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Abstract: A graph G is said to be fractional (a,b,k)-critical covered if after deleting any k vertices of G, the remaining
graph of G is fractional [a,b]-covered. In this article, we gain a binding number condition for a graph to be fractional
(a,b,k)-critical covered, which is an improvement and extension of Yuan and Hao’s previous result [Y. Yuan and R.
Hao, Neighborhood union conditions for fractional [a,b]-covered graphs, Bull. Malays. Math. Sci. Soc., 43, pp.
157167, 2020, https://doi.org/10.1007/s40840-018-0669-y].
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1. INTRODUCTION

We discussed only finite, undirected and simple graphs. For a graph G, the vertex set of G is denoted by
V (G), and the edge set of G is denoted by E(G). For a vertex v of G, we use dG(v) for the degree of v in G, and
NG(v) for the set of vertices adjacent to v in G. Let δ (G) = min{dG(v) : v ∈V (G)}. Let X be a vertex subset of
G. We write G[X ] for the subgraph of G induced by X , and G−X = G[V (G)\X ]. A subset X ⊆V (G) is called
independent if G[X ] does not possess edges. Let NG(X) =

⋃
v∈X

NG(v). The binding number of G is defined by

bind(G) = min
{ |NG(X)|
|X |

: /0 6= X ⊆V (G),NG(X) 6=V (G)
}
.

Let a and b be two integers with 0 ≤ a ≤ b. Then an [a,b]-factor of G is a spanning subgraph F of G
satisfying a ≤ dF(x) ≤ b for any x ∈ V (G). An r-factor is an [r,r]-factor. A fractional [a,b]-factor of G is
a function h from E(G) to [0,1] such that a ≤ dh

G(v) ≤ b for each v ∈ V (G), where dh
G(v) = ∑

e∈E(v)
h(e) and

E(v) is the set of edges incident with v. A fractional r-factor is a fractional [r,r]-factor. A graph G is said to
be fractional [a,b]-covered if for any e ∈ E(G), G possesses a fractional [a,b]-factor h such that h(e) = 1. A
fractional [a,b]-covered graph is called a fractional r-covered graph when a = b = r. For a nonnegative integer
k, a graph G is said to be fractional (a,b,k)-critical covered if after deleting any k vertices, the obtained graph is
fractional [a,b]-covered. A fractional (r,k)-critical covered graph is a fractional (r,r,k)-critical covered graph.

There are rich results on the problems of factors and fractional factors in graphs [1–22]. Furthermore, a
lot of results on the relationship between binding number and factors as well as fractional factors in graphs are
derived. For example, Katerinis and Woodall [23] pointed out a binding number condition for the existence
of r-factors in graphs; Kano and Tokushige [24] demonstrated a result on the relationship between the binding
number and the existence of f -factors in graphs; Zhou and Sun [25,26] derived some binding number conditions
for graphs to possess [1,2]-factors with given properties; Chen [27] put forward a binding number condition for
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[a,b]-factor; Zhou, Xu and Duan [28] studied the relationship between the binding number and the existence of
fractional r-factors in graphs; Yuan and Hao [29] gained a binding number condition for graphs being fractional
r-covered graphs.

The following results on fractional r-factors and fractional r-covered graphs depending on binding numbers
are known.

THEOREM 1 [28]. Let r ≥ 2 be an integer, and let G be a graph of order n such that n≥ 4r−6. Then (1)
G possesses a fractional r-factor if rn is even and bind(G)> (2r−1)(n−1)

r(n−2)+3 ; (2) G possesses a fractional r-factor

if rn is odd and bind(G)> (2r−1)(n−1)
r(n−2)+2 .

THEOREM 2 [29]. Let r be an integer with r ≥ 2, and let G be a graph of order n satisfying δ (G)≥ r+1
and n > 4r+1. Then G is fractional r-covered if bind(G)> (2r−1)(n−1)

r(n−2) .

In this article, we generalise Theorems 1 and 2 to fractional (a,b,k)-critical covered graphs, and point out
the relationship between binding numbers and fractional (a,b,k)-critical covered graphs. Furthermore, our
main result is claimed as follows.

