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Abstract. The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in
nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation
analysis is performed on the dynamic system associated to traveling wave solutions, showing the exis-
tence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions,
in different parametric domains. Explicit parametric representations of the traveling wave solutions are
also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
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1. INTRODUCTION

In this paper, we study the exact traveling wave solutions of the nonlinear complex Kundu-Eckhaus (KE
for short) equation in the form [12, 14, 16, 17, 24]:

iut +uxx−2ρ|u|2u+δ
2|u|4u+2iδ (|u|2)xu = 0, (1)

which describes the propagation of the ultra-short femtosecond pulses in an optical fiber. The complex KE
equation (1) has great significant in the quantum theory, weakly nonlinear dispersive water waves and nonlinear
optics. Optical soliton and rogue wave solutions of KE equation were obtained in [12, 14, 16, 17, 24]. Soliton
collisions for the KE equation with variable coefficients were studied in Xie et al. [37,38]. Different from their
method in [7, 9–12, 14–16, 24, 26, 30, 34, 35], this paper employed the bifurcation theory of planar dynamic
systems to find the exact traveling wave solutions to the KE equation (1). Motivated by the works of ( the
monograph [18], also papers e.g. [2–4, 8, 13, 19–23, 25, 27–29, 32, 33, 36, 39–46]), we give the sketch of the
method as follows.

Step 1: Transfer the nonlinear PDE to an ODE by a suitable travelling wave transformation. Compute the
first integrals for the obtained ODE.

Step 2: Perform the bifurcation analysis of ODE and make phase portrait.
Step 3: Dynamic behavior of ODE corresponds to wave solution of the PDE. We see that a periodic orbit of

ODE corresponds to a periodic wave solution of a nonlinear wave equation (PDE); a homoclinic orbit of ODE
corresponds to a solitary wave solution of a nonlinear wave equation (PDE); a heteroclinic orbit of system
ODE corresponds to a kink (or anti-kink) wave solution of a nonlinear wave equation (PDE). Also, the exact
expression of the solutions to nonlinear wave equation is given.

Assume that Eq.(1) has the traveling wave solutions in the form

u(x, t) = φ(ξ )eiη(ξ ), ξ = x− ct, (2)
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where c is the wave speed. Substituting it into equation (1) and decomposing into real and imaginary parts, we
get the following equations

− cφ
′+2φ

′
η
′+φη

′′+4δφ
2
φ
′ = 0, (3)

cφη
′+φ

′′−φ(η ′)2−2ρφ
3 +δ

2
φ

5 = 0, (4)

where φ ′ is the derivative with respect to ξ . Multiplying Eq.(3) by φ and integrating with respect to ξ , we have

η
′ =

2g+ cφ 2−2δφ 4

2φ 2 , (5)

where g is an integral constant. Substituting Eq.(5) into (4) yields

φ
′′ =

8ρφ 6− (c2 +8gδ )φ 4 +4g2

4φ 3 . (6)

Equation (6) is equivalent to the following planar dynamical system

dφ

dξ
= y,

dy
dξ

=
8ρφ 6− (c2 +8gδ )φ 4 +4g2

4φ 3 , (7)

which has the first integral

H(φ ,y) = y2−ρφ
4 +

(c2 +8gδ )

4
φ

2 +
g2

φ 2 = h. (8)

Clearly, system (7) is a singular traveling wave system of the first class (see [18]) with one singular straight
line φ = 0 if g 6= 0. The existence of the singular straight line leads to a dynamical behavior of solutions with
two scales. In particular, for g = 0, system (7) becomes a regular system as follows:

dφ

dξ
= y,

dy
dξ

= 2ρφ
3− c2

4
φ . (9)

2. BIFURCATIONS OF PHASE PORTRAITS OF SYSTEM (7)

We consider the associated regular system of (7) as follows

dφ

dζ
= 4φ

3y,
dy
dζ

= 8ρφ
6− (c2 +8gδ )φ 4 +4g2. (10)

This system has the same first integral as (7), where dξ = 4φ 3dζ . The dynamics of system (10) and (7) are
different in the neighborhood of the straight line φ = 0. Specially, under some parameter conditions, the variable
ζ is a fast variable while the variable ξ is a slow variable in the sense of the geometric singular perturbation
theory.

To study the equilibrium points of (10), we write that f (φ) = 8ρφ 6− (c2 +8gδ )φ 4 +4g2. Let t = φ 2, we
obtain

f1(t) = 8ρt3− (c2 +8gδ )t2 +4g2, f ′1(t) = 24ρt
(

t− c2 +8gδ

12ρ

)
.

