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Abstract. Let h be a function defined on E(G) with h(e) ∈ [0,1] for all e ∈ E(G). If g(u)≤∑e3u h(e)≤ f (u) for every
u ∈ V (G), then a graph Fh with vertex set V (G) and edge set Eh is called a fractional (g, f )-factor of G with indicator
function h, where Eh = {e ∈ E(G) : h(e)> 0}. Let M and N be two sets of independent edges of G such that |M|= m,
|N| = n and M∩N = /0. We say that G admits a fractional (g, f )-factor with the property E(m,n) if G has a fractional
(g, f )-factor Fh satisfying h(e) = 1 for any e ∈ M and h(e) = 0 for any e ∈ N. In this paper, we give a lower bound
on Fan-type condition which guarantees graphs to admit fractional (g, f )-factors with the property E(1,n), which is a
generalization of Yu and Liu’s previous result.

Key words: graph; Fan-type condition; fractional (g, f )-factor; restricted fractional (g, f )-factors.

1. INTRODUCTION

All graphs considered in this paper are finite undirected graphs without loops nor multiple edges. Let
G = (V (G),E(G)) be a graph, where V (G) denotes the set of vertices of G and E(G) denotes the set of edges
of G. For any u ∈V (G), we use NG(u) to denote the set of vertices adjacent to u in G, and dG(u) = |NG(u)| is
the degree of u in G. For any X ⊆V (G), NG(X) = ∪u∈X NG(u), we denote by G[X ] the subgraph of G induced
by X , and set G−X = G[V (G)\X ]. For a subset E ′ of E(G), we use G−E ′ to denote the graph obtained from
G by deleting edges of E ′. A subset X of V (G) is independent if NG(X)∩X = /0. For two disjoint subsets X
and Y of V (G), we use eG(X ,Y ) to denote the number of edges joining X to Y . We define the distance dG(u,v)
between two vertices u and v as the minimum of the lengths of the (u,v) paths of G. We use δ (G) to denote the
minimum degree of G and use ∆(G) to denote the maximum degree of G.

Let g and f be two integer-valued functions defined on V (G) such that 0≤ g(u)≤ f (u) for every u∈V (G).
A (g, f )-factor of G is a spanning subgraph F of G such that g(u)≤ dF(u)≤ f (u) for all u ∈V (G). If g(u) = a
and f (u) = b for every u∈V (G), then a (g, f )-factor is an [a,b]-factor. A [k,k]-factor is simply called a k-factor.

Let h be a function defined on E(G) with h(e)∈ [0,1] for all e∈ E(G). If g(u)≤∑e3u h(e)≤ f (u) for every
u ∈ V (G), then a graph Fh with vertex set V (G) and edge set Eh is called a fractional (g, f )-factor of G with
indicator function h, where Eh = {e ∈ E(G) : h(e)> 0}. A fractional (g, f )-factor is a fractional [a,b]-factor if
g(u) = a and f (u) = b for all u ∈V (G). A fractional [k,k]-factor is simply called a fractional k-factor.

Let M and N be two sets of independent edges of G such that |M| = m, |N| = n and M∩N = /0. We say
that G admits a fractional (g, f )-factor with the property E(m,n) if G has a fractional (g, f )-factor Fh satisfying
h(e) = 1 for any e ∈M and h(e) = 0 for any e ∈ N.

We first introduce a well-known result on a Hamiltonian cycle (or 2-factor) of graph depending on Fan-type
condition.
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THEOREM 1 ([3]). Let G be a 2-connected graph of order p≥ 3. If

max{dG(u),dG(v)} ≥
p
2

for any two vertices u and v of G with dG(u,v) = 2, then G admits a Hamiltonian cycle (or 2-factor).

Niessen [11] generalized Theorem 1 to k-factors, which is shown in the following.

THEOREM 2 ([11]). Let k be an integer with k ≥ 1 and G a connected graph of order p with p ≥ 8k2 +
12k+6, kp is even. If δ (G)≥ k and

max{dG(u),dG(v)} ≥
p
2

for any two vertices u and v of G with dG(u,v) = 2, then G admits a k-factor.

Yu and Liu [15] put forward a Fan-type condition for the existence of fractional k-factors in graphs.

THEOREM 3 ([15]). Let G a connected graph of order p with p ≥ 8k2 + 12k+ 6, where k is a positive
integer. If δ (G)≥ k and

max{dG(u),dG(v)} ≥
p
2

for any two vertices u and v of G with dG(u,v) = 2, then G admits a fractional k-factor.

