HOMOLOGICAL PROPERTIES OF BANACH MODULES RELATED TO LOCALLY COMPACT GROUPS

Mina GHASEMI, Mohammad Javad MEHDIPOUR

Shiraz University of Technology, Department of Mathematics, P. O. Box 71555-313, Shiraz, Iran Corresponding author: Mohammad Javad MEHDIPOUR: mehdipour@sutech.ac.ir

Abstract. In this paper, we investigate some homological properties of $M(G)_0^*$ and its dual $(M(G)_0^*)^*$ as Banach left $L^1(G)$ -module and characterize homological properties such as projectivity, injectivity and flatness for them in terms of G.

Key words: locally compact group, Banach module, projectivity, injectivity, flatness.

1. INTRODUCTION

Throughout the paper, *G* denotes a locally compact group with a fixed left Haar measure *m* on *G*. Let $L^1(G)$ denote the group algebra of *G* as defined in [6] endowed with the convolution product "*" and the norm $\|.\|_1$. Let also $L^{\infty}(G)$ denote the usual Lebesgue space as defined in [6] equipped with the essential supremum norm $\|.\|_{\infty}$. We denote by $L_0^{\infty}(G)$ the subspace of $L^{\infty}(G)$ consisting of all functions $f \in L^{\infty}(G)$ that for every positive number ε , there is a compact subset *K* of *G* for which $\|f\chi_{G\setminus K}\|_{\infty} < \varepsilon$, where $\chi_{G\setminus K}$ denotes the characteristic function of $G \setminus K$ on *G*. For an extensive study of $L_0^{\infty}(G)$ see [7].

Let M(G) be the measure algebra of G as defined in [6]. It is well-know that M(G) is the dual space of $C_0(G)$, the space of all continuous functions on G vanishing at infinity. The space M(G) equipped with the convolution product "*" and the total norm $\|.\|$ is a Banach algebra with the identity element δ_e , the Dirac measure at the identity element e of G. Let $M_a(G)$, $M_d(G)$ and $M_s(G)$ be the space of absolutely continuous, purely discontinuous and singular measures in M(G), respectively. Then M(G) is the direct sum of them. We denote by $M(G)_0^*$ the subspace of $M(G)^*$ consisting of all functionals $\lambda \in M(G)^*$ with the property that for every positive number ε , there exists a compact subset K of G for which $|\langle \lambda, \mu \rangle| < \varepsilon$, where $\mu \in M(G)$, $|\mu|(K) = 0$ and $\|\mu\| = 1$. Similar, we can define the spaces $M_d(G)_0^*$ and $M_s(G)_0^*$. A linear functional $F \in M(G)^{**}$ is said to have *compact carrier* if there exists a compact subset $K \subseteq G$ satisfying

$$\langle F, \lambda \rangle = \langle F, \chi_K \lambda \rangle$$

for all $\lambda \in M(G)^*$. The closure of all linear functionals with compact carrier is denoted by M_G . One can prove that the restriction map is an isometric isomorphism from M_G onto $(M(G)_0^*)^*$ and for every $\mu \in M(G)$

$$\mu = \lim_{K \in \mathscr{K}, K \nearrow G} \mu_K$$

where \mathcal{K} denotes the set of all compact subsets of G ordered by upward inclusion and

$$\mu_K(E) = \mu(K \cap E)$$

for all Borel subsets of *G*. This shows that M(G) can be isometrically embedded into $(M(G)_0^*)^*$. Similarly, the concept of compact carrier for $\lambda \in (M(G)_0^*)^*$ is defined. Then functionals in $(M(G)_0^*)^*$ with compact carrier are dense in $(M(G)_0^*)^*$; see [8].

