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Abstract: We presented for the first time a study regarding the stability of matter-wave solitons in
a quasi one-dimensional Bose-Einstein condensate (cigar-shaped) consisting of atoms with attractive
interatomic interactions trapped in a Pöschl-Teller potential subjected to periodic perturbations. The
quasi-one-dimensional Bose-Einstein condensate was modeled by Gross-Pitaevskii equation. A nu-
merical (split-step Crank-Nicolson method) approach has been proposed to investigate the dynamic
properties of matter-wave solitons during the temporal evolution of this atomic system. The results ob-
tained in this paper demonstrated the stability of the wave-matter solitons while they were perturbed by
periodic oscillations of the Pöschl-Teller potential during temporal evolution. The results presented in
this paper can open the way for several applications in atomic and molecular physics, condensed matter
physics, solid state physics, nonlinear optics and material sciences.
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1. INTRODUCTION

The advent of Bose-Einstein Condensation opens the way for a better understanding of the physical phe-
nomena related to ultracold atoms confined by external traps [1–3]. The dynamic behavior of Bose-Einstein
condensates (BEC) at ultracold temperatures is very well described by the Gross-Pitaevskii equation (GPE)
[4, 5]. The GPE is a nonlinear Schrödinger equation (NLSE) with the additional term related to the trapping
potential [6].

The presence of nonlinearity, due to interatomic interactions, can result in nonlinear effects in BECs [7, 8].
Among these nonlinear effects, we can mention the solitons: packets of matter-waves that have their shape
preserved during the system’s temporal evolution [9]. Investigations of matter-wave solitons (MWS) in BECs
became a hot area of research when they were observed experimentally [10]. Afterwards, theoretical [11–15]
and experimental [10,16–19] studies about MWSs in both BECs and superfluid Fermi gases (SFG) began to be
studied [20,21]. It is important to note that solitons have unique properties [22] and have applications in several
areas of physics such as plasma physics [23], condensed matter physics [24], nonlinear optics [25], materials
science [26], etc.

A problem of considerable interest in ultracold atom physics is the possibility of controlling the stability
of MWSs in BECs trapped by external potentials subjects to perturbations. Among the possible disturbances,
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we can assume a scenario in which the MWSs are subject to periodic perturbations derived from fluctua-
tions in the external potential. Recently, Alotaibi et al [27] analyzed the dynamics of bright-bright solitons in
two-component BECs subject to parametric perturbations to explore nonlinear resonances and splitting of the
coupled bright solitons. Turmanov et al [28] studied the emergence of density waves in quasi-1D-BECs when
dipole-dipole atomic interaction strength is periodically varied in time.

Although several studies have analyzed the stability of solitons in BECs trapped by both periodic [20,
29] and parabolic potentials [30, 31], there are still few studies that address soliton stability when atoms are
trapped by a Poschl-Teller potential subject to periodic perturbations. Thus, motivated by the recent publication
in [32] and applications of the MWSs in BECs, we propose in this paper an unprecedented investigation of
the stability of MWSs in BECs with attractive interatomic interactions trapped in a PT potential subjected to
periodic perturbations. For this purpose, we use a numerical approach (split-step Crank-Nicholson method)
[33, 34] to solve the one-dimensional Gross-Pitaevskii equation (1D-GPE).

The paper is structured as follows: In Sec. 2, we formulate our dynamic model based on cigar-shaped BECs
and obtain a quasi-1D-GPE. In Sec. 3, we present the numerical formulation based on the split-step Crank-
Nicolson method to solve the quasi-1D-GPE. In Sec. 4, we present the numerical results related to the stability
and chemical potential of MWSs. Finally, in Sec. 5, we present the conclusions and final considerations about
this paper.