For other results on graph factors see [1, 2, 4–6, 8–10, 12–14, 16–29]. In this paper, we investigate the
existence of restricted fractional (g, f )-factors in graphs, and obtain a Fan-type condition for graphs having
restricted fractional (g, f )-factors, which is shown in Section 2.

2. MAIN RESULTS

Motivated by Theorems 1–3, we verify the following theorem.

THEOREM 4. Let a,b,λ and n be nonnegative integers with 2 ≤ a ≤ b−λ , let G be a graph of order p

with p≥ (a+b)((a+b)(b−λ+1)+2n−1)
a+λ−1 + (a+b)(b−λ+1)−2

b−λ
+ a+b

(a+λ )(b−λ ) , and let g, f : V (G)→ Z be two functions such

that a≤ g(x)≤ f (x)−λ ≤ b−λ for all x ∈V (G). If δ (G)≥ (b−λ )(b+2)
a+λ−1 +1 and

max{dG(u),dG(v)} ≥
(b−λ )p+2

a+b

for any two vertices u and v of G with dG(u,v) = 2, then G has a fractional (g, f )-factor with the property
E(1,n).

Remark. The condition max{dG(u),dG(v)} ≥ (b−λ )p+2
a+b in Theorem 4 is sharp, i.e., we cannot replace

(b−λ )p+2
a+b by (b−λ )p+2

a+b −1.

Let a,b,λ and n be nonnegative integers with 2≤ a = b−λ and β be a sufficiently large integer with β > 0
and n < (b−λ )β . Set G = K(b−λ )β ∨ (a+λ )βK1. Then we have p = (b−λ )β +(a+λ )β = (a+b)β and

(b−λ )p+2
a+b

−1 < max{dG(u),dG(v)}= (b−λ )β =
(b−λ )p

a+b
<

(b−λ )p+2
a+b

for any two vertices u,v ∈ V ((a + λ )βK1) with dG(u,v) = 2. Let g, f : V (G)→ Z be two functions with
g(u) = b−λ and f (u) = a+λ for any u∈V (G). Let X =V (K(b−λ )β ), Y =V ((a+λ )βK1), N = {e1,e2, · · · ,en}
being a set of independent edges in G and H = G−N. Then it follows that |X | = (b−λ )β , |Y | = (a+λ )β ,
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dH−X(Y ) = 0 and ε(X ,Y ) = 2. Hence, we obtain

γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )

= (a+λ )|X |− (b−λ )|Y |
= (a+λ )(b−λ )β − (b−λ )(a+λ )β

= 0 < 2 = ε(X ,Y ).

In light of Theorem 5, H has no fractional (g, f )-factor with the property E(1,0), that is, G has no fractional
(g, f )-factor with the property E(1,n).

Let n = 0 in Theorem 4. Then we get the following corollary.

COROLLARY 1. Let a,b,λ be nonnegative integers with 2≤ a≤ b−λ , let G be a graph of order p with

p ≥ (a+b)((a+b)(b−λ+1)−1)
a+λ−1 + (a+b)(b−λ+1)−2

b−λ
+ a+b

(a+λ )(b−λ ) , and let g, f : V (G)→ Z be two functions such that

a≤ g(x)≤ f (x)−λ ≤ b−λ for all x ∈V (G). If δ (G)≥ (b−λ )(b+2)
a+λ−1 +1 and

max{dG(u),dG(v)} ≥
(b−λ )p+2

a+b

for any two vertices u and v of G with dG(u,v) = 2, then G has a fractional (g, f )-factor with the property
E(1,0).

Let λ = 0 in Theorem 4. Then we obtain the following result.

COROLLARY 2. Let a,b and n be nonnegative integers with 2 ≤ a ≤ b, let G be a graph of order p with

p≥ (a+b)((a+b)(b+1)+2n−1)
a−1 + (a+b)(b+1)−2

b + a+b
ab , and let g, f : V (G)→ Z be two functions such that a≤ g(x)≤

f (x)≤ b for all x ∈V (G). If δ (G)≥ b(b+2)
a−1 +1 and

max{dG(u),dG(v)} ≥
bp+2
a+b

for any two vertices u and v of G with dG(u,v) = 2, then G has a fractional (g, f )-factor with the property
E(1,n).

