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Abstract. In order to determine if the behavior of a generator is random enough to be used in 
cryptographic applications, one can use the well-known NIST (National Institute of Standards and 
Technology) randomness test suite. In our previous work, we were empirically lead to the idea that 
the randomness or the lack of randomness affirmed by the well-known NIST tests can also be 
determined through the analysis of some chaos theory specific tools like the Lyapunov largest 
exponents and the bifurcation diagrams. In this paper we perform an experimental study to show how 
NIST tests and the Lyapunov exponents and bifurcation diagrams can cooperate when evaluating the 
randomness of chaos based pRNGs. We analyze five such pRNGs found in existing literature to 
establish a good foundation for our work. The conclusion is that the analysis by means of Lyapunov 
exponents and the bifurcation diagrams is a requirement in order to select the dynamic system 
parameters to design chaos-based pRNGs. However, only a good selection of the chaotic system 
parameters is not enough, the pRNG randomness quality depends on the generator design and must be 
evaluated by other methods, therefore the use of NIST Statistical Test Suite is highly important. Also, 
in the first part of the paper previous results are enriched with new details. 
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1. INTRODUCTION AND PROBLEM STATEMENT 

A necessary condition for a good chaos-based pseudo random number generator (pRNG) is that the 
evolution of the underlying system is chaotic. The system must be non-periodic and highly sensitive to the 
initial state. Here, for the initial state of the pRNGs we use the standardized term, i.e. seed. The seed is 
composed of bifurcation parameters and initial values of the states of the system. This is the form that can 
guarantee the largest possible seed space. 

Some of our results when evaluating chaos-based pRNGs were presented in [1,2]. The three-
dimensional Hénon map [3,4] in (1), with a in (0, 2), b in (−0.3, 0.3) and x, y, z in (−2, 2), was used to 
generate three floating-point time series. The pRNG took the last significant byte of the samples from the 
three-time series, xk , yk , zk  and added them modulo two without carry, resulting in a new byte. 

2
1k k kx a y bz+ = − − ;   1k ky x+ = ;   1k kz y+ = . (1)

Given the definition intervals for (1) and working in double precision floating point [5], the seed space 
could have 6.6×1015 elements. While evaluating the resulted pRNG, the authors observed a close 
correspondence between the randomness affirmed by the well-known NIST [6] tests and the analysis of some 
chaos theory specific tools, the Lyapunov largest exponents [7] and the bifurcation diagrams [8]. From this 
observation, the question arose whether these chaos specific metrics could be helpful in determining the 
degree of randomness of chaos based pRNGs knowing the initial conditions and parameters. Most generator 
proposals promote valid initial states, from which the system exhibits chaotic behavior. For the generalized 
Hénon map, the literature specifies a valid pair of parameters (a, b) to be (1.76, 0.1). We could settle on that 
pair and fix the values, greatly decreasing the seed space of the generator - an important parameter for 
cryptographic pRNGs. One of the approaches to mitigate this issue is dynamically changing the parameters 
during runtime. Thus, even if the initial state is not valid, the generator will not be stuck in a pattern or on a 
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fixed value. Another method would be to filter the selected parameters depending on some easy-computable 
metrics. This is where the present research might be of use. 

2. EVALUATION OF SOME CHAOS-BASED PRNGS 

2.1. More details on the generalized Hénon map based pRNG 

In this paper, the parameter b  of the three-dimensional Hénon map is fixed at 0.1, initial conditions at 
x0 = y0 = z0 = 0 and a  is varied in its entire definition domain, (0, 2), with a step of 10−3. The bifurcation 
diagram and Lyapunov exponents are depicted in Fig.1. From the two images, one would say that the valid 
seed space for parameter a  is Ka = [0.786, 1.077] ∪ [1.4, 1.76]. For the subinterval [0.786, 1.077] the 
largest Lyapunov exponent is almost zero, implying stability of the Hénon map (1). For the computation step 
10−3, for three of the values in [1.4, 1.76] the largest Lyapunov exponent is negative, meaning these values 
do not form a valid pair with the parameter b = 0.1. As the computation step is decreased, in Fig.  2,  
10−4 reveals nine values of the parameter a  that, when b = 0.1, take system (1) in a periodic regime ( 1 0λ < ). 
When going deeper, at 10−5, the number of pairs that do not engender chaos is more than one hundred. 
 

