, Ψ0 (0) = 1, Ψ

±
m

(
iλ
±
n

)
= δ

±
mn, Ψ

±
m (0) = 0 (m,n ∈ Z∗). (31)

From estimate (28) of the product P±m on the real axis and property (29) of the multiplier ĥ, it follows that∫
R

∣∣Ψ±m(x)∣∣2 dx≤C exp
(

2ε

∣∣∣µ±|m|∣∣∣)∫R exp
(

2C5

∣∣∣x− iλ
±
m

∣∣∣ 1
2 −2ε

∣∣∣x− iλ
±
m

∣∣∣β) dx.
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By choosing β > 1
2 , we obtain that∫
R
|Ψ0(x)|2 dx≤C,

∫
R

∣∣Ψ±m(x)∣∣2 dx≤C exp
(

2ε

∣∣∣µ±|m|∣∣∣) (m ∈ Z∗). (32)

By using Paley-Wiener Theorem, we deduce that there exists (θ±m )m∈Z∗ ∪{θ0} ⊂ L2
(
−T ′

2 ,
T ′
2

)
such that

Ψ0(z) =
∫ T ′

2

− T ′
2

θ0(t)e−itz dt, Ψ
±
m(z) =

∫ T ′
2

− T ′
2

θ
±
m (t)e−itz dt (m ∈ Z∗).

From (31) and (32) it follows that (θ±m )m∈Z∗ ∪{θ0} is a biorthogonal sequence to Λ in L2
(
−T ′

2 ,
T ′
2

)
verifying

‖θ0‖L2
(
− T ′

2 , T ′
2

) ≤C,
∥∥θ
±
m

∥∥
L2
(
− T ′

2 , T ′
2

) ≤C exp
(

ε

∣∣∣µ±|m|∣∣∣) (m ∈ Z∗). (33)

Since T > T ′, a new biorthogonal (Θ±m)m∈Z∗ ∪{Θ0} to the family Λ in L2
(
−T

2 ,
T
2

)
verifying (27) can be

constructed as in [11, Theorem 3.2]. The proof of the theorem is complete.

3. PROOF OF THE OBSERVABILITY INEQUALITY (13) AND OF THEOREM 1

Let T > 2π

c . The biorthogonal sequence (Θ±m)m∈Z∗ ∪{Θ0} to Λ in L2
(
−T

2 ,
T
2

)
given by Theorem 5 allows

us to conclude the proof of the observability inequality (13). Let (a±n )n∈Z∗ ∪{a0} be a finite sequence, β±n =

a±n exp
(
−λ
±
n

T
2

)
and β0 = a0. From the biorthogonality properties (14), we deduce that(

∑
m∈Z∗

β
±
m Θ

±
m +β0Θ0, ∑

n∈Z∗
a±n exp

(
λ
±
n

T
2
+λ

±
n t
)
+a0

)
L2(− T

2 ,
T
2 )

= ∑
n∈Z∗

∣∣a±n ∣∣2 + |a0|2 . (34)

Moreover, by using inequality (27) and the fact that −T µ
±
|m|+2ε|µ±|m|| ≤ 2MT , it follows that∣∣∣∣∣∣

(
∑

m∈Z∗
β
±
m Θ

±
m +β0Θ0, ∑

n∈Z∗
a±n exp

(
λ
±
n

T
2
+λ

±
n t
)
+a0

)
L2(− T

2 ,
T
2 )

∣∣∣∣∣∣
≤
√

K̃

(
∑

m∈Z∗

∣∣β±m ∣∣2 exp
(

2ε

∣∣∣µ±|m|∣∣∣)+ |β0|2
)1/2∥∥∥∥∥ ∑

n∈Z∗
a±n exp

(
λ
±
n

T
2
+λ

±
n t
)
+a0

∥∥∥∥∥
L2(− T

2 ,
T
2 )

≤
√

K̃eMT

(
∑

m∈Z∗

∣∣a±m∣∣2 + |a0|2
)1/2∥∥∥∥∥ ∑

n∈Z∗
a±n exp

(
λ
±
n

T
2
+λ

±
n t
)
+a0

∥∥∥∥∥
L2(− T

2 ,
T
2 )

, (35)

where K̃ is the constant in (27). From relations (34)-(35) we obtain that the following inequality holds(
∑

n∈Z∗

∣∣a±n ∣∣2 + |a0|2
)1/2

≤
√

K̃eMT

∥∥∥∥∥ ∑
n∈Z∗

a±n exp
(

λ
±
n

T
2
+λ

±
n t
)
+a0

∥∥∥∥∥
L2(− T

2 ,
T
2 )

, (36)

for any finite sequence of scalars (a±n )n∈Z∗ ∪{a0}. From (36) it follows that

∫ T

0

∫
w0

∣∣∣∣∣ ∑
n∈Z∗

a±n γ
±
n eλ±n (t−T )+iny−

a−0√
M2 +1

∣∣∣∣∣
2

dydt =
∫

w0

∫ T
2

− T
2

∣∣∣∣∣ ∑
n∈Z∗

a±n γ
±
n eλ±n (t− T

2 )+iny−
a−0√

M2 +1

∣∣∣∣∣
2

dydt
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≥ e−2MT

K̃

∫
w0

(
∑

n∈Z∗

∣∣∣a±n γ
±
n e−T λ±n +iny

∣∣∣2 + 1
M2 +1

|a−0 |
2

)
dy≥ 2

K

(
∑

n∈Z∗
e−2T µ

±
|n|
∣∣a±n ∣∣2 + |a−0 |2

)
,

where K = K̃e2MT

|w0| max
{

2M2 +2,
(
1+
√

1+4M
)2
}
. On the other hand, we have

∑
n∈Z∗

∣∣∣a+n γ
+
n e−T µ

+
|n|+a−n γ

−
n e−T µ

−
|n|
∣∣∣2 + ∣∣a−0 ∣∣2

M2 +1
≤ 2

(
∑

n∈Z∗
e−2T µ

±
|n|
∣∣a±n ∣∣2 + |a−0 |2

)
.

From the above inequalities we deduce that the observability inequality (13) holds. Consequently, by taking
into account Theorem 2, the main result given by Theorem 1 is also proved.

Remark 3. Since the asymptotic gap of the spectral subfamily (λ−n )n∈Z∗ is equal to c, the control time T
should be greater than 2π

c . Consequently, Theorem 1 gives the optimal control time.
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