Apparently, f ′1(t) has two zeros at t = 0 and t = c2+8gδ

12ρ
= t1. Also, we have f1(0) = 4g2 and f1(t1) = 4g2−

(c2+8gδ )3

432ρ2 .
Thus, we have the following conclusion:
1. If g = 0, (i) when ρ < 0, then system (10) has only one equilibrium point E0(0,0); (ii) when ρ > 0, then

system (10) has three equilibrium points E0(0,0), Er1

(√
c2

8ρ
,0
)

and Er2

(
−
√

c2

8ρ
,0
)

.
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2. If g 6= 0, (i) when ρ > 0, c2 +8gδ −12 3
√

ρ2g2 = 0 or when ρ < 0,c2 +8gδ 6= 0, then system (10) has
two equilibrium points E1(φ1,0) and E2(φ2,0), where φ1 > φ2; (ii) when ρ > 0,c2 +8gδ > 0, f1(t1)< 0, then
system (10) has four equilibrium points E1(φ1,0), E2(φ2,0), E3(φ3,0) and E4(φ4,0), where φ1 > φ2 > φ3 > φ4.

Let M(φ j,0) be the coefficient matrix of the linearized system of (10) at an equilibrium point E j and
J(φ j,0) = detM(φ j,0). We have

J(0,0) =
c2

4
> 0, J

(
±

√
c2

8ρ
,0

)
=−c2

2
< 0, J(φ j,0) =−192ρφ

6
j

(
φ

2
j −

c2 +8gδ

12ρ

)
.

For an equilibrium point of the planar system (10), the following classification holds true: if J < 0, then the
equilibrium point is a saddle; if J > 0, then it is a center; if J = 0 and the index of the equilibrium point is zero,
then it is a cusp.

Let h0 = H(0,0) = 0, hr = H
(
±
√

c2

8ρ
,0
)
= c4

64ρ
and h j = H(φ j,0), where H is given by (8). Without loss

of generality, we discuss the case g≥ 0. By using the above information to do qualitative analysis, we have the
following bifurcations of the phase portraits of system (10) shown in Fig.1.

(a) g = 0, ρ < 0 (b) g = 0, ρ > 0

(c) g 6= 0, ρ > 0, 8gδ + c2 = 12 3
√

ρ2g2 (d) g 6= 0, ρ > 0, 8gδ + c2 > 12 3
√

ρ2g2

(e) g 6= 0, ρ < 0, 8gδ + c2 6= 0

Fig. 1 – Bifurcations of phase portraits of system (7) in the (φ ,y)-phase plane: (a) g = 0, ρ < 0; (b) g = 0, ρ > 0;
(c) g 6= 0, ρ > 0, 8gδ + c2 = 12 3

√
ρ2g2; (d) g 6= 0, ρ > 0, 8gδ + c2 > 12 3

√
ρ2g2; (e) g 6= 0, ρ < 0, 8gδ + c2 6= 0.
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3. EXPLICIT EXACT PARAMETRIC REPRESENTATIONS OF THE SOLUTIONS OF SYSTEM (7)

We now consider the explicit exact parametric representations of the solutions of system (7). We see from
(8) and the first equation of (7) that

ξ =
∫

φ

φ0

dφ

y(φ)
=
∫

φ

φ0

dφ√
ρφ 4− (c2+8gδ )

4 φ 2 +h− g2

φ 2

. (11)

3.1. The case of ggg === 000,,, ρρρ <<< 000 (see Fig.1a)

Corresponding to the level curves defined by H(φ ,y) = h,h ∈ (0,∞), there exists a family of periodic orbits
of system (7), enclosing the equilibrium point E(0,0). Now, y2 = −ρ(r1−φ)(φ + r1)(φ − r2)(φ − r̄2), where
r1 > 0, r2 and r̄2 are complex.

Then, we have the parametric representation of the periodic solution as follows:

φ(ξ ) =−r1cn(g1ξ ,k1), (12)

where a2
1 =−

(r2−r̄2)
2

4 , A2 = r2
1 +a2

1, g1 = A
√−ρ, k2

1 =
r2

1
A2 , cn(ξ ,k) is Jacobian elliptic function (see [1]).

(a) Periodic wave given by (12) (b) Periodic wave given by (13)

Fig. 2 – Periodic waves of system (7) given by (12) and (13).

3.2. The case of ggg === 000,,, ρρρ >>> 000 (see Fig.1b)

(i) Corresponding to the level curves defined by H(φ ,y) = h,h ∈ (0,hr), there exists a family of periodic
orbits of system (7), enclosing the equilibrium point E(0,0). Now, y2 = ρ(r1− φ)(r2− φ)(φ + r2)(φ + r1),
where r1 > r2 > 0.

Then, we have the parametric representation of the periodic solution as follows:

φ(ξ ) =
2r1r2sn2(g2ξ ,k2)− (r1 + r2)r2

(r1 + r2)−2r2sn2(g2ξ ,k2)
, (13)

where g2 =
(r1+r2)

√
ρ

2 , k2
2 =

4r1r2
(r1+r2)2 .

(ii) Corresponding to the level curves defined by H(φ ,y) = hr, there exist two heteroclinic orbits con-

necting the equilibrium points Er1

(√
c2

8ρ
,0
)

and Er2

(
−
√

c2

8ρ
,0
)

, enclosing the equilibrium point E0(0,0).

Now, y2 = ρ

(√
c2

8ρ
−φ

)2(
φ +

√
c2

8ρ

)2
.

