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Abstract: Secure computation supports collaborative applications with private inputs and outputs, by providing cryp-
tographic protocols that protect data privacy during the computation. Important applications, like statistical analysis,
benchmarking, data mining, and optimizations, require accurate and efficient secure computation with floating-point
numbers. Secure floating-point addition is the main performance bottleneck and severely affects the performance of
tasks that involve many additions. We present in this paper optimized protocols for evaluating sums, dot products, and
polynomials, that offer important performance gains with respect to generic constructions. These protocols are part
of a framework for secure multiparty computation with real numbers, constructed using a small collection of building
blocks based on Shamir secret sharing.
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1. INTRODUCTION

A privacy-preserving collaborative application allows a group of mutually distrustful parties to run a joint
computation without having to reveal their private inputs. Secure computation supports such applications by
providing cryptographic protocols that protect data privacy throughout the computation. Important applications,
like statistical analysis, benchmarking, data mining, and optimizations, require computation with real numbers
and need the accuracy and dynamic range offered by floating-point numbers [1, 3, 8, 15]. The deployment of
these applications is hindered by the severe performance penalty caused by the cryptographic protocols. The
main drawback of secure floating-point arithmetic is addition, which is much slower than the other operations
[6], and thus severely degrades the performance of a broad range of important tasks. This motivates further
research, to find solutions that better satisfy the performance requirements of the applications, using alternative
data representations and tradeoffs between performance and accuracy [14].

In this paper, we focus on secure multi-operand floating-point addition and related tasks, like evaluating
dot products and polynomials. We show protocols that compute these tasks much more efficiently than usual,
generic constructions, alleviating to a large extent the bottleneck caused by floating-point addition. Moreover,
this performance gain is achieved without loss of accuracy.

Comprehensive support for secure multiparty computation with real numbers is offered by two frameworks
based on secret sharing (building blocks, arithmetic operations, and applications). The first framework relies on
Shamir secret sharing [11] and related techniques [10]. Protocols for secure integer and fixed-point arithmetic
were presented in [7,9] and used in secure liner programming [8]. Follow-up work added secure floating-point
arithmetic [2, 6] and other applications [1]. The building blocks offer variants optimized for round complexity
(fewer interactions between parties) or communication complexity (less data exchanged by the parties) [7]. The
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other framework, Sharemind, is based on additive secret sharing and offers protocols for secure computation
with fixed-point and floating-point numbers, as well as alternative representations of real numbers [3, 15]. The
protocols and the implementation are highly optimized for low communication complexity.

The protocols presented in this paper rely on the first framework, extended with building blocks and op-
timizations aimed at providing better support for secure computation with real numbers [5, 6]. The paper is
structured as follows. Section 2 is an overview of the secure computation model, data encoding, and building
blocks. The new protocols used for secure multi-operand floating-point addition are presented in Section 3, fol-
lowed by protocols for evaluating dot products and polynomials, in Section 4, We summarize the main results
in Section 5, including a preliminary analysis of protocol complexity and performance measurements.

2. PRELIMINARIES

The protocols are based on standard primitives for secure computation using Shamir secret sharing [11] and
related techniques [10, 12]. They offer perfect or statistical privacy, assuming perfectly secure communication
channels. Core primitives provide secure arithmetic in a finite field F using Shamir secret sharing over F, with
perfect privacy against a passive threshold adversary that corrupts t out of n parties: the parties follow strictly the
protocol and any t +1 parties can reconstruct a secret, while t or less parties cannot distinguish it from random
values in F. The parties locally compute addition/subtraction of shared field elements by adding/subtracting
their shares. Tasks that involve multiplication require interaction and are computed by dedicated protocols.

The limitations of secure arithmetic with shared data are overcome by combining secret sharing with ad-
ditive or multiplicative hiding: for shared variable JxK, the parties jointly generate a shared random value JrK,
compute JyK = JxK+ JrK or JyK = JxK · JrK,x 6= 0, and reveal y (similar to one-time pad encryption with key r).