For every $\phi \in L^1(G)$ and $\lambda \in M(G)_0^*$, the functions $\phi \cdot \lambda$ and $\lambda \cdot \phi$ in $M(G)_0^*$ are defined by

$$\langle \lambda \cdot \phi, \mu \rangle = \langle \lambda, \phi * \mu \rangle$$
 and $\langle \phi \cdot \lambda, \mu \rangle = \langle \lambda, \mu * \phi \rangle$

for all $\mu \in M(G)$. It is easy to see that

$$M(G)_0^* = M_d(G)_0^* \oplus_{\infty} L_0^{\infty}(G) \oplus_{\infty} M_s(G)_0^*$$

Hence for every $\lambda \in M(G)_0^*$, we have

$$\lambda = \lambda_d + \lambda_0 + \lambda_s$$

for some $\lambda_d \in M_d(G)_0^*$, $\lambda_0 \in L_0^{\infty}(G)$ and $\lambda_s \in M_s(G)_0^*$. Note that if $\mu \in M(G)$ and $\phi \in L^1(G)$, then $\mu * \phi \in L^1(G)$ and so

$$\langle \phi \cdot (\lambda_d + \lambda_s), \mu \rangle = \langle \lambda_d + \lambda_s, \mu * \phi \rangle = 0.$$

Thus $\phi \cdot (\lambda_d + \lambda_s) = 0$ which implies that

$$\phi \cdot \lambda = \phi \cdot \lambda_0 = \lambda_0 * \tilde{\phi} \in C_0(G),$$

where $\tilde{\phi}(x) = \phi(x^{-1})$ for all $x \in G$, see [7]. Similarly,

$$\lambda \cdot \phi = \lambda_0 \cdot \phi = rac{1}{\Delta} ilde{\phi} st \lambda_0 \in C_0(G),$$

where Δ denotes the modular function of *G*. So we can regard $M(G)_0^*$ as a Banach $L^1(G)$ -bimodule with the module actions defined by "·". We also can prove that $(M(G)_0^*)^*$ is the dual bimodule of the Banach $L^1(G)$ -bimodule $M(G)_0^*$ with the module operations defined by

$$\langle F \cdot \phi, \lambda \rangle = \langle F, \phi \cdot \lambda \rangle$$
 and $\langle \phi \cdot F, \lambda \rangle = \langle F, \lambda \cdot \phi \rangle$

for all $F \in (M(G)_0^*)^*$, $\lambda \in M(G)_0^*$ and $\phi \in L^1(G)$.

For every $H \in (M(G)_0^*)^*$ and $\lambda \in M(G)_0^*$, we define the bounded linear functional $H\lambda \in M(G)^*$ by

$$\langle H\lambda,\mu\rangle = \langle H,\lambda\mu\rangle,$$

in which

$$\langle \lambda \mu, \nu \rangle = \langle \lambda, \mu * \nu \rangle$$

foe all $\mu, \nu \in M(G)$. It is well-known from [8] that $H\lambda \in M(G)_0^*$. That is, $M(G)_0^*$ is a left introverted subspace of $M(G)^*$. So the dual space $(M(G)_0^*)^*$ of $M(G)_0^*$ is a Banach algebra with the first Arens product " \diamond " defined by

$$\langle F \diamond H, \lambda \rangle = \langle F, H\lambda \rangle$$

for all $F, H \in (M(G)_0^*)^*$ and $\lambda \in M(G)_0^*$. Note that

$$F \cdot \phi = F \diamond \phi$$
 and $\phi \cdot F = \phi \diamond F$

for all $F \in (M(G)_0^*)^*$ and $\phi \in L^1(G)$. For the details, we refer the readers to [8]. For every $F \in (M(G)_0^*)^*$, there exist $F_d \in (M_d(G)_0^*)^*$, $F_0 \in L_0^{\infty}(G)^*$ and $F_s \in (M_s(G)_0^*)^*$ such that

$$F = F_d + F_0 + F_s.$$

Then for every $\phi \in L^1(G)$ we have $F \diamond \phi = F_0 \diamond \phi$ and $\phi \diamond F = \phi \diamond F_0$. Since $L^1(G)$ is an ideal in $L_0^{\infty}(G)^*$, it follows that $L^1(G)$ is an ideal in $(M(G)_0^*)^*$.

