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Abstract. The reliability of dynamic systems is enhanced by vibration control. Many types of 
controllers are used to control the dynamic systems’ vibrations. The integer and fractional PID 
controllers are used to control the fractional and integer dynamic systems. Different techniques are 
utilized to model the controlled systems. In this study, the discrete integer proportional integral 
derivative (PID) controller is used to control a forced damped variable-order fractional oscillatory 
systems. The objectives of this study are the analysis of controlled fractional system responses, and 
the investigation of controller gains’ effects on system response characteristics. The Caputo-Fabrizio 
fractional derivative is used to model the system fractional dissipating force. The system responses 
are approximated by numerical and time discretization techniques. In order to verify the feasibility 
and effectiveness of the introduced methods, the fractional system response and integer system 
response are compared at fractional order close to one. The controlled responses of the fractional 
system are obtained for different fractional derivative order values. The results demonstrate same 
effects of PID gains on the fractional and integer oscillatory system responses’ metrics. However, the 
system responses are varying based on the fractional derivative order values. The study shows that the 
integer response and the fractional responses have same behaviors and different instantaneous values. 

Key words: discrete-time controller, PID, fractional oscillatory system, Caputo-Fabrizio fractional 
derivative. 

1. INTRODUCTION 

Recently, there has been a shift toward applying fractional calculus to different branches of pure and 
applied sciences [1–14]. Different systems in various disciplines are modeled as fractional systems due to 
their elements’ materials behaviors, such as modeling of some organics tissues in Biomedical Engineering 
[15,16], viscoelastic materials [17,18], and anomalous diffusion of mass transfer or liquid transport through 
porous media [19,20]. Analytical and numerical techniques are used to obtain the solutions of the fractional 
order models [21–23]. Many studies were done in the control and optimal control of fractional models’ 
responses [24,25]. The proportional integral derivative (PID) controller is applied as fractional PID to 
control integer and fractional systems [26,27]. An analytical solution based on Mittag-Leffler function is 
used to obtain the response of a nonsingular fractional forced mass-spring-damper system [28]. Hypothetical 
uncontrolled damped single and multi-degree of freedom fractional vibrating systems were studied in 
[29,30], respectively. The fractional PID controller is utilized to control a vibrating constant order fractional 
system. This system is modeled using Caputo fractional derivative. The controlled responses system is 
obtained by an analytical technique [31]. 

In our study, a forced damped variable order fractional vibrating system is controlled by using the 
discrete-time PID controller. The motivations behind the study are the investigation of the introduced 
controlled fractional system responses, and the analysis of the effects of fractional variable order α(t) and 
PID gains on the system responses. The novelties of the work are the application of non-singular fractional 
derivative, the studying of variable order fractional controlled dynamic system, and the applied of discrete-
time PID controller to control the system response. Continuous and discrete-time PID controllers are 
introduced in Section 2. Some needed preliminary definitions in fractional calculus are presented in Section 3. 
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These definitions include the Caputo fractional derivative, and Caputo-Fabrizio (C-F) variable order 
fractional derivative. In Section 4 the considered dynamic system is modeled. The fractional damping force 
is modeled by using variable order C-F fractional derivative. In Section 5 numerical and time discretization 
techniques are used to approximate the open loop system responses. In Section 6 the closed system responses 
are obtained by applying the discrete-time PID controller. The effects of controller gains on the 
characteristics of the closed loop fractional system responses are investigated in Section 7. We study in 
Section 8 the effect of the real variable order derivative α(t) on the controlled and uncontrolled fractional 
system responses. The integer model response and fractional model response at α  close to one, are compared. 
The comparison is done to verify the effectiveness of the introduced modeling procedure and the feasibility 
of responses’ obtaining techniques. 

2. DISCRETE-TIME PID CONTROLLER 

The mechanism of feedback control basically depends on the measured responses of controlled 
systems. The term feedback describes the connection manner of two or more dynamic system [32]. The 
feedback that is used in different disciplines is generally connected to closed-loop control systems. There are 
different types of controller starting from on-off controller to more advanced control such as PID controller 
up to Programmable Logic Controller (PLC). The PID controller is basically introduced as continuous or 
discrete controller forms. A continuous PID controller applied to a plant or a system is shown in Fig.1. The 
continuous form of PID controller is given by equation Eq. (1) as follows:  

0

d ( )( ) ( ) ( ) d
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e tu t K e t K e K

t
= + τ τ +∫ , (1)

where u(t) is the output of the controller and the input of the controlled system, e(t) represents the 
continuous error between the continuous desired output yd(t) and the actual continuous output y(t). The 
coefficients Kp, Ki and Kd are the proportional, integral, and derivative controller gains, respectively. 
 