The protocols are evaluated using two complexity metrics that focus on interaction. Communication com-
plexity counts the invocations of 3 primitives during which every party sends a share to the others: input sharing,
multiplication, and secret reconstruction. Round complexity is the number of sequential invocations. The first
metric takes into account the amount of data and the local computation involved in the execution of the interac-
tive primitives. The second one takes into account the effects of other communication delays. The pseudocode
of the protocols is annotated with the number of rounds followed by the number of interactive primitives.

Interactive operations that do not depend on each other are executed in parallel, in a single round. In
particular, all shared random values used by a secure computation task can be precomputed in parallel. Part of
these shared random values are generated without interaction, using Pseudo-random Replicated Secret Sharing
(PRSS) [10] and its integer variant (RISS) [13] (random field elements and integers, and random sharings of 0).

Boolean, integer, fixed-point, and floating-point data types are encoded as elements of a finite field F. In
this paper, all protocols use the field Zq, with prime q large enough for all data types. Different representations
of a value are distinguished as follows: we denote x̃ a fixed-point number, x̄ the integer value that encodes x̃,
x the field element that encodes x̄, and JxK a sharing of secret x; a floating-point number is denoted x̂. The
notation x = (condition)? a : b means that x is assigned the value a when condition = true and b otherwise.

Boolean values f alse, true and bit values 0,1 are encoded as 0F and 1F , respectively. This encoding allows
efficient secure evaluation of Boolean functions using secure arithmetic in F [7].

Signed integer types are defined as Z〈k〉 = {x̄ ∈ Z | x̄ ∈ [−2k−1,2k−1−1]}. They are encoded in Zq by the
function fld : Z〈k〉 7→ Zq, fld(x̄) = x̄ mod q, for q > 2k+κ , where κ is the security parameter (negative integers
x̄ ∈ [−2k−1,−1] are mapped to x ∈ [q−2k−1,q−1]). This enables efficient secure integer arithmetic based on
secure arithmetic in Zq: for any x̄1, x̄2 ∈ Z〈k〉 and � ∈ {+,−, ·}, we compute x̄1� x̄2 = fld−1(fld(x̄1)�fld(x̄2));
also, if x̄2 | x̄1 then x̄1/x̄2 = fld−1(fld(x̄1) ·fld(x̄2)

−1).
Signed fixed-point types are rational numbers defined as QFX

〈k, f 〉 = {x̃ ∈ Q | x̃ = x̄2− f , x̄ ∈ Z〈k〉}, for f < k.
QFX
〈k, f 〉 is mapped to Z〈k〉 by the function int : QFX

〈k, f 〉 7→ Z〈k〉, x̄ = int f (x̃) = x̃2 f , and then encoded in Zq as
described above. Secure fixed-point multiplication and division require q > 22k+κ .
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Table 1

Complexity of the main building blocks used in this paper.

Protocol Rounds Inter. op. Precomp.
Div2m(JaK,k,m) 3 m+2 3m
Div2mP(JaK,k,m) 1 1 m
Div2(JaK,k) 1 1 1
LTZ(JaK,k) 3 k+1 3k

Protocol Rounds Inter. op. Precomp.
PreDiv2m(JaK,k,m) 3 2m+1 4m
PreDiv2mP(JaK,k,m) 1 1 m
SufOr({JaiK}k

i=1) 2 2k−1 3k
Int2Mask(JxK,k) 1 k−1 2k−3

Floating-point numbers x̂ ∈ QFL
〈l,g〉 are defined as tuples 〈v̄, p̄,s,z〉, where v̄ ∈ [2`−1,2` − 1]∪ {0} is the

unsigned, normalized significand, p̄ ∈ Z〈g〉 is the signed exponent, s = (v̄ < 0)? 1 : 0, and z = (v̄ = 0)? 1 : 0,
encoded in Zq as described above. The value of the number is x̂ = (1−2s) · v̄ ·2p̄. If x̂ = 0 then v̄ = 0, z = 1, and
p̄ =−2g−1. This encoding of x̂ = 0 is justified by an efficiency tradeoff: it offers a significant gain for addition,
the main performance bottleneck, with negligible loss for multiplication and division. Secure floating-point
multiplication and division require q > 22`+κ .

