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Abstract. A novel multi-scale image analysis framework for rotation-invariant texture recognition is 
proposed in this article. A well-posed second-order nonlinear anisotropic diffusion-based model is 
proposed and a scale-space representation is then constructed by applying the finite difference-based 
numerical approximation algorithm of this PDE-based model on the current image. A texture feature 
extraction combining gray level co-occurrence matrices (GLCM) and 2D circular filters is performed 
at each scale. The feature descriptors computed at multiple scales are then concatenated into the final 
rotation-invariant texture feature vector. Next, the feature vectors are classified applying supervised 
machine learning algorithms, such as K-NN, and using texture training sets. Last but not least, texture 
recognition experiments and method comparison are also discussed.   
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1. INTRODUCTION 

The notion of texture denotes images in which a specific pattern of distribution and dispersion of the 
pixel intensity is repeated sequentially throughout them. Texture analysis represents an important image 
processing domain that has numerous computer vision application areas, such as: object detection, 
recognition and tracking, image indexing and retrieval, medical imaging, product quality diagnosis and 
remote sensing. It includes several image analysis fields, such as the texture recognition, segmentation, 
synthesis and retrieval. 

Texture recognition consists of two main phases: texture feature extraction and classification. The 
existing texture featuring techniques can be grouped in the following categories: statistical, structural, model-
based and transform-based approaches. Statistical methods include histogram-based algorithms [1], moment-
based solutions [2], Gray Level Co-occurrence Matrices (GLCM) [3], Local Binary Patterns (LBP) [4], 
Binary Gabor Patterns (BGP) [5] and energy variation-based methods [6]. The structural techniques include 
edge-based algorithms [7], morphological operators [8] and SIFT descriptors [9]. Model-based approaches 
include fractal texture models [10], Markov random field texture models [11] and autoregressive models 
[12]. Transform-based techniques include texture feature extraction methods based on 2D Gabor filters [13], 
Wavelet transforms [14] and Curvelet transforms [15]. Some other effective methods combining these 
texture descriptors have been developed as well [16]. 

Depending on the character of the texture recognition process, supervised or unsupervised texture 
feature vector classification approaches can be applied [17]. Thus, supervised machine learning algorithms 
that can be used for texture classification include K-Nearest Neighbour (K-NN), minimum distance classifier, 
artificial neural networks (ANN), Support Vector Machines (SVM) and Hidden Markov Models (HMM), 
while the unsupervised classification techniques include K-means, hierarchical clustering, Self-organizing 
Maps (SOM) and Dynamic Time Warping (DTW). Deep learning schemes have been also used successfully 
for texture classification [18].  
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Most texture recognition techniques provide weaker classification rates when textures have undergone 
rotations and also their performances are affected by image noise. So, a novel rotation-invariant supervised 
texture recognition framework based on multiscale image analysis, which works properly in both normal and 
noisy conditions, is proposed in this research paper. An anisotropic diffusion-based scale space is 
constructed by using the finite difference method-based numerical approximation algorithm of the nonlinear 
second-order diffusion model introduced in the next section. Then, a texture feature extraction is performed 
at each scale and a final texture descriptor is obtained by concatenating all the feature vectors achieved at 
multiple scales. The proposed texture feature extraction technique that combines Gray Level Co-occurrence 
Matrices to circular filters is described in the third section. The supervised texture classification approach, 
which is also presented in that section, is based on a K-NN classifier. 

The results achieved by the proposed texture recognition technique and illustrating its effectiveness are 
discussed in the fourth section. Our approach outperforms many well-known texture recognition methods 
and, unlike them, it is also able to successfully recognize rotated textures. The conclusions of this work are 
drawn in the last section. 

2. NONLINEAR ANISOTROPIC DIFFUSION-BASED SCALE SPACE REPRESENTATION 

Multi-scale and multi-resolution image analysis approaches, which handle image structures at different 
scales and resolutions, are successfully used in many image processing and computer vision fields, such as 
edge, corner and blob detection or texture analysis, since the multi-scale and multi-resolution representations 
allow more flexibility and provide better results than the traditional techniques. A scale space representation 
is obtained by applying a 2D filter kernel to the analysed image at various scales. While many multiscale 
image and texture analysis solutions use scale spaces based on 2D Gaussian kernels and Gaussian derivatives 
[19], we propose a more effective scale-space representation based on anisotropic diffusion-based filtering. 
Thus, a nonlinear second-order anisotropic diffusion model is introduced in the first subsection, then its 
numerical discretization is used to construct the scale space.  