3. PROOF OF THEOREM 4

For any X ⊆V (G), let ϕ(X) = ∑u∈X ϕ(u), where ϕ is a function defined on V (G). Especially, ϕ( /0) = 0. Li,
Yan and Zhang [7] put forward a characterization for graphs to have fractional (g, f )-factors with the property
E(1,0), which is used in the proof of Theorem 4.

THEOREM 5 ([7]). Let G be a graph, and let g, f : V (G)→ Z be two functions with 0 ≤ g(x) ≤ f (x) for
all x ∈V (G). Then G has a fractional (g, f )-factor with the property E(1,0) if and only if

γG(X ,Y ) = f (X)+dG−X(Y )−g(Y )≥ ε(X ,Y )

for any X ⊆V (G), where Y = {y : y ∈V (G)\X ,dG−X(y)≤ g(y)} and ε(X ,Y ) is defined as follows:

ε(X ,Y ) =


2, i f X is not independent,
1, i f X is independent and there is an edge joining X and V (G)\ (X ∪Y ), or

there is an edge e = uv joining X and Y such that dG−X(v) = g(v) f or v ∈ Y,
0, otherwise.

Proof of Theorem 4. Assume that G has no fractional (g, f )-factor with the property E(1,n). Then there
exist an edge e and a set of independent edges {e1,e2, · · · ,en} of G such that G has no fractional (g, f )-factor
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Fh with h(e) = 1 and h(ei) = 0 for 1≤ i≤ n. Set N = {e1,e2, · · · ,en} and H = G−N. Then H has no fractional
(g, f )-factor with the property E(1,0). In view of Theorem 5, there exists a subset X of V (H) such that

γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )≤ ε(X ,Y )−1, (1)

where Y = {y : y ∈V (H)\X ,dH−X(y)≤ g(y)}.
CLAIM 1. Y 6= /0.

Proof. If Y = /0, then by (1) we obtain

ε(X ,Y )−1≥ γH(X ,Y ) = f (X)≥ (a+λ )|X | ≥ 2|X | ≥ |X | ≥ ε(X ,Y ),

which is a contradiction. 2

CLAIM 2. dH−X(Y )≥ dG−X(Y )−min{2n, |Y |}.
Proof. Let D =V (G)\ (X ∪Y ) and EG(Y ) = {e : e = uv ∈ E(G),u,v ∈ Y}. Since N = {e1,e2, · · · ,en} is a

set of independent edges of G, we easily obtain

2|N∩EG(Y )|+ |N∩EG(Y,D)| ≤min{2n, |Y |}. (2)

It follows from (2) and H = G−N that

dH−X(Y ) = dG−N−X(Y )

= dG−X(Y )− (2|N∩EG(Y )|+ |N∩EG(Y,D)|)
≥ dG−X(Y )−min{2n, |Y |}.

The proof of Claim 2 is finished. 2

CLAIM 3. |Y | ≥ b+3.

Proof. Since Y 6= /0 (by Claim 1), we may define

d = min{dG−X(u) : u ∈ Y},

and choose u1 ∈ Y with dG−X(u1) = d. Clearly, 0 ≤ d ≤ b− λ + 1 by H = G−N and the definition of Y .
Moreover, we have

|X |+d = |X |+dG−X(u1)≥ dG(u1)≥ δ (G),

that is,

|X | ≥ δ (G)−d ≥ (b−λ )(b+2)
a+λ −1

+1−d. (3)

Let |Y | ≤ b+2. We shall consider two cases by the value of d.

• Case 1. d = 0.

In light of (1), (3), 2≤ a≤ b−λ and ε(X ,Y )≤ 2, we obtain

ε(X ,Y )−1 ≥ γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )

≥ f (X)−g(Y )≥ (a+λ )|X |− (b−λ )|Y |

≥ (a+λ )
((b−λ )(b+2)

a+λ −1
+1−d

)
− (b−λ )(b+2)

> a+λ ≥ a≥ 2≥ ε(X ,Y ),

which is a contradiction.