Let \mathfrak{A} be a Banach algebra. We denote the categories of Banach left \mathfrak{A} -modules, of Banach right \mathfrak{A} -modules and of Banach \mathfrak{A} -bimodules, by \mathfrak{A} -MOD, by MOD- \mathfrak{A} and by \mathfrak{A} -MOD- \mathfrak{A} , respectively. For $E, F \in \mathfrak{A}$ -MOD, we reserve the symbol $\mathfrak{A} \ \mathscr{B}(E,F)$ for the set of all left \mathfrak{A} -module homomorphisms in $\mathscr{B}(E,F)$, the set of all bounded operators from E into F. Note that $\mathscr{B}(\mathfrak{A}, E) \in \mathfrak{A}$ -MOD- \mathfrak{A} with the module operations

$$(a \cdot T)(b) = T(ba)$$
 and $(T \cdot a)(b) = T(ab)$

for all $a, b \in \mathfrak{A}$ and $T \in \mathscr{B}(\mathfrak{A}, E)$. A left \mathfrak{A} -module homomorphism $T \in \mathfrak{A} \mathscr{B}(E, F)$ is called *admissible* if T(E) is closed and kerT and T(E) are complemented subspaces of E and F, respectively. Also, T is called a *retraction* if it has a right inverse in $\mathfrak{A} \mathscr{B}(F, E)$.

Let us recall that an element $P \in \mathfrak{A}$ -MOD is called *projective*, if for every $E, F \in \mathfrak{A}$ -MOD, each admissible epimorphism $\theta \in \mathfrak{A} \mathscr{B}(E,F)$ and each $\sigma \in \mathfrak{A} \mathscr{B}(P,F)$, there exists $\tau \in \mathfrak{A} \mathscr{B}(P,E)$ such that

$$\theta \circ au = \sigma$$

The set of all projective Banach left \mathfrak{A} -modules is denoted by \mathfrak{A} -PMOD. One can define the concept of projectivity for Banach \mathfrak{A} -bimodules. In the case where \mathfrak{A} is a projective \mathfrak{A} -bimodule, it is called *biprojective*. Let also recall that an element $I \in \mathfrak{A}$ -MOD is called *injective*, if for each $E, F \in \mathfrak{A}$ -MOD, every admissible monomorphism $\theta \in \mathfrak{A} \ \mathscr{B}(E,F)$ and every $\sigma \in \mathfrak{A} \ \mathscr{B}(E,I)$, there exists $\tau \in \mathfrak{A} \ \mathscr{B}(F,I)$ such that $\tau \circ \theta = \sigma$. The set of all injective Banach left \mathfrak{A} -modules is denoted by \mathfrak{A} -IMOD. Similarly, the set of all injective Banach right \mathfrak{A} -modules is denoted by IMOD- \mathfrak{A} . An element $E \in \mathfrak{A}$ -MOD is called *flat*, if $E^* \in \text{IMOD}-\mathfrak{A}$. The set of all flat Banach left \mathfrak{A} -modules is denoted by \mathfrak{A} -FMOD. A Banach algebra \mathfrak{A} is called *biflat* if it is a flat Banach \mathfrak{A} -bimodule.

Homological properties of Banach modules have been studied by several authors [1, 3–5, 9]. For example, Dales and Polyakov [3] studied homological properties of modules over group algebras. They gave necessary and sufficient conditions for some Banach left $L^1(G)$ -modules to have homological properties such as projectivity, injectivity and flatness.

In this paper, we continue these investigations for Banach left $L^1(G)$ -modules $M(G)_0^*$ and $(M(G)_0^*)^*$ introduced in [8]. We characterize the locally compact groups such that these Banach modules are, respectively, (bi)projective, injective and (bi)flat.

2. PROJECTIVITY OF $M(G)_0^*$ **AND** $(M(G)_0^*)^*$

We commence this section with the following result.

THEOREM 2.1. Let *G* be a locally compact group. Then $M(G)_0^* \in L^1(G)$ -PMOD if and only if *G* is finite. Proof. Let $E, F \in L^1(G)$ -MOD, $\theta \in L^{1}(G) \mathscr{B}(E, F)$ be an admissible epimorphism and $\sigma \in L^{1}(G) \mathscr{B}(L_0^{\infty}(G), F)$.

Let $\pi: M(G)_0^* \to L_0^{\infty}(G)$ be the canonical projection map. If $M(G)_0^* \in L^1(G)$ -PMOD, then there exists $\tau \in L^1(G)\mathscr{B}(M(G)_0^*, E)$ such that $\theta \circ \tau = \sigma \circ \pi$. It follows that

$$\theta \circ \tau \circ i = \sigma$$

where $i: L_0^{\infty}(G) \to M(G)_0^*$ is the canonical injection map. Therefore, $L_0^{\infty}(G) \in L^1(G)$ -PMOD. A similar argument as given in Theorem 3.1 in [3] shows that *G* is compact. Thus, $L^{\infty}(G) \in L^1(G)$ -PMOD. Invoke Theorem 3.3 in [3] to conclude that *G* is finite. The proof will be complete if we only note that $M(G)_0^* = L^{\infty}(G)$ is a projective Banach left $L^1(G)$ -module, when *G* is finite.