2.1. A compound second-order parabolic PDE-based filter 

We have developed several partial differential equation (PDE) models for image processing and 
analysis in the past [20, 21]. Here we propose a novel second-order anisotropic diffusion-based model for 
constructing the scale space representation. It is composed of a nonlinear parabolic PDE and its boundary 
conditions, having the following form: 
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where ( ], 0,1 ,  15δ ξ∈ η≥  and 1k ≥ . The other positive function used within this diffusion-based model has 
the form: 
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[ ) [ ) 1: 0, 0, ,  ( ) rrs s+ϕ ∞ → ∞ ϕ = ζ γ +β , (3)

where [ ), , 1,4ζ γ β∈  and ( )0,1r∈ . The term ( )2uσϕ ∇  is introduced to control the speed of the diffusion 

process and enhance the essential image details. 
The proposed nonlinear PDE-based model is a compound filter combining the anisotropic diffusion to 

a 2D Gaussian filter kernel so that to work properly in noisy conditions. It filters successfully the white 
additive noise while preserving and sharpening the edges and other details, and overcoming the unintended 
effects. It is non-variational and well-posed, since it admits a unique variational (weak) solution, which can 
be determined numerically constructing a numerical approximation scheme for (1) that converges to it. This 
discretization algorithm and the scale space representation determined by it are described in next subsection.  

2.2. Scale-space representation using finite difference-based numerical approximation scheme 

A numerical approximation algorithm is developed for the proposed diffusion model by applying the 
finite difference method [22]. Thus, one considers a grid of space size h  and time step tΔ  for this task. The 
spatial coordinates are quantized as { } { },  ,  1,..., ,  1,...,x ih y jh i I j J= = ∈ ∈  and the time coordinate is 

quantized as { },  0,...,t n t n N= Δ ∈ , where [ ]Ih Jh×  is the size of the support image. The PDE in (1) can be 
written as: 
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The left term of equation (4) is then discretized, by applying central differences [22], as: 
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The right term of the equation is then approximated. The component ( )2uσϕ ∇  is discretized as 
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We adopted the parameter values h = tΔ =1. The next iterative explicit numerical approximation 
scheme is obtained: 
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The iterative numerical discretization algorithm (6) is stable and consistent to the nonlinear second-
order PDE-based model (1) and converges quite fast to its variational solution representing the filtered 
image. The metrics of the convergence is measured as number of iterations. The scale space is then 
constructed by applying this numerical approximation scheme on the current texture 0u  at various iterations. 
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So, a proper scale-space representation is produced by filtering the texture image, using the anisotropic 
diffusion-based model (1), until some properly selected moments of time t, and then differencing the 
consecutive filtered textures. 
 

 
Fig. 1 – Anisotropic diffusion-based scale space (K = 5). 

 
So, one considers the filtering results produced by the numerical algorithm (6) at the iteration moments 
{ }4 ,  0,..., ,  4n n K K∈ ≥ . The obtained subtraction results, { }0 4 4 8 4( 1) 4, , ..., K Ku u u u u u−− − − , constitute the 

scale-space representation with K scales. The image at each scale { }1,...,m K∈ , which is denoted as 
4( 1) 4m m

mU u u−= − , represents the textural component of the PDE-based decomposition of 4( 1)mu −  and 
contains contours of the evolving image u. These K contour-based images are very useful for the texture 
analysis of the observation 0u . 

An example of scale-space representation produced by our anisotropic diffusion-based approach for 
K = 5 is provided in Fig. 1. The scale space corresponding to the texture displayed in a) is described in b)–f). 

3. ROTATION-INVARIANT TEXTURE FEATURE EXTRACTION AND CLASSIFICATION 

An effective rotation-invariant texture feature descriptor is determined by using the described scale 
space. Thus, a texture feature extraction process is performed for the current image at multiple scales. The 
proposed feature extraction technique consists in combining Gray Level Co-occurrence Matrices (GLCMs) 
to 2D circular filters. 

The co-occurrence matrix of a given image u computes the occurrences of the pairs of pixels with a 
specific value and offset in that image [3] and is based on the formula: 
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where ( ),x yΔ Δ  represents the offset. If ( ) ( ){ }1 1, ,..., ,p px y x yΔ Δ Δ Δ  is a properly selected set of offsets, the 

sequence of GLCMs corresponding to that image is computed as: 
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{ }1 1, ,( ) ( ),..., ( )
p px y x yCM u CM u CM uΔ Δ Δ Δ=  (8)

A GLCM-based featuring process is then performed on the observed image 0u , by applying (8) to the 
anisotropic diffusion-based scale-space constructed for this image. Thus, one obtains the sequence 

( ) ( ) ( ){ }1 2, ,..., KCM U CM U CM U  for it. Then, a circular filtering process is applied to the images of each 

( ) { }, 1,iCM U i K∈ . 
The most popular 2D circular filters are based on the use of the Gabor filter which is described by the 

Fourier transform function [23, 24], as follows: 
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The main advantage of the circular filters is related to the fact that from a rotated texture with a certain 
angle results a texture with the same module of the Fourier transform. Thus, for a texture and its rotated 
version filtered with the same circular filter will result two images with the same L1 or L2 norms [23]. 