• Case 2. 1≤ d ≤ b−λ +1.
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It follows from (3), Claim 2, 2≤ a≤ b−λ and 1≤ d ≤ b−λ +1 that

γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )

≥ f (X)+dG−X(Y )−min{2n, |Y |}−g(Y )

≥ f (X)+dG−X(Y )−|Y |−g(Y )

≥ (a+λ )|X |+d|Y |− |Y |− (b−λ )|Y |
= (a+λ )|X |− (b−λ −d +1)|Y |

≥ (a+λ )
((b−λ )(b+2)

a+λ −1
+1−d

)
− (b−λ −d +1)(b+2)

= (d−1)(b+2−a−λ )+
(b−λ )(b+2)

a+λ −1
≥ (b−λ )(b+2)

a+λ −1

≥ a(a+λ +2)
a+λ −1

> a≥ 2≥ ε(X ,Y ),

which contradicts (1). Hence, we have |Y | ≥ b+3. Claim 3 is proved. 2

CLAIM 4. dG−X(u)≤ b−λ +1≤ b+1 for any u ∈ Y .
Proof. In view of the definitions of Y and N, H = G−N, we have

dG−X(u) = dH+N−X(u)≤ dH−X(u)+1≤ g(u)+1≤ b−λ +1≤ b+1

for any u ∈ Y . 2

CLAIM 5. 1≤ |X | ≤ (b−λ )p+1
a+b .

Proof. If X = /0, then it follows from (1), 2≤ a≤ b−λ and Claims 2–3 that

ε(X ,Y )−1 ≥ γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )

≥ f (X)+dG−X(Y )−min{2n, |Y |}−g(Y )

≥ f (X)+dG−X(Y )−|Y |−g(Y )

= dG(Y )−|Y |−g(Y )≥ δ (G)|Y |− |Y |− (b−λ )|Y |

= (δ (G)− (b−λ +1))|Y | ≥
((b−λ )(b+2)

a+λ −1
+1− (b−λ +1)

)
|Y |

≥
((b−λ )(a+λ +2)

a+λ −1
+1− (b−λ +1)

)
|Y |

=
3(b−λ )

a+λ −1
|Y | ≥ 3(b−λ )

a+λ −1
(b+3)

≥ 3(b−λ )

a+λ −1
(a+λ +3)> 3(b−λ )> 2≥ ε(X ,Y ),

which is a contradiction. Therefore, |X | ≥ 1.
On the other hand, by (1), ε(X ,Y )≤ 2 and |X |+ |Y | ≤ p, we have

1 ≥ ε(X ,Y )−1≥ γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )

≥ f (X)−g(Y )≥ (a+λ )|X |− (b−λ )|Y |
≥ (a+λ )|X |− (b−λ )(p−|X |)
= (a+b)|X |− (b−λ )p,

which implies

|X | ≤ (b−λ )p+1
a+b

.
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Hence, we obtain that 1≤ |X | ≤ (b−λ )p+1
a+b . 2

CLAIM 6. (b−λ )|Y | ≥ (a+λ )|X |−1.
Proof. In terms of (1) and ε(X ,Y )≤ 2, we get

1 ≥ ε(X ,Y )−1≥ γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )

≥ f (X)−g(Y )≥ (a+λ )|X |− (b−λ )|Y |,

that is,
(b−λ )|Y | ≥ (a+λ )|X |−1.

Claim 6 is verified. 2

CLAIM 7. |X |< (b−λ )p+2
a+b − (b−λ +1).

Proof. Assume that |X | ≥ (b−λ )p+2
a+b − (b−λ +1), that is, (b−λ )p− (a+b)|X | ≤ (a+b)(b−λ +1)−2.

According to (1), ε(X ,Y )≤ 2, Claim 2 and |X |+ |Y | ≤ p, we have

dG−X(Y ) ≤ dH−X(Y )+min{2n, |Y |}
≤ g(Y )− f (X)+ ε(X ,Y )−1+2n

≤ (b−λ )|Y |− (a+λ )|X |+1+2n

≤ (b−λ )(p−|X |)− (a+λ )|X |+2n+1

= (b−λ )p− (a+b)|X |+2n+1

≤ (a+b)(b−λ +1)+2n−1.