Fixed-point and floating-point arithmetic protocols rely on a small set of building blocks introduced in [5,7],
that efficiently compute b̄= ā ·2m and c̄≈ ā/2m, for secret ā, b̄, c̄∈Z〈k〉 and public or secret integer m∈ [0,k−1].
Table 1 lists their online complexity (rounds and interactive operations) and precomputation complexity.

If m is public, ā ·2m is a local operation and ā/2m is computed by Div2m or Div2mP [7,9]. Div2m rounds to
−∞, while Div2mP rounds probabilistically to the nearest integer. We denote their outputs bā/2mc and bā/2me,
respectively. Div2mP computes c̄ = bā/2mc+ u and u = 1 with probability p = ā mod 2m

2m (e.g., if ā = 46 and
m = 3 then ā/2m = 5.75; the output is c̄ = 6 with probability p = 0.75 or c̄ = 5 with probability 1− p = 0.25).
For both variants, the rounding error is |δ |< 1 and δ = 0 if 2m divides ā. Div2mP is much more efficient than
Div2m and its output is likely more accurate. However, many applications need Div2m. For example, LTZ uses
Div2m to compute s = (ā < 0)? 1 : 0 =−bā/2k−1c.

If m is secret, we can use the following constructions. We start by computing the secret bits {xi}k−1
i=0 ,

xi = (m = i)? 1 : 0. Then, if we need ā ·2m, we compute ā ·∑k−1
i=0 xi2i. Otherwise, if we need ā/2m, we compute

the secret integers d̄i = {bā/2ic}k−1
i=0 or d̄i = {bā/2ie}k−1

i=0 and ∑
k−1
i=0 xid̄i. The efficiency of these constructions is

improved by two other building blocks [5]. PreDiv2m, is a generalization of Div2m that computes {bā/2ic}m
i=1.

Surprisingly, it needs the same number of rounds and only m additional interactive operations. Similarly,
PreDiv2mP is a generalization of Div2mP that computes {bā/2ie}m

i=1 with the same complexity as Div2mP.
Given a secret integer x̄ ∈ [0,k− 1], Protocol 1, Int2Mask, computes the secret bits zi = (x̄ = i)? 1 : 0,

i ∈ [0,k− 1], by Lagrange polynomial interpolation. Let α = x + 1 ∈ [1,k]. We can compute {zi}k−1
i=0 by

evaluating the functions fi : [1,k]→ {0,1}, fi(α) = (α = i+1)? 1 : 0, for i ∈ [0,k−1], using the polynomials
fi(α) = ∑

k−1
j=0 ai, jα

j. The coefficients ai, j are pre-computed from public information. Int2Mask computes
{α i}k−1

i=1 using PreMul [7] and then zi = fi(α), for i ∈ [0,k−1] (PreMul requires non-zero inputs).

Protocol 1: {JziK}k−1
i=0 ← Int2Mask(JxK,k)

{Jy jK}k−1
j=1← PreMul({JxK+1}k−1

i=1 ); // 1;k−11

foreach i ∈ [0,k−1] do JziK← ai,0 +∑
k−1
j=1 ai, jJy jK;2

return {JziK}k−1
i=0 ;3

With standard protocols, multiplication followed by additive hiding, d ← Reveal(JaKJbK+ JrK), needs 2
interactions and 2 rounds. We can avoid the first interaction by randomizing the share products: for all i ∈
[1,n], party i computes JcK2t,i← JaKiJbKi + J0K2t,i, where J0K2t,i are pseudo-random shares of 0 generated with
PRZS(2t) [10]. We denote JaK ∗ JbK this local operation. Now the computation needs a single interaction:
d← RevealD(JaK ∗ JbK+ JrK), where RevealD is the secret reconstruction protocol for polynomials of degree
2t. Most of the protocols listed in Table 1 start with additive hiding of the input. We add variants of these
protocols for input shared with a random polynomial of degree 2t, and distinguish them by the suffix ’D’.
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3. SECURE MULTI-OPERAND ADDITION