So, a bank of M  such 2D filters with circular frequency response is applied to the GLCM-based images 
related to the scale space. Some proper values for the mean μ and standard deviation σ parameters were 
chosen so that to produce optimal classification results. Each filter is characterized by { }, 1,...,qa q Mσ = ∈ , 
where a >1. Such a bank, consisting of five circular filters and the parameters 1.3μ =  and a =1.6, is 
presented in Fig. 2b. Each ( ), , 1,..., , 1,...,

j jx y iCM U i K j pΔ Δ = =  image computed by (7) is mean normalized 

first, then convolved to each of the M  two-dimension circular filters of the bank. The L2 norm is next 
computed for each of the resulted M  filtered images. Thus, an M dimensional vector composed of these 
norms is obtained for each ( ),j jx y iCM UΔ Δ , which means p such M  dimensional vectors are computed for 

iU . They are then concatenated into a pM dimensional 1D feature vector, ( )iV U , but 2D [ ]p M×  versions 
of this feature vector corresponding to the i th scale can be created as well. Next, these K texture feature 
vectors ( )iV U  determined at multiple scales are combined into a final texture feature vector corresponding 
to the initial texture 0u . Thus, a 1D pMK dimensional feature vector is obtained for it by concatenating the 

feature vectors at all scales: ( ) ( ) ( )0 1 2( )   ... KV u V U V U V U= ⎡ ⎤⎣ ⎦ . 2D ([ ]pM K× ) or even 3D ([ ]p M K× × ) 

forms can be obtained for 0( )V u  too. This feature vector represents a robust rotation-invariant and noise-
insensitive texture descriptor. The pseudocode of this texture feature extraction technique is described in 
Fig. 2a. 

A supervised texture classification process is then performed by using these feature vectors.  
A K-Nearest Neighbour (K-NN) classifier with a large training set containing textures grouped in some 
known classes is used for this purpose [17]. Each input texture is assigned to the class most common among 
its KNN nearest neighbors. Euclidean metric is used to determine the distances between input texture feature 
vectors and the training feature vectors. While the training textures used in this process are noise-free and not 
rotated, the input textures could be noisy and rotated in order to evaluate the effectiveness of the proposed 
approach. The results of the recognition experiments using these texture feature vectors are discussed next. 
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Fig. 2 – The pseudocode of the proposed texture analysis procedure and the 2D circular filter bank (M =5) used by it. 

4. TEXTURE RECOGNITION EXPERIMENTS AND METHOD COMPARISON 

The proposed multiscale recognition framework has been tested succesfully on thousands of normal 
and rotated textures. Thus, some voluminous texture image databases, such as the Brodatz album [25] and 
the Kylberg texture dataset [26], have been used to test the performance of our technique. The recognition 
experiments have been performed on Intel (R) Core (TM) i7-6700HQ CPU 2.60 GHz processor on 64 bits, 
operating Windows 10. The implementation of the numerical algorithms has been performed using Matlab. 

The proposed technique’s parameters that provide the best recognition results have been determined 
empirically, by applying the trial and error method. So, the identified parameters are the following ones: the 
number of scales K=5, the number of circular filters M =5, the number of neighbors KNN =7, the set of 
( ),x yΔ Δ  offsets = {(0, 1), (0, 2), (−1, 1), (−2, 2), (−1, 0), (−2, 0), (−1, −1), (−2, −2)}, 1.3μ =  and 1.6qσ = . 
Moreover, the 1D form of texture feature vectors, with 200 coefficients, leads to better classification output. 

We considered 15 texture classes of Brodatz database (http://sipi.usc.edu/database), each one containing 
280 [ ]128 128×  textures oriented at 0°, 20°, 30°, 45°, 60°, 70°, 90°, 120°, 135°, 150° (28 textures for each 
angle), and 12 texture classes of the Kylberg collection (https://kylberg.org/kylberg-sintorn-rotation-dataset), 
each one containing 240 [ ]576 576×  textures at 12 orientations (20 for each angle), for our experiments. The 
training set of the K-NN classifier has been composed of 105 non-rotated textures, representing 7 images 
with 0° orientation from each class, for the tests involving the Brodatz image set. The experiments using the 
Kylberg database have used a training texture set of 84 images, representing 7 textures at 0° angle from each 
class. The texture classes used in our tests and corresponding to the two databases are described in Fig. 3. 
 