 
Fig. 1 – A block diagram  

of a continuous-time PID controlled plant. 
Fig. 2 – A block diagram  

of a discrete-time PID controlled plant. 
 
The continuous form of the PID controller that is given by equation Eq. (1) can be implemented in a 

discrete form [33] as follows. The discrete time proportional term is defined as ( ) ( )p pu k K e k= , where k  is 
an index of the discrete signals sample points. The discrete time integral term is 
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≈ − + , where h  is the time increment. The discrete time derivative term is 

given by 
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≈ . The block diagram that is shown in Fig.2 illustrates a discrete-

time PID controlled plant. The discrete controller output control u(k) is expressed by the summation of the 
discrete-time controller terms as follows:  

( ) ( ) ( ) ( )p i du k u k u k u k= + + , (2)

The introduced discrete-time PID controller is applied to the fractional dynamic system that was 
described in Section 4. Some primarily concepts of fractional calculus need to be defined before the system 
description. 
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3. PRELIMINARY DEFINITIONS IN FRACTIONAL DERIVATIVES 

There are some formulas that define different types of fractional derivative: the left and right Riemann-
Liouville (R-L) fractional derivatives, the left and right Caputo fractional derivatives, the left and right 
Coimbra fractional derivative, which is defined as a variable order fractional derivative, and the non-singular 
Caputo Fabrizio (C-F) fractional derivatives. In this Section, we introduce the Caputo and C-F fractional 
derivatives’ definitions. The left and right side first orders Caputo fractional derivatives are introduced in 
[34]. The left side first order variable fractional order Caputo fractional derivative can be defined as [35] 

( )
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t ttC
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A non-singular variable order C-F fractional derivative is defined as [36,37] 
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where P[α(t)] is a normalized function such that P(0) =P(1) =1 [36]. 

4. THE DYNAMIC SYSTEM MODEL 

The Kelvin-Voigt model [38] that is shown in Fig.3a is applied to a mass M, see Fig.3b, to investigate 
its response due to controlled external force u(t).  

 

 
Fig. 3 − a) The Kelvin-Voigt model; b) mass spring dashpot system. 

 
The equation of motion of the generated system, in Fig.3b, is given by 

0( ) ( ) ( ) ( )CF
tM y t C D y t K y t u tα

++ + = , (5)

where C  is the damping coefficient of the dashpot element and K  represents the stiffness of the spring. In 
this study the model (5) is extended to be a variable order fractional oscillatory system as follows: 

( )
0( ) ( ) ( ) ( ).CF t

tM y t C D y t K y t u tα
++ + =  (6)

The introduced discrete-time PID controller is applied to the fractional dynamic model that is given by 
Eq. (6). Numerical and discretization techniques are utilized to obtain the controlled system responses. 

5. OPEN LOOP SYSTEM RESPONSE 

The response y(t) of the uncontrolled fractional dynamic system is approximated numerically before 
applying the discrete PID controller. The forward finite difference method is applied to the first and second 
derivatives of the system output y(t). The non-singular variable order C-F fractional derivative that is 
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defined by Eq. (4) is substituted into the damping term of the system model in Eq. (6) to generate the 
following model: 

( )
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The integral in Eq. (7) can be approximated by discretization technique as follows  
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The forward finite difference method is used to approximate the derivative d ( )
d
y ζ
ζ

 at the point k  to 

obtain to following expression: 
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The second derivative ( )y t  in the first term of the model in Eq. (7) can be expressed by using the finite 
differences method at the point k. We substitute the approximated integral that is obtained by Eq. (9) into 
model Eq. (7) to obtain the following expression: 

[ ]
[ ]

( ) ( )
( )

1
1

1 1 1
2

0

( )2 exp d
1 ( ) 1

j

j

k t k kk k k k k
k kt kj

P t t ty y y y yM C K y u
t h th

+
−

+ − +

=

⎡ ⎤ ⎡ ⎤α α − ζ− + −
+ − ζ + =⎢ ⎥ ⎢ ⎥

− α − α⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∫ . (10)

From Eq. (10) for arbitrary system parameters and external exciting force, the introduced dynamic 
system open loop responses can be obtained by solving the integral in Eq. (10) and substituting the initial 
conditions 0 0( )y t y= , and ( )0 0y t y= . For more details we refer to [39]. The unit step uncontrolled 
responses of the introduced forced fractional dynamic system are shown in Fig.4. The comparison between 
the un-damped classical integer system response and the un-damped fractional system response, for α = 0.99, 
is shown in Fig.4a. The integer system response is compared to the fractional one for under-damped model 
with α = 0.99 in Fig.4b. The fractional dynamic system responses, for α = 0.5 and α = 0.8 are shown, 
respectively, in Fig.4c and Fig.4d. 