Our main goal is to efficiently compute multi-operand addition, â = ∑
m−1
i=0 âi, for secret {âi}m−1

i=0 ∈ QFL
〈`,g〉,

âi = (1−2si)v̄i2p̄i and secret â∈QFL
〈`,g〉, â= (1−2s)v̄2 p̄. The simplest approach is to use the protocol AddFL [6]

and a generic algorithm for m > 2 operands with binary tree structure. The algorithm computes m−1 additions,
which is optimal, in dlogme iterations. An iteration takes as input a vector, splits it into pairs of elements,
adds them in parallel, and returns the results as a vector of half length. This is much better than sequential
summation, which computes m− 1 additions in m− 1 iterations. Moreover, pairwise addition improves the
accuracy, because each input is involved in logm additions instead of m− 1 additions. The computation is
shown in Protocol 2, SumGFL. Using a slightly optimized variant of AddFL, with the complexity shown in
Table 2, the complexity of SumGFL is 16dlogme rounds and (m−1)(6`+3g+26) interactive operations.

Protocol 2: SumGFL({JviK,JpiK,JsiK}m−1
i=0 , `,g)

θ = dlogme; α = m; u = 0;1

foreach i ∈ [1,θ ] do2

β ← bα/2c; u← α mod 2;3

foreach j ∈ [1,β ] do (Jv jK,Jp jK,Js jK,Jz jK)← AddFL({JvkK,JpkK,JskK}2 j
k=2 j−1, `,g); // Table 24

if u = 1 then (Jvβ+1K,Jpβ+1K,Jsβ+1K)← (JvαK,JpαK,JsαK);5

α ← β +u;6

return (Jv1K,Jp1K,Js1K,Jz1K);7

If p̄1 ≥ p̄2, AddFL aligns the radix point and adds the significands by computing p̄′3 = p̄1 and v̄′3 = (1−
2s1)v̄1 + b(1−2s2)v̄2/2|p̄1−p̄2|e. Then, it normalizes v̄′3 and p̄′3 to obtain â ∈QFL

〈`,g〉, encoded as in Section 2. If
p̄1 < p̄2 the inputs are obliviously swapped. The normalization is expensive, but multi-operand addition can
normalize only the final result, as follows. We want v̄, p̄, and s so that â= (1−2s)v̄2p̄ =∑

m−1
i=0 (1−2si)v̄i2p̄i . Let

I = [0,m−1] and x = argmaxi∈I(pi). Protocol 3, SumFL computes â = 2p̄x ∑i∈I(1−2si)v̄i/2 p̄x−p̄i , as follows:
step 1 finds p̄′ = p̄x = max({pi}m−1

i=0 ) using Protocol 4, MaxInt; steps 2-9 compute v̄′ = ∑
m−1
i=0 bv̄′i/2p̄′−p̄ie by

generalizing the algorithm used in AddFL; step 10 normalizes the output using the protocol FX2FL [6].

Protocol 3: SumFL({JviK,JpiK,JsiK}m−1
i=0 , `,g)

Jp′K←MaxInt({JpiK}m−1
i=0 ,g); // 4dlogme;(m−1)(g+2)1

foreach i ∈ [0,m−1] do2

JciK← LTZ(Jp′K− JpiK− `−1,g+1); // 3;m(g+2)3

J∆′iK← Jp′K− JpiK;4

Jv′iK← JviK(1−2JsiK); // 0;m5

foreach i ∈ [0,m−1] do6

{Jyi, jK}`j=0← Int2Mask(J∆′iK, `+1); // 1;m`7

Jdi,0K← Jv′iK; {Jdi, jK}`j=1← PreDiv2mPD(Jv′iK∗ JciK, `+1, `); // 0;m8

foreach i ∈ [0,m−1] do Jv′iK← ∑
`
j=0Jyi, jKJdi, jK; // 1;m−19

(JvK,JpK,JsK,JzK)← FX2FL(∑m−1
i=0 Jv′iK,Jp′K, `+ dlogme+1,0, `); // 9;5(`+ logm)10

