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Abstract. In 2016, X. Xiong provided a complete determination of the overpartition function p(n)

modulo 16 by relating it to some binary quadratic forms. In this paper, we approach the
characterization of p(n) modulo 16 considering the relations of the form

1_7(2”’(8n+€))5r (mod16),
with o >0 and £ € {1,3,5,7} .
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1. INTRODUCTION

Recall [4] that an overpartition of the positive integer 7 is an ordinary partition of n where the first
occurrence of parts of each size may be overlined. Let p(n) denote the number of overpartitions of n. For

example, the overpartitions of the integer 3 are:

3,3,2+1,2+1,2+ 1,2+ 1,1+1+1 and 1+1+1.

We see that p(3) =8. It is well-known that the generating function of p(n) is given by

Zp( )q" —((qq :4)x (Z(q) J :

,

where
(a;9),, = lim(1 - a)(1-aq)(1 - ag®)---(1-aq"™").
n—0
Because the infinite product (a;q), diverges when a#0 and |g|>1, whenever (a;q), appears in a

formula, we shall assume that | g |<1.

In the recent years many congruences for the number of overpartitions have been discovered. For more
information and references, see Chen [1], Chen, Hou, Sun and Zhang [2], Chern and Dastidar [3], Dou and
Lin [6], Fortin, Jacob and Mathieu [7], Hirschhorn and Sellers [8], Kim [10,11], Lovejoy and Osburn [12],
Mahlburg [13], Xia [14], Xiong [15] and Yao and Xia [16].

It seems that the first Ramanujan-type congruences modulo power of 2 for p(n), was founded in

2003 by Fortin, Jacob and Mathieu [7]. For all n that cannot be written as a sum of s or less squares, they
obtained that

P(m=0 (mod2*"). (1)

This result is meaningful only for s<4 since, by Lagrange’s four-square theorem, all numbers can be
written as a sum of four squares. So considering that 8#+7 cannot be written as a sum of three or less
squares, they derived the following congruence modulo 16:
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p@8n+7)=0 (mod16). 2)

The following Ramanujan-type congruence for p(n) modulo 16 was founded in 2013 by Yao and Xia
[16] using dissection techniques:

P(24n+17)=0 (mod16),
P(48n+14)=0 (mod16), 3)
p(96n+68)=0 (mod16) ,
p(96n+92)=0 (modl16), 4)
p(72n+21)=0 (modl6) ,
P(72n+51)=0 (mod16),
and
_ 8 (modl6), if n=G,
p(72n+3)= .
0 (modl6), otherwise
where

SEEER

is either of the k-th generalized pentagonal numbers.
Three years later, Chen, Hou, Sun and Zhang [2] gave a 16-dissection of the generating function for
p(n) modulo 16 and showed that:

p(4n)=(-1)"p(n) (modl16)
and
p(4*(16n+14))=0 (mod16). )

We see that this congruence is a generalization of (3). In addition, applying the 2-adic expansion of the
generating function for p(n) according to Mahlburg, they obtain that

p(’n+rf)=0 (modl6),

where /=—1 (mod8) is an odd prime and r is a positive integer coprime to /.

In 2016, Xiong [15] considered some binary quadratic forms and provided a complete determination of
overpartition function modulo 16. For n>1, r(n) is the number of representations of » as sum of two

squares m” + 1, with m,/>1 and m#1.For n>1, e,(n) is the number of representations of n as the form

of m?* +21%, with m,/ >1.

THEOREM 1.1. For n>1, we have:

p(n)=0 (Inod16) if n is neither a square nor a double square and e,(n)=r,(n) (mod2),

p(n)=2 (modlé) if n is a square of an odd number and e,(n)=r,(n) (mod 2),

p(n)=4 (mod16) if n is a double of a square and e,(n)=r,(n) (mod 2),

p(n)=6 (mod16) if n is a square of an even number and e,(n) #r,(n) (mod 2),

p(n)=8 (mod16) if n is neither a square nor a double square and e,(n) # r,(n) (mod 2),
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p(n)=10 (m0d16) if n is a square of an odd number and e,(n)# r,(n) (m0d2),
p(n)=12 (m0d16) if n is a double of a square and e,(n)#r,(n) (mod 2),
p(n)=14 (m0d16) if n is a square of an even number and e,(n)=r,(n) (mod 2).

THEOREM 1.1 reduces the determination of overpartition function p(n) modulo 16 to the
calculations of r,(n) and e, (n). More details can be found in [15, Theorems 1.2 and 1.3].