We now investigate projectivity of $(M(G)_0^*)^*$ as Banach left $L^1(G)$ -module.

3

THEOREM 2.2. Let G be a locally compact group. Then the following assertions are equivalent:

- (a) $(M(G)_0^*)^* \in L^1(G)$ -PMOD.
- (b) $M(G) \in L^1(G)$ -PMOD.
- (c) *G* is discrete.

Proof. We define the map $T: M(G) \to (M(G)_0^*)^*$ by $\langle T(\mu), \lambda \rangle = \langle \lambda, \mu \rangle$ for all $\mu \in M(G)$ and $\lambda \in M(G)_0^*$. Then for every $f \in C_0(G)$ and $\mu \in M(G)$ we have

$$\langle R \circ T(\mu), f \rangle = \langle T(\mu), f \rangle = \langle f, \mu \rangle,$$

where $R: (M(G)_0^*)^* \to M(G)$ is the restriction map to $C_0(G)$. This shows that R is a retraction. So if $(M(G)_0^*)^* \in L^1(G)$ -PMOD, then $M(G) \in L^1(G)$ -PMOD. Hence (a) implies (b). Let $F \in (M(G)_0^*)^*$ and $\lambda \in M_d(G)_0^* \oplus_{\infty} M_s(G)_0^*$. Then for every $\phi \in L^1(G)$, we have $\lambda \cdot \phi = 0$ and so

$$\langle F \cdot \lambda, \phi \rangle = \langle F, \lambda \cdot \phi \rangle = 0$$

If G is discrete, then $\delta_e \in L^1(G)$ and $L_0^{\infty}(G)^* = M(G)$. So

$$\langle F, \lambda \rangle = \langle \delta_e \cdot F, \lambda \rangle = \langle \delta_e, F \cdot \lambda \rangle = \langle F \cdot \lambda, \delta_e \rangle = 0.$$

It follows that $(M(G)_0^*)^* = M(G)$. Hence

$$(M(G)_0^*)^* = L^1(G) = \ell^1(G)$$

and $\ell^1(G)$ is a unital Banach algebra. Therefore, $(M(G)_0^*)^* \in L^1(G)$ -PMOD. That is, (c) implies (a). By Theorem 2.6 in [3], (b) implies (c).

3. INJECTIVITY OF $M(G)_0^*$ **AND** $(M(G)_0^*)^*$

An element $E \in \mathfrak{A}$ -MOD is called *faithful* if $\mathfrak{A} \cdot x \neq 0$ for all nonzero elements $x \in E$. Let us remark from Proposition 1.7 in [3] that if $E \in \mathfrak{A}$ -mod is faithfull, then $E \in \mathfrak{A}$ -IMOD if and only if there exists a left \mathfrak{A} -module homomorphism $\rho : \mathscr{B}(\mathfrak{A}, E) \to E$ such that $\rho \circ \Pi_E = id_E$, where id_E is identity map on E and $\Pi_E : E \to \mathscr{B}(\mathfrak{A}, E)$ is defined by $\Pi_E(x)(a) = a \cdot x$ for all $x \in E$ and $a \in \mathfrak{A}$.

THEOREM 3.1. Let G be a locally compact group. Then $M(G)_0^* \in L^1(G)$ -IMOD if and only if G is compact. *Proof.* Assume that G is compact. Then $L^1(G)$ is amenable. So $M(G)_0^* \in L^1(G)$ -IMOD; see for example Proposition 1.11 in [3].