return (JvK,JpK,JsK,JzK);11

We could eliminate the iteration i = x in steps 2-9 by extracting v̄x and p̄x from the input vector and com-
puting â = 2p̄x((1− 2sx)v̄x +∑i∈I′(1− 2si)v̄i/2p̄x−p̄i), I′ = I \ {x}. The iteration costs `+ g+ 3 interactive
operations, while extracting v̄x and p̄x takes dlogme+ 2 rounds and 3(m− 2) operations. The simpler solu-
tion used in SumFL offers a better tradeoff for large m. However, AddFL and SumGFL avoid this redundant
computation and are more efficient for m = 2. Accuracy in special cases can be improved as in AddFL [6].

The downside of normalizing only the final result is that steps 9-10 compute with larger integers: v̄′ is a
signed integer and |v̄′| ≤m ·2`, so its maximum bit-length is k = `+dlogme+1. This increases the complexity
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of the normalization. The complexity of SumFL is 4dlogme+ 15 rounds and about (m + 5)`+ 2mg + 7m
interactive operations, much better than SumGFL for m > 2.

The protocol MaxInt computes ā = max({āi}m
i=1) with secret inputs (k-bit integers) and secret output

using a generic binary tree construction. Each iteration takes as input a vector, splits it into pairs of el-
ements, selects in parallel the larger value in each pair, and returns the results as a vector of half length
(GTZ(JxK,k) = LTZ(−JxK,k)). MaxInt computes m− 1 comparisons and field multiplications in dlogme it-
erations, so its complexity is 4dlogme rounds and (m−1)(k+3) interactive operations.

Protocol 4: JaK←MaxInt({JaiK}m
i=1,k)

θ = dlogme; α = m; u = 0;1

foreach i ∈ [1,θ ] do2

β ← bα/2c; u← α mod 2;3

foreach j ∈ [1,β ] do Jbi, jK← GTZ(Ja2 j−1K− Ja2 jK,k+1); // 3dlogme;(m−1)(k+2)4

foreach j ∈ [1,β ] do Ja jK← Jbi, jK(Ja2 j−1K− Ja2 jK)+ Ja2 jK; // dlogme;m−15

if u = 1 then Jaβ+1K← JaαK;6

α ← β +u;7

return JaK← Ja1K;8

4. APPLICATIONS

A first application is the evaluation of the dot product of two vectors, â = ∑
m−1
i=0 âix̂i, for secret {âi}m−1

i=0 ∈
QFL
〈`,g〉, âi = (1−2si)v̄i2 p̄i , {x̂i}m−1

i=0 ∈QFL
〈`,g〉, x̂i = (1−2s′i)v̄

′
i2

p̄′i , and secret â ∈QFL
〈`,g〉, â = (1−2s)v̄2p̄.

Floating-point multiplication is efficiently computed by the protocol MulFL [6]. The protocol computes
v̄3 = v̄1v̄2, p̄3 = p̄1+ p̄2, s = s1⊕ s2, z = z1∨ z2 and normalizes the result. Since v̄1, v̄2 ∈ [2`−1,2`−1]∪{0} and
v̄3 ∈ [22`−2,22`−2`+1 +1]∪{0}, normalization is simpler than for addition: if v̄3 < 22`−1 then v̄ = bv̄3/2`−1c
and p̄ = p̄3 + `−1, otherwise v̄ = bv̄3/2`c and p̄ = p̄3 + `.

We can evaluate â = ∑
m−1
i=0 âix̂i using a generic protocol, DotPGFL, that computes {ŷi}m−1

i=0 = {âix̂i}m−1
i=0

in parallel using MulFL and then â = ∑
m−1
i=0 ŷi using SumGFL. Its complexity, dominated by SumGFL, is

16dlogme+5 rounds and about (m−1)(7`+3g+33) interactive operations. However, a more efficient solution
combines MulFL and SumFL as shown in Protocol 5, DotPFL.