 
Fig. 1 – Bifurcation diagrams (left) and Lyapunov exponents (right) for the Hénon map using a computation step of 10−3. 

λ1 in blue, λ2 in red, λ3 in black. 

Table 1 gives the approximate magnitude order and the signum for the Lyapunov exponents for a  in 
[0.8, 0.9].  A NIST test suite is also run for b = 0.1,  x0 = y0 = z0 = 0 and a in Ka , with a step of 10−3; results 
are summarized in Table 2. The number in parenthesis points to the number of the failed tests from that 
category. We were intrigued by the fact that some of the pairs resulted in zero NIST tests failed, even if the 
Lyapunov exponents are very close to zero, but still positive. For example, a = 0.803 gives 6

1 10−λ = . All 
NIST tests were passed, but the pair (a , b) = (0.803, 0.1) results in the attractor in Fig.3 (left). 

When compared to the attractor engendered by (a , b) = (1.75, 0.1), one can see the tendency of the 
iterations to form a closed periodic orbit. This relation between close to zero values of the greatest Lyapunov 
exponent and the pRNG passing all NIST tests must be analyzed in a future work. 
 

Table 1 
The Lyapunov exponents of the Hénon map for b = 0.1 and varying a in [0.8, 0.9] 

a λ1 λ2 λ3 
0.800 - 0.802, 0.806, 0.807, 0.809, 0.810, 0.813, 0.816 - 0.820, 0.824 - 0.826, 0.828, 0.831, 0.833 -
0.835, 0.841, 0.842, 0.844, 0.845, 0.846, 0.848, 0.850, 0.854, 0.858 - 0.863, 0.867, 0.869, 0.871, 
0.875, 0.877, 0.879, 0.880, 0.883-0.885, 0.889, 0.891, 0.897 - 0.900 

10−5 10−2 −2 

0.803 - 0.805, 0.808, 0.811, 0.812, 0.814, 0.815, 0.821 - 0.823, 0.827, 0.829, 0.830, 0.832, 0.836 -
0.840, 0.843, 0.847, 0.849, 0.851 - 0.853, 0.855 - 0.857, 0.864, 0.865, 0.866, 0.868, 0,870, 0.872 -
0.874, 0.876, 0.878, 0.881, 0.882, 0.886 - 0.888, 0.889, 0.892 - 0.896 

10−6 10−2 −2 
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Fig. 2 – Zoom on the two largest Lyapunov exponents for the Hénon map. Computation step of 10−4 (left) and 10−5 (right). 

λ1 in blue, λ2 in red, λ3 in black. 
 

Table 2 
The failed NIST tests for b = 0.1 and varying a  

Failed NIST test a  in [0.8, 1.09] a  in [1.4, 1.76) 
Frequency 0.888, 1.044, 1.088, 1.089, 1.090 1.404 
Block Frequency 0.958, 0.996, 0.999, 1.026, 1.042, 

1.071, 1.088, 1.089, 1.090 
1.404, 1.427, 1.627, 1.655, 1.682 

CumulativeSums (2 tests) 0.888, 0.988, 0.999, 1.007, 1.019 (1); 
1.044, 1.088, 1.089, 1.090 (2) 

1.404 (2); 1.600, 1.655, 1.682 (1) 

Runs, LongestRun, Rank,  1.404, 1.655, 1.682   
OverlappingTemplate 1.481, 1.655, 168, 1.726 
Universal 1.404, 1.655, 1.682 
FFT 

1.088, 1.089, 1.090 

1.404, 1.425, 1.505, 1.655, 1.682 
NonOverlappingTemplate 
(148 tests) 

0.819, 0.827, 0.828, 0.829, 0.834, 
0.837, 0.853, 0.862, 0.864, 0.867, 
0.868, 0.871, 0.880, 0.902, 0.904, 
0.917, 0.918, 0.926, 0.928, 0.935, 
0.937, 0.942, 0.943, 0.944, 0.947, 
0.957, 0.979, 0.980, 0.984, 0.991, 
1.000, 1.010, 1.021, 1.027, 1.032, 
1.036, 1.054 (1); 0.815, 0.933, 
1.037 (2); 0.812 (3); 0.840 (4); 
1.088, 1.089, 1.090 (148) 