Then, we have the parametric representations of the kink wave solution and anti-kink wave solutions as
follows:

φ(ξ ) =±

√
c2

8ρ
tanh

(√
c2

8
ξ

)
. (14)
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(a) Kink wave (b) Anti-kink wave

Fig. 3 – Kink and anti-kink waves of system (7) given by (14).

3.3. The case of ggg 6 6 6=== 000,,, ρρρ >>> 000,,, 888gggδδδ +++ ccc222 >>> 111222 333
√

ρρρ222ggg222 (see Fig.1d)

(i) Corresponding to the level curves defined by H(φ ,y) = h, h ∈ (h2,h1), there exist two families of
periodic orbits of system (7), enclosing the equilibrium points E2 (φ2,0) and E3 (φ3,0), respectively. Now,
y2 = ρ(r1−φ 2)(r2−φ 2)(φ 2−r3)

φ 2 , where 0 < r3 < r2 < r1.
Then, we have the parametric representations of the two families of periodic wave solutions as follows:

φ(ξ ) =±
√

r3 +(r2− r3)sn2(g3ξ ,k3), (15)

where g3 =
√

ρ(r1− r3), k2
3 =

r2−r3
r1−r3

.
(ii) Corresponding to the level curves defined by H(φ ,y) = h1, there exist two homoclinic orbits enclosing

the equilibrium points E2 (φ2,0) and E3 (φ3,0), respectively. Now, y2 =
ρ(φ 2

1−φ 2)2(φ 2−r1)

φ 2 , where r1 > 0.
Then, we have the parametric representations of the two solitary wave solutions as follows:

φ(ξ ) =±

√
r1 +

(
φ 2

1 − r1
)

tanh2
(√

ρ(φ 2
1 − r1)ξ

)
. (16)

(a) Dark solitary wave (b) Bright solitary wave

Fig. 4 – Solitary waves of system (7) given by (16).

3.4. The case of ggg 6 6 6=== 000,,, ρρρ <<< 000,,, 888gggδδδ +++ ccc222 6 6 6=== 000 (see Fig.1e)

Corresponding to the level curves defined by H(φ ,y) = h, h ∈ (h1,∞), there exist two families of pe-
riodic orbits of system (7), enclosing the equilibrium points E1 (φ1,0) and E2 (φ2,0), respectively. Now,
y2 = −ρ(r1−φ 2)(φ 2−r2)(φ

2−r3)
φ 2 , where r3 < 0 < r2 < r1.
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Then, we have the parametric representations of the two families of periodic wave solutions as follows:

φ(ξ ) =±

√
(r1− r3)r2− (r1− r2)r3sn2(g4ξ ,k4)

(r1− r3)− (r1− r2)sn2(g4ξ ,k4)
, (17)

where g4 =
√

ρ(r3− r1), k2
4 =

r1−r2
r1−r3

.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China under Grant (No. 11901547,
No. 11931016, No. 11671176), Natural Science Foundation of Zhejiang Province under Grant (No. LY20A010016),
start-up fund of Huaqiao University (Z16J0039).

REFERENCES

1. P. F. BYRD, M.D. FRIDMAN, Handbook of elliptic integrals for engineers and scientists, Springer, Berlin, 1971.
2. A. CHEN, L. GUO, X. DENG, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation,

J. Differential Equations, 261, pp. 5324–5349, 2016.
3. X. DENG, Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput., 204, 2, pp. 733–737,

2008.
4. Z. DU, J. LI, X. LI, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct.

Anal., 275, pp. 988–1007, 2018.
5. E.G. FAN, Traveling wave solutions for nonlinear equations using symbolic computation, Comput. Math. Appl., 43, pp. 671–680,

2002.
6. S. FANG, C. GUO, B. L. GUO, Exact traveling wave solutions of modified zakharov equations for plasmas with a quantum

correction, Acta Math. Sci. Ser. B (Engl. Ed.), 32, pp. 1073–1082, 2012.
7. B. FENG, K. MARUNO, Y. OHTA, A two-component generalization of the reduced Ostrovsky equation and its integrable semi-

discrete analogue, J. Phys. A, 50, p. 055201, 2017.
8. D.H. FENG, J. LI, J. JIAO, Dynamical behavior of singular traveling waves of (n+1)-dimensional nonlinear Klein-Gordon equa-

tion, Qual. Theory Dyn. Syst., 18, 1, pp.265–287, 2019.
9. Z. FENG, Exact solution to an approximate sine-Gordon equation in (n+1)-dimensional space, Phys. Lett. A, 302, pp. 64–76, 2002.
10. X. GENG, J. SHEN, B. XUE, A Hermitian symmetric space Fokas-Lenells equation: Solitons, breathers, rogue waves, Ann. Phys.,

404, pp. 115–131, 2019.
11. L. WU, G. HE, X. GENG, Quasi-periodic solutions to the two-component nonlinear Klein-Gordon equation, J. Geom. Phys., 66,

pp. 1–17, 2013.
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