Protocol 5: DotPFL({JviK,JpiK,JsiK,JziK,Jv′iK,Jp′iK,Js′iK,Jz′iK}m−1
i=0 , `,g)

foreach i ∈ [0,m−1] do1

Jv′′i K← Div2mPD(JviK∗ Jv′iK,2`,`−1); // 1;m2

Js′′i K← JsiK⊕ Js′iK; Jz′′i K← JziK∨ Jz′iK; // 0;2m3

Jp′′i K← (JpiK+ Jp′iK+ `−1)(1− Jz′′i K)− Jz′′i K2g−1; // 1;m4

(JvK,JpK,JsK,JzK)← SumFL({Jv′′i K,Jp′′i K,Js′′i K}m−1
i=0 , `+1, `,g); // Table 25

return (JvK,JpK,JsK,JzK);6

DotPFL computes 〈v̄, p̄,s,z〉 so that (1−2s)v̄2p̄ = ∑
m−1
i=0 (1−2si)(1−2s′i)v̄iv̄′i2

p̄i+p̄′i and z = (v̄ = 0)? 1 : 0.
Steps 1-4 compute in parallel v̄′′i = bv̄iv̄′i/2`−1e, s′′i = si⊕ s′i, and z′′i = zi∨ z′i, then p̄′′i = (z = 0)? (p̄i + p̄′i + `−
1) : (−2g−1). DotPFL skips the relatively expensive normalization in MulFL. Instead, step 5 uses a slightly
modified variant of SumFL that computes ∑

m−1
i=0 (1− 2s′′i )v̄

′′
i 2p̄′′i for `′-bit significands and then normalizes the

output to ` bits. Here, `′ = `+1, because v̄′′i ∈ [2`−1,2`+1−22]∪{0}.
The online complexity of DotPFL is almost the same as for SumFL. Overall, it needs 4dlogme+17 rounds

and about (m+5)`+2mg+12m interactive operations, much less than DotPGFL.
Our next task is to evaluate a polynomial of degree m, ŷ= P(x̂) =∑

m
i=0 âix̂i with secret coefficients, variable,

and output: {âi}m
i=0 ∈QFL

〈`,g〉, âi = (1−2si)v̄i2p̄i , x̂ ∈QFL
〈`,g〉, x̂ = (1−2s)v̄2p̄, and ŷ ∈QFL

〈`,g〉, ŷ = (1−2s′)v̄′2p̄′ .
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Traditional algorithms are often optimized for assumptions that do not apply to secure computation. Horner’s
polynomial evaluation is sequential [16], so it is not suitable for secure computation. Also, Estrin’s parallel
polynomial evaluation [16] offers only a modest improvement for secure floating-point arithmetic. A better
option is to first compute {x̂i}m

i=1 = {x̂i}m
i=1 and then â = â0 +∑

m
i=1 âix̂i, using DotPGFL or DotPFL.

Protocol 6, PowAllFL, computes {x̂i}m
i=1 with secret inputs and outputs. The protocol computes m− 1

floating-point multiplications, which is optimal, in α = dlogme iterations. Iteration i ∈ [1,α − 1] computes
in parallel γ = 2i−1 multiplications, x̂γ+ j = x̂γ x̂ j = x̂γ+ j, for j ∈ [1,γ]. Iteration α computes the remaining
m− 2α−1 multiplications. For x̂i = x̂i, si = (i mod 2 = 1)? s : 1 and zi = z, so PowAllFL uses a simplified
variant of MulFL, called MulFLS, that does not compute si and zi. The complexity of PowAllFL is 5dlogme
rounds and (m−1)(`+5) interactive operations.