THEOREM 3. Let a,b and k be nonnegative integers with a ≥ 1 and b ≥ max{a,2}, and let G be a
graph of order n with n ≥ (a+b−1)(a+b−2)+1

b + bk
b−1 . Then G is fractional (a,b,k)-critical covered if bind(G) >

(a+b−1)(n−1)
bn−a−b−bk .

We easily gain the following result when k = 0 in Theorem 3.

COROLLARY 1. Let a,b be integers with a ≥ 1 and b ≥ max{a,2}, and let G be a graph of order n with
n≥ (a+b−1)(a+b−2)+1

b . Then G is fractional [a,b]-covered if bind(G)> (a+b−1)(n−1)
bn−a−b .

If a = b = r in Corollary 1, then we possess the following result.

COROLLARY 2. Let r be an integer with r≥ 2, and let G be a graph of order n with n≥ 4r−6+ 3
r . Then

G is fractional r-covered if bind(G)> (2r−1)(n−1)
rn−2r .

We easily see that the result of Corollary 2 is stronger that one of Theorem 2. Hence, our main result
(Theorem 3) is an improvement and generalization of Yuan and Hao’s result (Theorem 2). If a = b = r in
Theorem 3, then we deduce the following corollary.

COROLLARY 3. Let r and k be nonnegative integers with r ≥ 2, and let G be a graph of order n with
n≥ (2r−1)(2r−2)+1

r + rk
r−1 . Then G is fractional (r,k)-critical covered if bind(G)> (2r−1)(n−1)

rn−2r−rk .

2. THE PROOF OF THEOREM 3

Li, Yan and Zhang [30] acquired a criterion for graphs being fractional [a,b]-covered, which plays an
important role in the proof of Theorem 3.

LEMMA 1 [30]. Let a and b be two integers with b≥ a≥ 0. Then a graph G is fractional [a,b]-covered if
and only if

γG(S,T ) = b|S|+dG−S(T )−a|T | ≥ ε(S,T )

for any subset S of V (G), where T = {t : t ∈V (G)\S,dG−S(t)≤ a} and ε(S,T ) is defined by

ε(S,T ) =


2, i f S is not independent,
1, i f S is independent, and there is an edge joining V (G)\ (S∪T ) and S, or

there is an edge e = uv joining T and S such that dG−S(v) = a f or v ∈ T,
0, otherwise.
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LEMMA 2 [31]. Let G be a graph of order n, and let c be a positive real number. If bind(G) > c, then
δ (G)> n− n−1

c .

Proof of Theorem 3. Let Q ⊆ V (G) with |Q| = k. Setting H = G−Q. It suffices to demonstrate that H is
fractional [a,b]-covered. Suppose, to the contrary, that H is not fractional [a,b]-covered. Then it follows from
Lemma 1 that

γH(S,T ) = b|S|+dH−S(T )−a|T | ≤ ε(S,T )−1 (1)

for some subset S of V (H), where T = {u : u ∈V (H)\S,dH−S(u)≤ a}.

CLAIM 1. δ (H)≥ a+1.

Proof. Using Lemma 2, n≥ (a+b−1)(a+b−2)+1
b + bk

b−1 and bind(G)> (a+b−1)(n−1)
bn−a−b−bk , we deduce

δ (G) > n− n−1
(a+b−1)(n−1)

bn−a−b−bk

=
(a−1)n+a+b+bk

a+b−1

≥
(a−1)

(
(a+b−1)(a+b−2)+1

b + bk
b−1

)
+a+b+bk

a+b−1

≥
(a−1)

(
(a+b−1)(a+b−2)+1

b + k
)
+a+b+bk

a+b−1

=
(a−1)(a+b−2)

b
+ k+

a−1
b +a+b
a+b−1

≥ (a−1)(a+b−2)
b

+ k+
a+b

a+b−1
.

If a = 1, then δ (G)> k+ 1+b
b > 1+ k. By the integrity of δ (G), δ (G)≥ 2+ k = a+ k+1.

If a ≥ 2, then δ (G) > (a−1)(a+b−2)
b + k+ a+b

a+b−1 ≥ (a−1)+ k+1+ 1
a+b−1 > a+ k. Applying the integrity

of δ (G), δ (G)≥ a+ k+1.
Hence, we gain that δ (G) ≥ a+ k + 1. Combining this with H = G−Q and |Q| = k, we possess that

δ (H)≥ a+1. Claim 1 is proved. 2

CLAIM 2. |S| ≥ 2.