 

Fig. 3 – Texture classes related to the two databases. 
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The proposed technique achieves very good texture classification results and high recognition rates in 
both cases. The confusion matrices corresponding to the recognition experiments performed on the two 
collections are provided in Table 1 and Table 2. The obtained classification accuracies are 98.7% and 98.4%, 
since there are only few misclassifications. The overall classification rate of our method is over 98.5%. 
 

Table 1 
Confusion matrix corresponding to the tests using Brodatz textures: classification accuracy = 98.7% 

 matting cotton canvas cloth raffia grass wood leather sand wool pigskin straw paper rattan weave 
matting 265             8  
cotton  273              
canvas   273             
cloth    273            
raffia     273           
grass      262  6     5   
wood       271    2     
leather        273        
sand         264    9   
wool          262 11     

pigskin           273     
straw       2     271    
paper             273   
rattan              273  
weave            10   263 

 
Table 2 

Confusion matrix corresponding to the tests using Kylberg textures: classification accuracy = 98.46% 

 blanket grass canvas ceiling floor1 rice2 lentils1 rice1 floor2 rug sand scarf 
blanket 225  8          
grass  231    2       

canvas   232        1  
ceiling    227   4    2  
floor1     233        
rice2      229  4     

lentils1       222      
rice1      2  231     
floor2         233    

rug  6   1   8  218   
sand   1 4       228  
scarf            233 

 
Method comparison have been also performed. The proposed multiscale texture recognition approach 

outperforms other well-known texture analysis methods, such as those based on image moments, LBP 
features, circularly symmetric 2D Gabor filters and CNN-based circular filters [22], achieving a higher 
classification accuracy, as one can see in Table 3. Also, our approach runs better for the textures corrupted 
by additive noise, also.  
 

Table 3 

Classification performances of several texture analysis methods 

Texture analysis 
technique 

Proposed 
framework 

Moment-
based 

approach 

Local 
Binary 
Patterns 

Circularly 
symmetric 2D 
Gabor filters 

CNN-based 
circular filters 

Recognition rate 98.5% 87% 91% 97% 95% 
 

However, the described recognition framework is characterized by a high computational complexity, 
given its anisotropic diffusion-based scale space, GLCM and circular filter components. So, while it achieves 
high classification accuracies, it may execute slower than other texture analysis algorithms. Its running time 
depends also on the sizes of the processed texture images. For this reason, the recognition results related to 
Brodatz album [25] were achieved much faster than those related to the Kylberg database [26]. The 
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recognition performance of the described multiscale analysis technique could even be improved by 
increasing the values of some parameters, such as K, M, KNN or p, but the method’s complexity and its 
execution time would become too high if one considers more scales, circular filters, nearest neighbors for the 
K-NN classifier or GLCM offsets.  

5. CONCLUSIONS 

We have introduced a new multiscale rotation-invariant texture recognition technique that uses an 
anisotropic diffusion-based scale space representation and a combined texture descriptor in this work. An 
important contribution of the described research is the proposed multiscale analysis based on the consistent 
fast-converging finite difference method-based numerical approximation scheme of a novel compound 
nonlinear anisotropic diffusion model, which represents a much better solution than 2D Gaussian kernel-based 
multiscale analysis, since our PDE-based filtering model preserves and enhances the essential image details, 
overcoming the undesired effects, such as blurring, produced by the classic two-dimension Gaussian filters. 

The texture descriptor proposed here, which combines successfully gray-level co-occurrence matrices 
to 2D circular kernels at multiple scales, provides effective texture analysis results, working properly for 
textures rotated at various orientations. Our recognition framework achieves a high texture classification 
accuracy and outperforms many well-known texture recognition methods. It also works properly in noisy 
conditions. 

The recognition approach developed here has a supervised character, applying a K-NN classifier with a 
training set to the proposed texture feature vectors. Other supervised learning algorithms, such as those based 
on artificial neural networks (ANN), could be also used here for texture classification purpose, but an 
unsupervised version of our recognition technique can be obtained, too. So, the proposed multiscale feature 
extraction approach can be used in combination to an unsupervised machine learning algorithm, such as K-
means, hierarchical clustering or SOM. Such obtained unsupervised texture recognition solution can be 
successfully applied in some important texture analysis domains, like texture-based image segmentation and 
texture indexing and retrieval. 

Also, the described multi-scale texture analysis technique can be transformed into a multi-resolution 
analysis framework, by considering a different resolution for the image at each scale and constructing an 
anisotropic diffusion pyramid. These multiresolution and unsupervised versions of the proposed recognition 
framework will represent the focus of our future research in this image analysis field. 
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