Protocol 6: PowAllFL(JvK,JpK,JsK,JzK,m, `,g)

(Jv1K,Jp1K)← (JvK,JpK); α ← dlogme;1

foreach i ∈ [1,α] do2

γ = 2i−1; β ← (i < α)? γ : m− γ;3

foreach j ∈ [1,β ] do4

(Jvγ+ jK,Jpγ+ jK)←MulFLS(JvγK,JpγK,Jv jK,Jp jK,JzK, `,g); // 5dlogme;(m−1)(`+5)5

Jsγ+ jK← ((γ + j) mod 2 = 1)? JsK : 0;6

return {JviK,JpiK,JsiK,JzK}m
i=1;7

We call PolySGFL a protocol that evaluates ∑
m
i=0 âix̂i using PowAllFL and DotPGFL. PolySGFL computes

2m−1 multiplications and m additions of floating-point numbers in 21dlogme+5 rounds, with m(8`+3g+41)
interactive operations. We can improve PolySGFL by avoiding the normalization of intermediate results. Pro-
tocol 7, PolySFL, combines PowAllFL and DotPFL and simplifies the computation of ŷi = âix̂i = 〈v̄′′i , p̄′′i ,s

′′
i ,z
′′
i 〉

by merging the steps that compute p̄′′i , s′′i , and z′′i . PowAllFLS is a variant of PowAllFL that skips the opera-
tions that become redundant. The complexity of PolySFL is 9dlogme+16 rounds and (2m+4)`+2mg+16m
interactive operations, much less than PolySGFL.

Protocol 7: PolySFL(JvK,JpK,JsK,JzK,{JviK,JpiK,JsiK,JziK}m
i=0, `,g)

({Jv′iK,Jp′iK}m
i=1)← PowAllFLS(JvK,JpK,m, `,g); // 5dlogme;(m−1)(`+4)1

foreach i ∈ [1,m] do Jz′′i K← JzK∨ JziK; // 0;m2

foreach i ∈ [1,m] do3

Jv′′i K← Div2mPD(JviK∗ Jv′iK,2`,`−1); // 1;m4

Jp′′i K← (JpiK+ Jp′iK+ `−1)(1− Jz′′i K)− Jz′′i K2g−1; // 0;m5

Js′′i K← (i mod 2 = 1)? JsiK : JsK⊕ JsiK; // 0;m/26

(Jv′′0K,Jp′′0K,Js′′0K)← (Jv0K,Jp0K,Js0K);7

(Jv′K,Jp′K,Js′K,Jz′K)← SumFL({Jv′′i K,Jp′′i K,Js′′i K}m
i=0, `+1, `,g); // Table 28

return (Jv′K,Jp′K,Js′K,Jz′K);9

Protocol 8: PowAllFLS(JvK,JpK,m, `,g)

(Jv1K,Jp1K)← (JvK,JpK); α ← dlogme;1

foreach i ∈ [1,α] do2

γ = 2i−1; β ← (i < α)? γ : m− γ;3

foreach j ∈ [1,β ] do4

(Jv′jK,Jv′′j K)← SelDiv2mPD(JvγK∗ Jv jK,2`,{`−1, `}); // dlogme;m−15

Jb jK← LTZ(Jv′jK−2`, `+1); // 3dlogme;(m−1)(`+2)6

Jvγ+ jK← Jb jK(Jv′jK− Jv′′j K)+ Jv′′j K; // dlogme;m−17

Jpγ+ jK← JpγK+ Jp jK+ `− Jb jK;8

return {JviK,JpiK}m
i=1;9
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Table 2

Complexity of the floating-point protocols.

Protocol Task Rounds Interactive operations Precomputation Modulus
AddFL â← â1 + â2 16 6`+3g+29 ≈ 13`+9g q > 2`+κ+1

MulFL â← â1â2 5 `+7 4`+3 q > 22`+κ

Protocol Task Rounds Interactive operations Modulus
SumGFL â← ∑

m−1
i=0 âi 16dlogme 6(m−1)`+(m−1)(3g+26) q > 2`+κ+1

SumFL â← ∑
m−1
i=0 âi 4dlogme+15 (m+5)`+m(2g+7) q > 2`+κ+logm+1

DotPGFL ĉ← ∑
m−1
i=0 âib̂i 16dlogme+5 7(m−1)`+(m−1)(3g+33) q > 22`+κ

DotPFL ĉ← ∑
m−1
i=0 âib̂i 4dlogme+17 (m+5)`+m(2g+11) q > 22`+κ

PolySGFL ŷ← ∑
m
i=0 âix̂i 21dlogme+5 m(8`+3g+41) q > 22`+κ

PolySFL ŷ← ∑
m
i=0 âix̂i 9dlogme+16 (2m+4)`+m(2g+15) q > 22`+κ

Table 3

Running time of the floating-point protocols (milliseconds).