1.408, 1.411, 1.413, 1.418, 1.421, 1.423, 1.435, 1.447, 
1.448, 1.451, 1.458, 1.461, 1.462, 1.486, 1.487, 1.493, 
1.498, 1.502, 1.506, 1.511, 1.512, 1.514, 1.520, 1.529, 
1.539, 1.544, 1.558, 1.584, 1.585, 1.594, 1.596, 1.597, 
1.607, 1.623, 1.628, 1.630, 1.638, 1.641, 1.650, 1.470, 
1.465, 1.658, 1.668, 1.672, 1.673, 1.679, 1.687, 1.691, 
1.702, 1.727, 1.728, 1.733, 1.748, 1.753, 1.759, 1.481, 
1.726 (1); 1.428, 1.523, 1.560, 1.632, 1.655, 1.682, 
1.708, 1.723, 1.731, 1.537 (3); 1.404 (118) 

ApproximateEntropy 0.965, 0.975, 0.988, 0.996, 1.007, 
1.022, 1.028, 1.030, 1.088, 1.089, 
1.090 

1.404, 1.578, 1.655, 1.682 

Serial (2 tests) 0.995, 1.088 (1); 1.089, 1.090 (2) 1.483, 1.701 (1); 1.404, 1.655, 1.682 (2) 
LinearComplexity 1.088, 1.089, 1.090 1.404, 1.655, 1.682 
Random Excursions 0.865, 0.904, 1.043  

 

 
Fig. 3 – Attractors for the Hénon map for b = 0.1 and a = 0.803 (left) or a =1.75 (right). 
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2.2. Analysis of some Chaos-Based pRNGs from the literature 

To confirm or to disagree with that intuition affirmed by [1] the authors took some chaos-based pRNGs 
existing in the literature and confronted them to the same analysis as the above pRNG based on the three-
dimensional Hénon map was. They are called Generator k , with k ={1,2…,5}, for the ease of naming them 
in the remaining of the paper. 

The algorithms used by the five pRNGs and the underlying (chaotic) systems are briefly described. 
These algorithms are implemented in Matlab 2017a and in C++1. Bifurcation diagrams and Lyapunov 
exponents were computed for each generator. Values for the parameters of the underlying maps/flow 
engendering chaotic or periodic behavior were chosen and NIST tests were run as they were for the Hénon 
map based pRNG. Conclusions regarding the utility of this approach to accelerate the evaluation of chaos-
based pRNGs are drawn in the final section. 

GENERATOR 1 [9] proposes a new technique to improve the randomness properties of chaos-based 
cryptosystems. This technique has been applied to an algorithm based on a skew tent map (2). The 
improvement consists in using a set of different values for the chaotic parameter. 
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GENERATOR 2 [10] combines the piecewise linear chaotic map (3) with the logistic map (4), with 
x[k] in (0,1) and b in (0,4]. A set of transformations is applied to the two chaotic maps, then a bitwise XOR 
operation is applied between the transformed chaotic maps. 
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GENERATOR 3 [11] is a pRNG based on the iteration of two logistic maps (4). The output of the 
pRNG is generated by comparing at each iteration the values of the two logistic maps. Based on the 
comparison between the values of the two, at each iteration, the output is either 1 or 0. 

( ) ( )[ 1] [ ] 1 [ ] ,   [ ] 0,1x k bx k x k x k+ = − ∈ . (4)

GENERATOR 4 [12] constructs a pRNG using two logistic maps and S-box (substitution boxes) 
tables. The output of this pRNG are 8-bit numbers. 