In this paper, we shall provide a complete characterization of Ramanujan-type congruences modulo 16
for p(n) considering the identities of the form

p(2*®n+0)=r (modls),
with a >0 and 7 € {1,3,5,7}. Having
A, = U{2°‘ (8n+f)|n eNO},

a=0

we note that [ A, A;, A, A, | is a partition of the set N.
The first result is a generalization of (2), (4) and (5).

THEOREM 1.2. For n,a.>0,
P(2*8n+7))=0 (modl6).

Surprisingly, this congruence went unobserved so far. It is clear that the congruence (5) is the case a

odd of this theorem. Replacing » by 3n+2 and o by 2 in Theorem 1.2, we obtain (4).
The following two results provide new Ramanujan-type congruences that combines the overpartition

function p(n) and the divisor function 74 () that counts the odd positive divisors of 7.

THEOREM 1.3. For n,a >0,
8 d16), i 8n+3)/2 is odd
B(2(8n+3))= (modl6) [ ToaaBn3)/2 05 0
0 (modl6), if 7,,(8n+3)/2 is even.

THEOREM 1.4. For n,a.>0,

8 d16), i 8n+5)/2 is odd
1_9(2‘1(8n+5))5 (mod16) lf Toaa (81 +5) l.SO
0 (modl6), if T, (8n+5)/2 is even.

If n is a square or twice of a square, then the following result shows that p(n) is congruentto 2, 4,

6,10, 12 0or 14 (mod16).

THEOREM 1.5. Let n and o be nonnegative integers.
i. If 8n+1 is not a square, then

p(2*(8n+1))=0 (modi6).
ii. If 8n+1 is a square, then it is of the form (8k £1)* or (8k +3)*. We have
2 (mod16), for a=0
p(2*@Bn1)’)=14 (modl6), for o odd
14 (mod16), for a.>0 even
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and
10 (modl6), for a=0
;_7(20‘(87113)2)5 12 (modl6), for o odd
6 (modl6), for o.>0 even.

The following linear homogeneous recurrence relation [7, Corollary 4]
~ &
P(m)=23 (-1 p(n~ /%),

j=1
with p(0)=1, provides a simple and reasonably efficient way to compute the value of p(#n) . In order to prove

Theorems 1.3-1.5, we consider this recurrence relation and the following characterization of Ramanujan-type
congruences modulo 8 for the overpartition function p(n) provided by Kim [11, Theorem 3]:

(modS), if n is a square of an odd number,
mod8), if n is a double of a square, ©

(mod3)
(mod 8), if n is a square of an even number,
(mod8)

mod8), otherwise.

2. PROOF OF THEOREM 1.2

We need to prove only the case o even. First we point out that 2°*(8xn +7) is not a square.

The fundamental theorem on sums of two squares claims that a natural number N is a sum of two
squares if and only if all prime factors of N of the form 4m+3 have even exponent in the prime
factorization of N. It is clear that

2**(8n+7)=2(4(2n+1)+3)

cannot be written as a sum of two squares.
On the other hand, Legendre’s three-square theorem states that a natural number N can be represented

as the sum of three squares of integers if and only if N is not of the form 2°*(8n +7).

Thus we deduce that 2°*(8n+7) cannot be written as a sum of three or less squares. Considering (1),
we obtain

P(2*Bn+7))=0 (modl6).

This concludes the proof.

3. PROOF OF THEOREM 1.3

We remark that an integer of the form 8z +3 cannot be a square. For all integers a and b, we have
a’+b*=0,1or2 (mod4).

Thus we deduce that 8z + 3 cannot be written as a sum of two squares.
Let R(n) be the number of nonnegative integer solutions to the equation

x* 42y =8n+3.

Moreover, if (x,y) is an integer solution of this equation, then x and y are odd integers.
Let x,,x,,..., Xz, and y;,¥,,..., Vp(,) be nonnegative integers such that
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Qx, +1)° +2Q2y, +1)> =8n+3,  k=12,...,R(n).
Considering (6), the expression
L«/8n+3J
pBn+3)=2 > (-1/"p@n+3- ),

J=1

can be reduced modulo 16 as follows:
R(n)

PBn+3) =2 p(8n+3-(2x, +1)2)52}§)13(2(2yk +1)2)521§:)458R(n) (mod16).
k=1 k=1 k=1

On the other hand, due to Dirichlet [5], we know that the number of representation of 8z +3 as the
sum of a square and twice a square is given by

2(dy(n) +dy(n)—ds(n)—d;(n)),
where d,(n) is the number of positive divisors of 8n+3 of the form 8k + ¢ . It is clear that
dy(n) +d;(n) —ds(n) — d; (n)
5 .