m = 4 Prec. m = 8 Prec. m = 16 Prec. m = 32 Prec.
SumGFL 7.65 11.11 17.20 25.92 34.49 56.26 66.57 116.52
SumFL 5.47 7.02 9.06 11.63 15.86 21.08 28.21 39.10
DotPGFL 8.88 15.03 18.91 33.79 35.98 71.66 70.97 131.60
DotPFL 6.16 8.22 9.54 14.61 16.67 25.22 30.26 48.29
PolySGFL 12.51 21.41 23.98 43.96 43.25 89.72 81.31 157.76
PolySFL 8.26 12.75 12.71 21.98 21.52 41.29 37.52 80.93

3. EXPERIMENTAL RESULTS AND CONCLUSIONS

Floating-point addition is the main performance bottleneck in secure arithmetic, due to expensive operations
for aligning the radix point and normalizing the result. We showed in this paper that the efficiency of secure
multi-operand floating-point addition and related tasks, like dot product and polynomial evaluation, can be
improved far beyond the efficiency of usual, generic constructions, without reducing the accuracy.

The protocols focus on improving the performance, accuracy and flexibility of secure computation tasks,
rather than strictly following the IEEE 754 Standard for Floating-Point Arithmetic. The configuration parame-
ters ` and g determine the precision and range of the numbers, as well as the protocol complexity (field size and
number of interactive operations and rounds). The protocols work for any practically relevant values of these
parameters, including IEEE 754 simple and double precision. The applications can choose ` and g according
to their requirements, to obtain the best tradeoff between accuracy and performance.

Table 2 summarizes the online complexity of the floating-point protocols. SumGFL, the generic construc-
tion for computing ∑

m−1
i=0 âi, reduces the round complexity with respect to sequential addition from 16(m− 1)

to 16dlogme rounds. The optimized variant, SumFL needs only 4dlogme+15 rounds and also substantially re-
duces the communication complexity. DotPFL, the optimized protocol for computing ∑

m−1
i=0 âib̂i, offers similar

improvements with respect to DotPGFL, the generic variant based on SumGFL. PolySFL evaluates a polyno-
mial ∑

m
i=0 âix̂i by efficiently computing {ŷi}m

i=1 = {x̂i}m
i=1 using PowAllFL and then ∑

m
i=0 âiŷi using the optimized

algorithm for dot products. This combination offers substantial improvements over PolySGFL.
We tested the correctness and performance of the new protocols using our Java implementation of the

secure computation framework discussed in Section 2. Table 3 shows the results of a preliminary performance
evaluation, for 3 parties, `= 32, g = 10, and dlogqe= 128 bits. The computation is carried out on 3 computers
with 3.6 GHz CPU connected to an Ethernet LAN with 1 Gbps data rate.

The protocols run a distributed computation with batches of interactive operations executed in parallel, so
the running time is strongly affected by the execution environment and implementation optimizations. Table
3 shows the baseline performance of a single-thread implementation and a network with high bandwidth and
(very) low latency. For larger batches, the running time can be substantially reduced by optimizing the im-
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plementation to efficiently use multiple CPU cores and networks with large bandwidth-delay product. On the
other hand, longer network latency means longer interaction rounds.

The running time for sums, dot products, and polynomials is shown for m ∈ {4,8,16,32}. SumFL and
DotPFL are clearly faster than the generic constructions SumGFL and DotPGFL and the advantage grows with
m. PolySFL offers similar improvements over the generic protocol PolySGFL. In these tests, the benefits of
low round complexity are attenuated by the short LAN delay. In real-life deployments, with longer network
delay, the optimized protocols offer larger performance gains. A more comprehensive performance analysis,
with broader scope, will be provided in future work.
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