Proof. If |S| = 0, then it follows from (1), ε(S,T ) = 0 and Claim 1 that −1 = ε(S,T )− 1 ≥ γH(S,T ) =
dH(T )−a|T | ≥ (δ (H)−a)|T | ≥ |T | ≥ 0, a contradiction.

If |S|= 1, then by (1), ε(S,T )≤ 1 and Claim 1, we find

0 = ε(S,T )−1≥ γH(S,T ) = b|S|+dH−S(T )−a|T |
≥ b|S|+dH(T )−|T |−a|T | ≥ b|S|+δ (H)|T |− |T |−a|T |
= b|S|+(δ (H)−a−1)|T | ≥ b|S|= b≥ 2,

this is a contradiction. Hence, |S| ≥ 2. We verify Claim 2. 2

CLAIM 3. T 6= /0.

Proof. Assume that T = /0. Using (1), ε(S,T )≤ 2 and Claim 2, we deduce ε(S,T )−1≥ γH(S,T ) = b|S| ≥
|S| ≥ 2≥ ε(S,T ), which is a contradiction. Claim 3 is justified. 2

Note that T 6= /0 by Claim 3. Therefore, we may define d = min{dH−S(t) : t ∈ T}. In light of the definition
of T , we derive 0≤ d ≤ a.
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Case 1. d = 0.
CLAIM 4. bn−a−b−bk

n−1 ≥ 1.

Proof. Note that n≥ (a+b−1)(a+b−2)+1
b + bk

b−1 , a≥ 1 and b≥max{a,2}. Thus, we verify that

bn−a−b−bk− (n−1) = (b−1)n−a−b−bk+1

≥ (b−1)
((a+b−1)(a+b−2)+1

b
+

bk
b−1

)
−a−b−bk+1

=
(b−1)(a+b−1)(a+b−2)

b
+

b−1
b
−a−b+1

≥ (b−1)(a+b−2)− (a+b−2)− 1
b

= (b−2)(a+b−2)− 1
b
≥−1

b
>−1.

Note that bn−a−b−bk− (n−1) is an integer. Hence, we gain bn−a−b−bk− (n−1)≥ 0, that is,

bn−a−b−bk
n−1

≥ 1.

Claim 4 is demonstrated. 2

Let β = |{t ∈ T : dH−S(t) = 0}|. Obviously, β ≥ 1 by d = 0. Writing W = V (H) \ S = V (G) \ (S∪Q),
we deduce that W 6= /0 and |NG(W )| ≤ n−β . Combining these with the definition of bind(G) and bind(G) >
(a+b−1)(n−1)

bn−a−b−bk , we gain that

n−β ≥ |NG(W )| ≥ bind(G)|W |> (a+b−1)(n−1)
bn−a−b−bk

(n− k−|S|),

namely,

|S|> n− k− (n−β )(bn−a−b−bk)
(a+b−1)(n−1)

. (2)

Note that dH−S(T )≥ |T |−β . By (2), |S|+ |T |+ |Q|= |S|+ |T |+ k ≤ n, ε(S,T )≤ 2 and Claim 4, we gain

γH(S,T ) = b|S|+dH−S(T )−a|T | ≥ b|S|+ |T |−β −a|T |
= b|S|− (a−1)|T |−β ≥ b|S|− (a−1)(n− k−|S|)−β

= (a+b−1)|S|− (a−1)(n− k)−β

> (a+b−1)
(

n− k− (n−β )(bn−a−b−bk)
(a+b−1)(n−1)

)
− (a−1)(n− k)−β

≥ (a+b−1)
(

n− k− (n−1)(bn−a−b−bk)
(a+b−1)(n−1)

)
− (a−1)(n− k)−1

= a+b−1≥ b≥ 2≥ ε(S,T ),

contradicting (1).

Case 2. 1≤ d ≤ a.
Select t1 ∈ T satisfying dH−S(t1) = d. Let X = (V (H) \ S) \NH−S(t1). Visibly, t1 ∈ X and t1 /∈ NG(X).