2. THE DYNAMICAL MODEL

2.1. The Gross-Pitaevski equation

Static and dynamical properties of a pure BEC made of N dilute and ultracold atoms are very well described
by the three-dimensional Gross-Pitaevskii equation (3D-GPE) [6]:

ih̄
∂

∂ t
Ψ(r, t) =

[
− h̄2

2m
∇

2 +Vext (r)+g3D |Ψ(r, t)|2
]

Ψ(r, t) , (1)

where i =
√
−1 is the imaginary unit, h̄ = h/2π is the reduced Planck constant, m is the mass of each atom, ∇2

is the Laplacian operator in 3D, Vext (r) is the external trapping potential and g3D = 4π h̄2as/m is the nonlinearity
coefficient, being as the s-wave scattering length of atoms in the BEC; it is positive for repulsive interactions
and negative for attractive interactions. The quantity Ψ(r, t) denotes the macroscopic wave function of the
BEC and, since |Ψ(r, t)|2 is defined as the atomic density of the N condensed atoms [35], the Eq. (1) will be
supplemented by the normalization condition:

ˆ +∞

−∞

|Ψ(r, t)|2 d3r = N. (2)

2.2. The external potential

We start by considering ultracold atoms in a BEC confined in a strongly elongated trap known as “cigar-
shaped” trap, described by the following external potential:

Vext (x,y,z) =−
h̄2V0

mw2 sech2
( x

w

)
+

1
2

mω
2
||x

2 +
1
2
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2
⊥
(
y2 + z2) . (3)

In the above equation, the first term is the Pöchl-Teller (PT) potential and the other terms represent the parabolic
potential. In Eq. (3), m is the mass of each atom, V0 and w are, respectively, the amplitude and width of
the PT potential and

{
ω||,ω⊥

}
are the angular frequencies of the parabolic potential. In this cigar-shaped

configuration, the longitudinal and transverse confining frequencies (denoted by ω|| and ω⊥, respectively) are
such that ω|| � ω⊥, where ω|| ≡ ωx and ω⊥ ≡ ωy = ωz. Thus, the external potential, Vext (x,y,z), can be
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interpreted as a combination of a longitudinal, V|| (x), and a transverse potential, V⊥ (y,z), i.e., Vext (x,y,z) =
V|| (x) +V⊥ (y,z) [36]. Hence, we can decompose the wave function of the BEC, Ψ(r, t), in a longitudinal
(along x) and a transverse (on the y− z plane) component and the system can be governed by quasi-1D-GPE by
assuming solutions on the form [37]:

Ψ(x,y,z, t) = ψ (x, t)Φ(y,z) , (4)

where the transversal wave function ,Φ(y,z), can be obtained analytically from the Schrödinger equation for
the transverse harmonic oscillator given by the following equation:[

− h̄2

2m
∇

2
⊥+

1
2

mω
2
⊥
(
y2 + z2)]

Φ(y,z) = E⊥Φ(y,z) . (5)

Note that ∇2
⊥ is the Laplacian operator in 2D and E⊥ is the energy associated to transverse confinement of the

trap. Since the considered system is effectively 1D, it is natural to assume that the transverse component of the
condensate wavefunction, Φ(y,z), remains in the ground state [38]. Thus, Φ(y,z) takes the form:

Φ(y,z) =
√

mω⊥
π h̄

exp
[
−mω⊥

2h̄

(
y2 + z2)] , (6)

with E⊥ = h̄ω⊥ being the ground state energy corresponding to transverse confinement. Due to the weak
parabolic confinement in the x direction, it becomes possible to omit the term ω|| from the external potential,
thus, assuming that just the PT potential is uniform and is not affected by the presence of the additional con-
fining parabolic potential [37]. Substituting the Eq. (6) into the Eq. (1) and integrating it over the transverse
coordinate, we derive an quasi-1D-GPE:

ih̄
∂

∂ t
ψ (x, t) =

[
− h̄2

2m
∂ 2

∂x2 −
h̄2V0

mw2 sech2
( x

w

)
−g1D |ψ (x, t)|2 + h̄ω⊥

]
ψ (x, t) , (7)

where g1D = g3D/2πa2
⊥ is the one-dimensional nonlinearity coefficient and a⊥ =

√
h̄/(mω⊥) is the transversal

harmonic oscillator ground state width. The term h̄ω⊥ was omitted because it does not affect the dynamics of
the BEC [15].