R(n) =

Moreover, we see that R(n) and t_,,(87+3)/2 have the same parity. In addition, having R(2“n)=R(n),
we obtain

B(2*(8n+3))=8R(n) (mod16)

and the proof is finished.

4. PROOF OF THEOREM 1.4

Firstly we remark that the equations of the form
x* +2y* =2%(8n+5)
do not have integer solutions. Let R(n) be the number of positive integer solutions to the equation
x*+y*=8n+5.
If (x,y) is an integer solution of this equation, then we remark that x and y have different parities.
Let x,,x,,..., Xz, and y;,¥,,..., Vg, be nonnegative integers such that

Qx, +1)> +(2y,)* =8n+5,  k=12,...,R(n).
Considering (6), the expression
L\/SiHSJ
pBn+5)=2 > (-1/"pBn+5- %),

=
can be reduced modulo 16 as follows:
R(n)

1_9(8n+5)522(1_9(8n+5—(2xk +1)2)—1_)(8n+5—(2yk)2))
k=1

R(n) R(n)

=2 ([_7((2yk)2)—]3((2xk +1)2)) =2) (6-2)=8R(n) (modl6).

k=1
Due to Jacobi [9], we know that the number of representation of 8z +5 as the sum of two squares is
4(a’1 (n)—d, (n)) ,
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where d,(n) is the number of positive divisors of 8z +5 of the form 4k + 7.
Thus we obtain that

() —dy(n)
3 .

Moreover, we see that R(n) and t_,,(87+5)/2 have the same parity. In a similar way, considering that

R(2%n) = R(n) , we obtain

R(n) =

p(2%®n+5))=8R(n) (mod16).

This concludes the proof.

5. PROOF OF THEOREM 1.5

Let R,(n) be the number of positive integer solutions of the equation
x*+y =8n+l.
If (x,y) is an integer solution of this equation, the x and y have different parities. Let x;,x,,..., Xz, and

VisVase-s Vi (ny DC positive integers such that

Qx, +1)> +(2y,)" =8n+1,  k=12,....,R(n).
Let R,(n) be the number of positive integer solutions of the equation

2242w =8n+1.
If (z,w) is an integer solution of this equation, the z is odd. Let 2152053 Zpy () and Wi Wasee s Weo () be
positive integers such that
Qz, +1)* +2w; =8n+1,  k=12,...,R,(n).
If 8n+1 is a square, then considering (6), the expression
[
p@n+D=2 > (-D)/"pBn+1-j%),

Jj=1

can be reduced modulo 16 as follows:

p@n+1)= 2%)(7)(8%1—(2% +1)2)—1_7(811+1—(Zyk)z))+2Rzz(n)1_7(8n+l—(2zk +1)2)+2p(0) =
k=1 k=1
Ry (n) Ry (n)
=2 (A(@r)?) - B(@x, +12))+2 > B(2w7)+2=
k=1 k=1
E2%)(6—2)+2R§)4+2ES(Rl(n)+R2(n))+2 (mod16).
k=1 k=1

In a similar way, when 8 +1 is not a square we obtain:
P(8n+1)=8(R (n)+R,(n)) (modl6).
According to Dirichlet [5] and Jacobi [9], we have
d1(n) — d () + do(n) —d () = {2R1 (n)+1, if 8n +.1 isa square.
2R, (n), otherwise

and
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2R,(n)+1, if 8n+1 is asquare

2R, (n), otherwise

b

d,(n)+d;(n) —ds(n)—d,(n) ={

where d,(n) is the number of positive divisors of 8z +1 of the form 8k + /. Thus, we deduce

87,(8n+1)+10 (mod16), if 8n+1 is asquare

pBn+1)=
pn+1) {811(8n+1) (mod16), otherwise,

where 7t,(n) counts the positive divisors of n congruent to =1 mod8. In a similar way, we obtain the
following two congruences:

and

A(2 80 +1) {811(8n+1)+12 (mod16), if 8n+1 is a square

87,(87+1) (mod16), otherwise

,—9(22‘”2 (8n+ 1))

87,(8n+1)+6 (mod16), if 8n+1 isasquare
87,(8n+1) (mod16), otherwise.

On the other hand, if 87 +1 is a square, then it is of the form (8k £1)* or (8k £ 3)*. It is not difficult to prove

that t,(8n+1) is odd if and only if 8n+1 is a square of the form (8k % 1)>. The proof follows easily.
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