GENERATOR 5 [13] presents a pRNG based on a new chaotic flow digitized with a DSP: 
2d / d zx t a y d= − + ;    d / dy t cy x= + ;    d / dz t x bz= − . (5)

We have implemented all five generators both in Matlab 2017a – to plot bifurcation diagrams and 
Lyapunov exponents – as well as C++, to integrate the code with the statistical tests. The bifurcation 
diagrams and Lyapunov exponents for the maps used by GENERATORS 1-4, namely the skew tent map and 
the logistic map, are already known [4,14], so we do not show them in the present paper. As for 
GENERATOR 5, the test parameters in Table 3 are chosen from the indications given by the authors in [12], 
because the frequency used for sampling is not specified. We have selected several seed values (initial states 
                                                           

1  https://gitlab.dcae.pub.ro/research/chaos/rcd-2019/tree/master 
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and parameters) that display chaotic behavior and some that do not. For these seed values we have run the 
NIST test battery. We expected to find a correspondence between results: only the seeds for which the 
bifurcation diagrams show many solutions and the largest Lyapunov exponent is positive, are the seeds that 
determine a low number of failed NIST tests. 

Table 3 

Results of NIST test suite with different values of parameters for GENERATORs 1-5 

 Parameters  Behavior  Failed runs  Corresponding 

GEN 1 γ  = rand(0,1) chaotic 1 Fig. 4 (top left) 

b = 3.776 chaotic 1 Fig. 4 (top center)  
GEN 2 b = 2.7 periodic 161 Fig. 4 (bottom center) 

b = 3.776 chaotic 154 Fig. 4 (top right)  
GEN 3 b = 3 periodic 158 Fig. 4 (bottom right) 

b = 3.776 chaotic 12 Fig. 5 (first 2 images)  
GEN 4 b = 2.3 periodic 162 Fig. 5 (5th and 6th images) 

a = 10, b = 3.5, c = 0.65, d = 4.7 chaotic 1 Fig. 5 (3rd and 4th images)  
GEN 5 a = 30, b = 2.5, c = 0.25, d = 6500 periodic 162 Fig. 5 (7th and 8th images) 

 
The images in Fig. 4 and Fig. 5 illustrate results when enciphering the image using GENERATORs 1-5. 

With values for the control parameter(s) which engender chaotic behavior, we obtain proper encrypted 
images. This result along with the bifurcation diagrams and the largest Lyapunov exponent sustain the 
pseudo-randomness of the pRNGs. Otherwise, when using values for the control parameters that generate a 
non-chaotic behavior (as pointed out by the bifurcation diagrams and Lyapunov exponents) the results show 
inappropriate encrypted images and non-uniform histograms. This indicates the lack of pseudo-randomness 
of the generators. 

3. CONCLUSION 

In this paper, we have extended our analysis regarding the correspondence between the NIST statistical 
tests for pseudo-random number generators and specific chaotic metrics – Lyapunov exponents and 
bifurcation diagrams – as a possible way to validate chaos based pRNGs (and) seeds. More details were 
provided for our previous proposal of a generalized Hénon map based pRNG. As the computation step is 
decreased, when investigating the bifurcation parameters, more values for which the greatest Lyapunov 
exponent is negative (periodic behavior of the system) are revealed. These values must be removed from the 
seed space. Without a detailed study of the bifurcation diagrams and Lyapunov exponents, an unadvised user 
of a chaos based pRNG would be prone to choose an inappropriate seed. NIST tests would correct this wrong 
choice, but they are less accessible to the common user. Even if the NIST test suite is open source and their 
interpretation is available [14], the test battery is much more difficult to understand and to track than the 
chaos specific metrics previously mentioned. 

We have also selected five proposed pRNG architectures and we have compared the NIST battery test 
results to the previously mentioned metrics. For the chaos-based generators which periodically change their 
bifurcation parameters (e.g. GEN 1, GEN 4) another approach must be devised since we cannot study the 
chaos specific metrics for a given value of the initial seed. 

The results show a tight link between NIST tests and the chaos metrics. There are still inconsistencies 
that could be explained by the fact that the randomness of the sequences does not depend only on the chaotic 
state of the underlying system, but also on the post-processing and the pRNG architecture. Even though 
chaos-specific metrics are easy to implement and provide some initial hints on the quality of the selected 
parameters, they do not replace the statistical analysis of the resulted generator. Nevertheless, the present 
results show a promising approach to be investigated further. 
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Fig. 4 – Results of encryption with each of the GENERATORS 1-3 for a suitable seed (top) and a bad one (bottom) and 

corresponding histograms for pixel values. 
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Fig. 5 – Results of encryption with each of the GENERATORS 4-5 and corresponding histograms for pixel values. 

Suitable seeds (first two rows) and non-suitable (last two rows). 
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