Hence, X 6= /0 and NG(X) 6= V (G). From the definition of bind(G), bind(G) > (a+b−1)(n−1)
bn−a−b−bk and |V (H)| =

|V (G)|− k = n− k, we derive

n−1≥ |NG(X)| ≥ bind(G)|X |> (a+b−1)(n−1)
bn−a−b−bk

· (n− k−|S|−d),
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namely,

|S|> n− k−d− bn−a−b−bk
a+b−1

. (3)

It follows from (1), (3), |S|+ |T |+ k ≤ n and ε(S,T )≤ 2 that

1 ≥ ε(S,T )−1≥ γH(S,T ) = b|S|+dH−S(T )−a|T |
≥ b|S|+d|T |−a|T |= b|S|− (a−d)|T |
≥ b|S|− (a−d)(n− k−|S|)
= (a+b−d)|S|− (a−d)(n− k)

> (a+b−d)
(

n− k−d− bn−a−b−bk
a+b−1

)
− (a−d)(n− k),

i.e.,

1 > (a+b−d)
(

n− k−d− bn−a−b−bk
a+b−1

)
− (a−d)(n− k). (4)

Subcase 2.1. d = 1.
By applying (4), we obtain

1 > (a+b−1)
(

n− k−1− bn−a−b−bk
a+b−1

)
− (a−1)(n− k) = 1,

it is a contradiction.

Subcase 2.2. 2≤ d ≤ a.
Let f (d) = (a+b−d)(n−k−d− bn−a−b−bk

a+b−1 )−(a−d)(n−k). Then in view of n≥ (a+b−1)(a+b−2)+1
b + bk

b−1
and 2≤ d ≤ a, we have

f ′(d) = −n+ k+d +
bn−a−b−bk

a+b−1
−a−b+d +n− k

=
bn−a−b−bk

a+b−1
+2d−a−b

≥ (a+b−1)(a+b−2)+1+bk−a−b−bk
a+b−1

+2d−a−b

= 2d−3≥ 1 > 0.

Thus, we deduce that f (d)≥ f (2). Using (4) and n≥ (a+b−1)(a+b−2)+1
b + bk

b−1 , we gain

1 > f (d)≥ f (2) = (a+b−2)
(

n− k−2− bn−a−b−bk
a+b−1

)
− (a−2)(n− k)

=
b(n− k)− (a+b−2)2

a+b−1
≥ (a+b−1)(a+b−2)+1− (a+b−2)2

a+b−1
= 1,

a contradiction. Finishing the proof of Theorem 3. 2

3. REMARK

We now claim that bind(G) > (a+b−1)(n−1)
bn−a−b−bk in Theorem 3 is sharp, namely, we construct a graph which

shows that we cannot replace bind(G)> (a+b−1)(n−1)
bn−a−b−bk by bind(G)≥ (a+b−1)(n−1)

bn−a−b−bk in Theorem 3.
Let a,b,k be nonnegative integers with 2 ≤ a ≤ b and b being odd, l be any enough large positive integer

with 2(a−1)l+1
b being an integer, and G = K 2(a−1)l+1

b +k ∨ (lK2) be a graph of order n, where ∨ means “join”. Let
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H = G−Q, where Q⊆V (K 2(a−1)l+1
b +k) with |Q|= k. Then H is not fractional [a,b]-covered by Lemma 1 since

for S =V (K 2(a−1)l+1
b +k)\Q and T =V (lK2), we deduce

γH(S,T ) = b|S|+dH−S(T )−a|T |= 2(a−1)l +1+2l−a · (2l) = 1 < ε(S,T ),

where ε(S,T ) = 2 since S is not independent. And so, G is not fractional (a,b,k)-critical covered. Moreover,
we admit that

bind(G) =
|NG(V (lK2)\{u})|
|V (lK2)\{u}|

=
n−1
2l−1

=
(a+b−1)(n−1)
(a+b−1)(2l−1)

=
(a+b−1)(n−1)

bn−a−b−bk
,

where u ∈V (lK2). Hence, the condition bind(G)> (a+b−1)(n−1)
bn−a−b−bk in Theorem 3 is best possible.
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