Combining this with Claim 6 and p≥ (a+b)((a+b)(b−λ+1)+2n−1)
a+λ−1 + (a+b)(b−λ+1)−2

b−λ
+ a+b

(a+λ )(b−λ ) , we obtain

dG−X(Y )
(b−λ )|Y |

≤ (a+b)(b−λ +1)+2n−1
(a+λ )|X |−1

≤ (a+b)(b−λ +1)+2n−1

(a+λ ) · (b−λ )p+2
a+b − (a+λ )(b−λ +1)−1

≤ 1
b−λ

(
1− 1

a+λ

)
,

which implies

dG−X(Y )≤
(

1− 1
a+λ

)
|Y |= |Y |− 1

a+λ
|Y |. (4)

It follows from (4), 2≤ a≤ b−λ and Claim 3 that

dG−X(Y )≤ |Y |−
1

a+λ
|Y | ≤ |Y |− b+3

a+λ
< |Y |−1. (5)

Set Y0 = {y ∈ Y : dG−X(y) = 0}. It is easy to see that |Y0| ≥ 2 holds by (5). For any y ∈ Y0, dG(y)≤ |X | ≤
(b−λ )p+1

a+b by Claim 5. Note that Y0 is an independent set of G. Combining this with the assumption of Theorem

4, the neighborhoods of the vertices in Y0 are disjoint. Therefore, we obtain

|X | ≥ |∪y∈Y0 NG(y)| ≥ δ (G)|Y0| ≥
((b−λ )(b+2)

a+λ −1
+1
)
|Y0|. (6)

On the other hand, it follows from (4) that(
1− 1

a+λ

)
|Y | ≥ dG−X(Y )≥ |Y |− |Y0|,



7 A Fan-type result for the existence of restricted fractional (g, f )-factors 9

which implies

|Y0| ≥
1

a+λ
|Y |. (7)

In light of (6), (7), 2≤ a≤ b−λ and Claim 1, we have)

(a+λ )|X | ≥ (a+λ )
((b−λ )(b+2)

a+λ −1
+1
)
|Y0|

≥
((b−λ )(b+2)

a+λ −1
+1
)
|Y |

> (b−λ )|Y |+ |Y | ≥ (b−λ )|Y |+1,

which contradicts Claim 6. Hence, Claim 7 holds. 2

CLAIM 8. eG(X ,Y )≤ (b−λ +2)|X |.
Proof. Since |Y | ≥ b+ 3 by Claim 3 and dG−X(u) ≤ b−λ + 1 ≤ b+ 1 for every u ∈ Y by Claim 4, there

exist at least two independent vertices u,v ∈ Y . Moreover, it follows from Claims 4 and 7 that

max{dG(u),dG(v)} ≤ max{dG−X(u)+ |X |,dG−X(v)+ |X |}

≤ (b−λ +1)+ |X |< (b−λ +1)+
(b−λ )p+2

a+b
− (b−λ +1)

=
(b−λ )p+2

a+b

for any two vertices u,v ∈Y . In terms of the above inequalities and the hypothesis of Theorem 4, G[NG(x)∩Y ]
is complete for every x ∈ X . Note that X 6= /0 by Claim 5. Combining this with Claim 4, we have eG(x,Y ) ≤
∆(G[Y ])+1≤ b−λ +2. Therefore, eG(X ,Y )≤ (b−λ +2)|X | holds. 2

Note that ε(X ,Y )≤ |X |. It follows from (1), Claims 2, 5, 6, 8 and δ (G)≥ (b−λ )(b+2)
a+λ−1 +1 that

ε(X ,Y )−1 ≥ γH(X ,Y ) = f (X)+dH−X(Y )−g(Y )
≥ f (X)+dG−X(Y )−min{2n, |Y |}−g(Y )
≥ f (X)+dG−X(Y )−|Y |−g(Y )
≥ (a+λ )|X |+dG−X(Y )−|Y |− (b−λ )|Y |
= (a+λ )|X |+dG(Y )− eG(X ,Y )− (b−λ +1)|Y |
≥ (a+λ )|X |+δ (G)|Y |− (b−λ +2)|X |− (b−λ +1)|Y |
= (a−b+2λ −2)|X |+(δ (G)− (b−λ +1))|Y |

≥ (a−b+2λ −2)|X |+
((b−λ )(b+2)

a+λ −1
+1− (b−λ +1)

)
|Y |

= (a−b+2λ −2)|X |+
( b+2

a+λ −1
−1
)
(b−λ )|Y |

≥ (a−b+2λ −2)|X |+
( b+2

a+λ −1
−1
)
((a+λ )|X |−1)

≥ (a−b+2λ −2)|X |+
( b+2

a+λ −1
−1
)
(a+λ −1)|X |

= (λ +1)|X | ≥ |X | ≥ ε(X ,Y ),

which is a contradiction. Theorem 4 is verified. 2
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