Eq. (7) can be rewritten using the dimensionless variables {x̃, t̃, ψ̃, g̃1D}1:

x≡ wx̃, t ≡ mw2

h̄
t̃, ψ ≡

√
N
w

ψ̃, g1D ≡
h̄2

mw
g̃1D, (8)

and replacing the stationary variable of the PT potential with a dynamic variable that causes a periodic pertur-
bation of amplitude Γ and angular frequency Ω around the global minimum point of the potential:

sech2 (x)→ sech2 (x−Γcos(Ωt)) , (9)

we obtain, finally, the equation that governs the dynamic behavior of MWSs in a cigar-shaped BEC confined
longitudinally by the PT potential subject to periodic perturbations:

i
∂

∂ t
ψ (x, t) =

[
−1

2
∂ 2

∂x2 −V0sech2 (x−Γcos(Ωt))−g |ψ (x, t)|2
]

ψ (x, t) , (10)

where g≡ g1DN and the wave function is normalized to unity:
ˆ +∞

−∞

|ψ (x, t)|2 dx = 1. (11)

1In fact, dimensionless variables are represented by tilde. However, we omit it to simplify the notation.
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3. METHODOLOGY

In order to introduce the split-step Crank-Nicolson (SSCN) method [33,34,39] to solve the quasi-1D-GPE,
Eq. (10) can be expressed as follows:

i
∂

∂ t
ψ (x, t) =

[
−1

2
∂ 2

∂x2 −V0sech2 (x−Γcos(Ωt))−g |ψ (x, t)|2
]

ψ (x, t)≡ ĤGPψ (x, t) , (12)

where the Hamiltonian ĤGP is a operator that can be expressed by ĤGP ≡ T̂ + V̂ . Here, T̂ ≡ −1
2

∂ 2

∂x2 is the
kinetic energy operator and V̂ ≡ V̂ext +V̂NL is the potential energy operator, with V̂ext being the operator related
to external trapping potential and V̂NL the operator responsible for the non-linear term2. Eq. (12) is a non-linear
partial differential equation defined in the spatial domain xi ≤ x ≤ xf and in the temporal domain ti ≤ t ≤ tf.
Here, the initial time is null (ti = 0). In addition, Eq. (12) is complemented by the initial condition, ψ(x,0),
and boundary conditions ψ(xi, t) and ψ(xf, t).

The SSCN method is based on the finite difference (FD) method. The basic idea of the FD method is to
transform the problem of solving a partial differential equation, linear or non-linear, into a problem of solving
a systems of algebraic equations [33], using the discretization of spatial and temporal domains of the wave
function and the substitution of derivatives present in the differential equation by approximations involving
only numerical values of the wave function [40]. The numerical discretization of the spatial domain consists
of dividing the interval xi ≤ x ≤ xf in m+ 1 points separated by a space step ∆x and, with respect to temporal
domain, numerical discretization is based on dividing the interval ti≤ t ≤ tf into n+1 points separated by a time
step ∆t. Both steps are defined by ∆x = (xf− xi)/m and ∆t = (tf− ti)/n, and the grid of spatial and temporal
points can be represented by the following equations:

x j = xi + j∆x, j = 0,1, . . .m; tk = ti + k∆t, k = 0,1, . . . ,n. (13)

The initial idea of the SSCN method is based on dividing the Hamiltonian ĤGP into different derivative and
non-derivative parts. In this paper, we split ĤGP into three parts: ĤGP = Ĥ1 + Ĥ2 + Ĥ3, where

Ĥ1 =
V̂
2
=−1

2

[
V0sech2 (x−Γcos(Ωt))+g |ψ (x, t)|2

]
, (14)

Ĥ2 = T̂ =−1
2

∂ 2

∂x2 , (15)

Ĥ3 = Ĥ1. (16)

On the other hand, the solution of Eq. (12) can be obtained through the following expression:

ψ(x j, tk +∆t) = e−iĤGP∆t
ψ(x j, tk), (17)

being ψ(x j, tk +∆t) the solution after a temporal evolution of an instant of time ∆t. For simplicity of notation,
we take ψk

j ≡ψ(x j, tk). Thus, operator e−iĤGP∆t can be rewritten using Eqs. (14)-(16) and the Eq. (17) becomes:

ψ
k+1
j = e−iĤ3∆te−iĤ2∆te−iĤ1∆t

ψ
k
j . (18)

The solution ψ
k+1
j can be obtained by means of the temporal evolution of the wave function at a given time

tk, ψk
j , advancing temporally from tk to tk+1 through iterations [33]. For this, the operator Ĥ1, initially, produces

an intermediate solution ψ
k+1/3
j from ψk

j . As there is no derivative in Ĥ1 this propagation is performed exactly
through the operation:

ψ
k+1/3
j = Ond(Ĥ1)ψ

k
j ≡ e−iĤ1∆t

ψ
k
j = ei

[
V0sech2(x j−Γcos(Ωtk))+g|ψk

j |2
]

∆t
2 ψ

k
j , (19)

2Note that the nonlinearity term will be considered as a potential.
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where Ond(Ĥ1) denotes time-evolution operation with Ĥ1 and the suffix ‘nd’ denotes non derivative [33].
Then, we perform the time propagation corresponding to the operator Ĥ2 numerically by the following Crank-
Nicholson scheme [39]:

i
ψ

k+2/3
j −ψ

k+1/3
j

∆t
=−1

2

ψ
k+2/3
j+1 −2ψ

k+2/3
j +ψ

k+2/3
j−1

2(∆x)2

+

ψ
k+1/3
j+1 −2ψ

k+1/3
j +ψ

k+1/3
j−1

2(∆x)2

 . (20)

The formal solution of Eq. (20) can be obtained by the Cayley form [41] given by the following expression:

ψ
k+2/3
j = OCN(Ĥ2)ψ

k+1/3
j ≡ e−iĤ2∆t

ψ
k+1/3
j ≡ 1− i(T̂/2)∆t

1+ i(T̂/2)∆t
ψ

k+1/3
j , (21)

where OCN denotes the time-evolution operation with Ĥ2 and the suffix ‘CN’ refers to the Crank-Nicholson
algorithm. Operation OCN is used to propagate the intermediate solution ψ

k+1/3
j by time step ∆t to generate the

second intermediate solution ψ
k+2/3
j . Finally, the final solution ψ

k+1
j is obtained by acting on the operator Ĥ3

in ψ
k+2/3
j :

ψ
k+1
j = Ond(Ĥ3)ψ

k+2/3
j ≡ e−iĤ3∆t

ψ
k+2/3
j ≡ e

i
[
V0sech2(x j−Γcos(Ωtk+1))+g

∣∣∣ψk+2/3
j

∣∣∣2]∆t
2

ψ
k+2/3
j . (22)

According to Adhikari et al [33], splitting the potential energy operator symmetrically around the kinetic energy
operator increases enormously the stability of the method and reduces numerical error. The choice of the initial
condition is fundamental for the temporal evolution of the wave function. In this paper, a natural choice is the
hyperbolic secant function (normalized to unity) [42]:

ψ(x,0) =
1√
2σ0

sech
(

x
σ0

)
, (23)

because at the linear limit of the quasi-1D-GPE it is possible to obtain stationary solutions for the 1D linear
Schrödinger equation for the PT potential. Another plausible reason for choosing this initial conditional is the
fact that the hyperbolic secant function is an exact soliton solution (nonlinear solution) of the 1D nonlinear
Schrödinger equation. Here, σ0 is the initial width of the MWS and we use boundary conditions ψk

0 = ψk
m = 0

to satisfy lim
x→±∞

ψ (x, t) = 0.