For the converse, suppose that G is not compact. Then there exist a subset S and an open, σ -compact and non-compact subgroup \mathfrak{H} of G such that

$$G = \bigcup_{s \in S} s\mathfrak{H} = \bigcup_{s \in S} \mathfrak{H} s^{-1}.$$

Let $m_{\mathfrak{H}}$ be the restriction of *m* to the family of Borel subsets of \mathfrak{H} . Since \mathfrak{H} is σ -compact and non-compact, we can choose sequences (K_i) and (C_i) of compact subsets of \mathfrak{H} such that $K_i \subsetneq \operatorname{int} K_{i+1}, m_{\mathfrak{H}}(C_i) > 0$ and $C_i \cap C_j = \emptyset$ whenever $i, j \in \mathbb{N}$ and $i \neq j$. We define $Q_1 : \ell^{\infty} \to M(\mathfrak{H})^*$ by

$$Q_1((\alpha_i)) = \sum_{i=1}^{\infty} \alpha_i \, \chi_{C_i}$$

and $Q_2: M(\mathfrak{H})^* \to \mathscr{B}(L^1(\mathfrak{H}), C_0(\mathfrak{H}))$ by

$$Q_2(\lambda)(\phi) = \sum_{i=1}^{\infty} \prod_{M(\mathfrak{H})_0^*} (\chi_{K_i}\lambda)(\chi_{L_i}\phi),$$

where $K_0 = \emptyset$, $L_i = K_i \setminus K_{i-1}$ and

$$\langle \chi_{K_i} \lambda, \mu \rangle = \langle \lambda, \mu_{K_i} \rangle$$

for all $\mu \in M(G)$. Let ι^* be the adjoint of the inclusion map $\iota : L^1(G) \to M(G)$. Take the nonzero element $\lambda \in M(G)_0^*$. Then for every $\phi \in L^1(G)$ we have

$$\langle \iota^*(oldsymbol{\lambda}), \phi
angle = \langle oldsymbol{\lambda}, \iota(\phi)
angle = \langle oldsymbol{\lambda}, \phi
angle.$$

This together with the fact that $L^{\infty}(G) \in L^1(G)$ -MOD is faithful shows that $M(G)_0^* \in L^1(G)$ -MOD is faithful. So, if $M(G)_0^* \in L^1(G)$ -IMOD, then there exists a left $L^1(G)$ -module homomorphism

$$\rho: \mathscr{B}(L^1(G), M(G)_0^*) \to M(G)_0^*$$

such that $\rho \circ \prod_{M(G)_0^*} = id_{M(G)_0^*}$. We now define the map $Q_3 : \mathscr{B}(L^1(G), C_0(G)) \to c_0$ by

$$Q_3(T) = \left(\frac{1}{m_{\mathfrak{H}}(C_i)} \int_{C_i} R \circ \rho(T) \, dm_{\mathfrak{H}}\right)_i,$$

where *R* is the natural map from $M(G)_0^*$ to $L_0^{\infty}(\mathfrak{H})$. Let

$$Q: \mathscr{B}(L^1(\mathfrak{H}), C_0(\mathfrak{H})) \to \mathscr{B}(L^1(G), C_0(G))$$

be the left $L^1(\mathfrak{H})$ -module homomorphism used in the proof of Lemma 3.4 in [3]. We note that if *K* is a compact subset of \mathfrak{H} , then

$$Q_2(\boldsymbol{\chi}_K) - \Pi_{M(\mathfrak{H})^*_0}(\boldsymbol{\chi}_K)$$

has compact support *K*; i.e, for every $\phi \in L^1(G)$ with $\phi|_K = 0$, we have

$$(Q_2(\boldsymbol{\chi}_K) - \Pi_{M(\mathfrak{H})_0^*}(\boldsymbol{\chi}_K))(\boldsymbol{\phi}) = 0.$$

By the argument used in the proof of Lemma 3.5 in [3], it can be shown that

$$R \circ \rho \circ Q(Q_2(\chi_K)) = R \circ \rho \circ Q(\Pi_{M(\mathfrak{H})_0^*}(\chi_K)).$$

It follows that

$$\begin{aligned} R \circ \rho(Q(Q_2(\chi_K))) &= R \circ \rho \circ Q(\Pi_{M(\mathfrak{H})_0^*}(\chi_K)) \\ &= R \circ \rho \circ \Pi_{M(G)_0^*}(I(\chi_K)) \\ &= R \circ I(\chi_K) \\ &= \chi_K, \end{aligned}$$

where $I: L^{\infty}(\mathfrak{H}) \to L^{\infty}(G)$ is the natural embedding. Hence

 $Q_3(Q(Q_2(\boldsymbol{\chi}_K))) = (\frac{m_{\mathfrak{H}}(C_i \cap K)}{m_{\mathfrak{H}}(C_i)})_i.$

Set

$$Q_4 := Q_3 \circ Q \circ Q_2 \circ Q_1.$$

For $(\alpha_i)_i \in c_0$, we have

$$Q_4((\alpha_i)) = \sum_{j=1}^{\infty} \alpha_j \ Q_3(Q(Q_2(\chi_{C_j}))) = (\alpha_i)_i.$$

Hence Q_4 is a projection from ℓ^{∞} onto c_0 , which contradicts Theorem 0.1.16 in [5]. Therefore, G is compact, as claimed.

Let us recall that a locally compact group G is called *amenable* if there is a left invariant mean on $L^{\infty}(G)$.

THEOREM 3.2. Let G be a locally compact group. Then the following statements hold:

(i) $M(G)_0^* \in L^1(G)$ -FMOD if and only if G is amenable.

(ii) $(M(G)_0^*)^* \in L^1(G)$ -FMOD.

Proof. It is shown in [3] that $L^1(G)$ is always a flat Banach left $L^1(G)$ -module and $C_0(G) \in L^1(G)$ -FMOD if and only if G is amenable. Hence the theorem will be proved if we recall from [9] that $E \in L^1(G)$ -FMOD if and only if $L^1(G) \cdot E \in L^1(G)$ -FMOD.

As an immediate consequence of Theorem 3.2 we present the following result.

COROLLARY 3.3. Let G be a locally compact group. Then $(M(G)_0^*)^* \in \text{IMOD-}L^1(G)$ if and only if G is amenable.

In the following, let us remark from Theorem 2.9.65 in [2] that a Banach algebra \mathfrak{A} is amenable if and only if \mathfrak{A} has a bounded approximate identity and \mathfrak{A} is biftat.

PROPOSITION 3.4. Let G be a locally compact group. Then the following statements hold:

(i) $M(G)_0^*$ is biprojective if and only if G is compact.

(ii) $M(G)_0^*$ is always biflat.

(iii) If $(M(G)_0^*)^*$ is either biprojective or biflat, then G is amenable.

Proof. First not that $M(G)^* = C_0(G)^{**}$ is a Banach algebra with respect to the first Arens product. For every $\lambda \in M(G)^*$, the involution λ is defined by

$$\langle \lambda^*, v \rangle = \overline{\langle \lambda, \overline{v} \rangle},$$

where $\bar{v}(E) = v(E)$. It is easy to see that $M(G)_0^*$ is closed with respect to the norm-topology of $M(G)_0^*$ and the involution "*". Hence $M(G)_0^*$ is a commutative C^* -algebra.

It is well-known from [4] that a C^* -algebra of a locally compact group is biprojective if and only if G is compact. Hence (i) holds. For (ii), it suffices to note that $M(G)_0^*$ is amenable; see Example 2.3.4 in [10]. Finally, if $(M(G)_0^*)^*$ is biflat, then $(M(G)_0^*)^*$ is amenable. Since $L^1(G)$ is an ideal in $(M(G)_0^*)^*$, it follows that $L^1(G)$ is amenable and so G is amenable. To complete the proof, we recall that every biprojective module is biflat.

Let $E \in L^1(G)$ -MOD. A functional $\Lambda \in E^*$ is called *augmentation invariant* if every $x \in E$ and $\phi \in L^1(G)$, we have

$$\langle \Lambda, \phi \cdot x \rangle = \varphi_G(\phi) \langle \Lambda, x \rangle,$$

where $\varphi_G : M(G) \to \mathbb{C}$ is defined by $\varphi_G(\mu) = \mu(G)$. In the case where Λ is a non-zero augmentation invariant functional in E^* , then *E* is said to be *augmentation invariant*.

PROPOSITION 3.5. Let G be a locally compact group. Then $M(G)_0^*$ is augmentation invariant if and only if G is compact.