4. RESULTS AND DISCUSSION

The numerical results presented in this paper were obtained through typical experimental parameters [6] in
order to predict realistic results. Thus, we consider the scenario where a BEC consisting of N = 1000 7Li atoms
weakly interacting. According to Ref. [6], the mass and scattering length of lithium are m = 1.16× 10−26 kg
and |as|= 1.23nm, respectively. We propose the frequency of transverse confinement and the width of the PT
potential as being ω⊥ = 2π× 600Hz and w = 1.0 µm, respectively. Thus, through the aforementioned exper-
imental parameters and provided that h̄ = 1.05× 10−34 J · s, the dimensionless one-dimensional nonlinearity
coefficient equation described in Sec. 2 corresponds to g1D = 0.001. In addition, the temporal evolution pro-
posed in this paper simulates the dynamic behavior of the BEC with a duration of approximately 100ms, which
corresponds to a dimensionless time interval of 1000. In particular, for V0 = 0.5, g= 1.0 and Γ= 0, Eq. (10) has
an exact stationary solution, ψ (x, t) = 2−1/2sech(x), corresponding to the chemical potential µ = −0.5 [32],
which also justifies the proposed initial condition given by Eq. (23).

In order to appreciate the dynamic behavior of the temporal evolution of MWSs and to predict their sta-
bility, we numerically calculate the behavior of the center-of-mass position ξ and width σ using the following
equations [42]:
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ξ =
1
ℵ

ˆ +∞

−∞

x |ψ (x, t)|2 dx, (24)

σ =

[
1
ℵ

ˆ +∞

−∞

12
π2 (x−ξ )2 |ψ (x, t)|2 dx

]1/2

, (25)

where quantity ℵ≡
´ +∞

−∞
|ψ (x, t)|2 dx represents the normalization of the wave function at each iteration. More-

over, the chemical potential µ , which is also of interest in this paper, can be calculated from the following
expression [34]:

µ =

ˆ +∞

−∞

1
2

∣∣∣∣∂ψ

∂x

∣∣∣∣2−V0sech2 (x−Γcos(Ωt)) |ψ|2−g |ψ|4 dx. (26)

Fig. 1 – Temporal evolution of the center-of-mass position, width and chemical potential corresponding to matter-wave solitons for
different oscillation amplitude values of the periodic disturbance. Parameters: V0 = 0.5, g = 1.0, Ω = 2π×10−2, σ0 = 1.0, xi =−10,

xf = 10, ti = 0, tf = 1000, ∆x = 0.1, ∆t = 0.005.
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Fig. 1 illustrates the numerical results of the dynamic behavior of the center-of-mass position, width and
chemical potential of the solitons. As shown in Fig. 1a, the MWSs remained trapped during the time evolution
for all the values of oscillation amplitude Γ used in the simulations, despite observing a strong deformation in
the format (width) of the MWSs for values from Γ > 0.4 as seen in Fig. 1b. For large values of oscillation
amplitude (Γ > 0.5) we contemplate the destruction of the BEC. Regarding the chemical potential, Fig. 1c
illustrates a practically constant behavior with small fluctuations during the oscillatory perturbation of the
potential. It is important to note that as the oscillation amplitude reaches ever greater values, we observe an
increase in the chemical potential demonstrating a rate of loss of atoms in the BEC. For experimental purposes,
the results obtained in this paper can be useful in controlling the stability of BECs trapped both by the Pöschl-
Teller potential and by other confinement potentials, for example in optical lattices and magnetic traps. The
temporal evolution of solitos trapped by longitudinal potentials has been confirmed from the experimental and
theoretical results through the observation of the soliton’s width [15]. In fact, our results demonstraed that
MWSs can be stable in the presence of periodic perturbations.

5. CONCLUSIONS

In this paper, we consider the scenario where a quasi-1D BEC made up of diluted ultracold atoms with
attractive interatomic interactions is confined by the PT potential. The results obtained demonstrated that
MWSs can be stable in the presence of periodic perturbations around the minimum point of PT potential. In
addition, we emphasize that the numerical results presented in this paper predicted a good correspondence with
the exact analytical results, thus demonstrating the efficiency of the SSCN method. The results obtained in this
paper can open the way for a better understanding of the dynamic properties of MWSs both in BECs and SFGs
confined through the PT potential and motivate new studies that may have applications in other areas of physics
such as solid state physics, condensed matter physics, nonlinear optics and materials sciences.
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