Proof. Let $M(G)_0^*$ be augmentation invariant. Then there exists a non-zero functional $\Lambda : M(G)_0^* \to \mathbb{C}$ such that

$$\langle \Lambda, \phi \cdot \lambda
angle = \varphi_G(\phi) \langle \Lambda, \lambda
angle$$

for every $\phi \in L^1(G)$ and $\lambda \in M(G)_0^*$. Choose an element $\lambda \in M(G)_0^*$ with $\langle \Lambda, \lambda \rangle \neq 0$ and a positive function with norm one in $L^1(G)$, say ϕ . Then $\phi \cdot \lambda \in C_0(G)$. If $\tilde{\Lambda}$ is the restriction map Λ to $C_0(G)$, then

$$\langle ilde{\Lambda}, \phi \cdot oldsymbol{\lambda}
angle = \langle \Lambda, \phi \cdot oldsymbol{\lambda}
angle = arphi_G(\phi) \langle \Lambda, oldsymbol{\lambda}
angle = \langle \Lambda, oldsymbol{\lambda}
angle.$$

Hence $\tilde{\Lambda}$ is non-zero on $C_0(G)$. This shows that $\tilde{\Lambda}$ is an augmentation invariant on $C_0(G)$. Form 17.19 (c) in [6] we see that *G* is compact. For the converse, we only need to note that if $\iota : L^1(G) \to M(G)$ is the inclusion map and $\Lambda \in L^{\infty}(G)^*$ is a augmentation invariant, then $\iota^{**}(\Lambda)$ is a augmentation invariant for $M(G)_0^*$.

We finish the paper with the following result.

PROPOSITION 3.6. The Banach left $L^1(G)$ -module $(M(G)_0^*)^*$ is always augmentation invariant.

Proof. Let \mathscr{K} denote the set of all compact subsets of *G* ordered by upward inclusion. Then the bounded net $(\chi_{K_{\alpha}})$ has a weak^{*} cluster point in $(M(G)_0^*)^{**}$, say Λ . Let *F* be a linear functional in $(M(G)_0^*)^*$ with compact carrier $K_{\alpha_0} \in \mathscr{K}$. Then for every $\phi \in L^1(G)$ we have

$$\begin{array}{lll} \langle \Lambda, \phi \cdot F \rangle &=& \lim_{\alpha} \langle \chi_{K_{\alpha}}, \phi \cdot F \rangle = \lim_{\alpha} \langle F, \chi_{K_{\alpha}} \cdot \phi \rangle = \lim_{\alpha} \langle F, (\chi_{K_{\alpha}} \cdot \phi) \chi_{K_{\alpha_{0}}} \rangle \\ &=& \varphi_{G}(\phi) \lim_{\alpha} \langle F, \chi_{K_{\alpha}} \rangle = \varphi_{G}(\phi) \langle \Lambda, F \rangle. \end{array}$$

From this and Proposition 2.24 in [8] we see that Λ is an augmentation invariant functional for $(M(G)_0^*)^*$.

ACKNOWLEDGEMENTS

The authors would like to thank the referee of the paper for invaluable comments.

REFERENCES

- 1. F. ABTAHI, A. GHAFARPANAH, A. REJALI, *Projectivity of* $L^p(G, \omega)$ as a $L^1(G)$ -module, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, **16**, 2, pp. 130-137, 2015.
- H.G. DALES, Banach algebras and automatic continuity, London Math. Soc. Monographs 24, Oxford Univ. Press, New York, 2000.
- 3. H.G. DALES, M.E. POLYAKOV, *Homological properties of modules over group algebras*, Proc. London Math. Soc., **89**, pp. 390–426, 2004.
- 4. A.Ya. HELEMSKII, The homology of Banach and topological algebras, Kluwer, Dordrecht, 1989.
- 5. A.Ya. HELEMSKII, Banach and locally convex algebras, Clarendon, Oxford, 1993.
- 6. E. HEWITT, K. ROSS, Abstract harmonic analysis I, Springer-Verlag, New-York, 1970.
- A.T. LAU, J. PYM, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc., 41, pp. 445–460, 1990.
- 8. D. MALEKZADEH VARNOSFADERANI, *Derivations, multiplers and topological centers of certain Banach algebras related to locally compact groups*, PhD thesis, The University of Manitoba, 2017.
- 9. P. RAMSDEN, Homological properties of semigroup algebras, PhD thesis, The University of Leeds, 2008.
- 10. V. RUNDE, Lectures on amenability, Lecture Notes in Mathematics, Vol. 1774, Springer-Verlag, Berlin, 2002.