6. CLOSED LOOP SYSTEM RESPONSE 

The considered uncontrolled damped fractional system responses can be controlled to match desired 
responses by using the introduced discrete-time PID controller. The numerical response ky  that is obtained 
from Eq. (10) is taken as a feedback signal of the closed loop control system. A reference signal rk is 
assigned to represent the desired response of the controlled system. The error control signal ek is generated 
as k k ke r y= − . For arbitrary controller gains, the generated error signal ek is substituted into the controller 
outputs ( ),  ( ),  ( )p i du k u k u k  that generate the controlled input signal u(k), see Eq. (2). The controlled system 
response can be generated by means of Eq. (10). Unit step responses of controlled and uncontrolled systems 
are shown in Fig.5. The responses of controlled and uncontrolled damped fractional system for α = 0.5 and 
α = 0.8 are demonstrated in Fig.5a, and Fig.5b, respectively. 

It is deduced from Fig.4a and Fig.4b that the responses of integer system representation are identical to 
the fractional ones, when the value of fractional order α  is close to one. Based on the system models that are 
given by Eq. (5) and Eq. (6) the fractional models reach the classical integer representation as the fractional 
order α  be close to one. Moreover, we can infer from Fig.4c and Fig.4d that the settling time of the system 
response decreases as α  goes to one for the same system parameters. It is inferred from Fig.5 that the 
response of the fractional controlled system reaches the steady state faster and demonstrates lower system 



5 Controlled forced fractional vibrating system 299  

 

response characteristics. The controller effects on the fractional system are similar to those on the 
conventional integer system. These effects are discussed in more details in the next Section. 

 

  
Fig. 4 − Unit step uncontrolled responses: a) un-damped fractional α = 0.99 
vs. un-damped integer; b) damped fractional α = 0.99 vs. damped
       integer; c) damped fractional α = 0.5; d) damped fractional α = 0.8. 

Fig. 5 − Unit step controlled vs. uncontrolled responses:  
a) damped fractional α = 0.5; b) damped fractional α = 0.8. 

7. EFFECTS OF CONTROLLER GAINS ON SYSTEM RESPONSES 

In the classical integer models, the rise time, the overshoot percentage, the settling time, peak time, and 
the steady state error that represent the system response characteristics are affected by the PID controller 
gains [40]. In this Section, we investigate the effects of these gains on the fractional system response 
characteristics. 

For ki =3 and kd =2 the effect of the proportional controller gain kp on the characteristics of integer 
and fractional systems' responses are shown in Fig.6. In which the fractional order of the fractional system 
damping force is taken to be close to one (α = 0.99). The effect of kp on the fractional system response 
characteristics is shown in Fig. 7 for two different fractional system damping force orders, namely, α = 0.5 
and α = 0.8. 
 

  
Fig. 6 − The effects of kp on the characteristics  

of integer and fractional systems’ responses. 
Fig. 7 − The effects of kp on the characteristics fractional 

systems’ responses at α = 0.5 and α = 0.8. 
 

The behaviors of integer and fractional systems’ responses against kp are similar for constant values of 
ki and kd . This is deduced from Fig.6 and Fig.7. The effects of the controller integral gains ki and kd on the 
characteristics of integer and fractional systems’ responses are illustrated in Fig.8 and Fig.9, respectively. 

It is clear from Fig.6 through Fig.9 that, regardless the characteristics values, the results demonstrate 
similar responses of the integer and fractional systems, when controller gains vary. For instance, the rise time 
decreases in both integer and fractional systems’ responses, as ki increases. However, the rise time values of 
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the integer system are different from the values of the fractional one. Moreover, when the kp increases, the 
overshoot and settling time are increased in both integer and fractional systems’ responses. Furthermore, as 
kd increases, the characteristics of both integer and fractional systems’ responses are decreased. 

 

  
Fig. 8 – The effects of ki on the characteristics  

of integer and fractional systems’ responses. 
Fig. 9 – The effects of kd on the characteristics  

of integer and fractional systems’ responses. 

8. EFFECT OF THE FRACTIONAL DERIVATIVE VARIABLE ORDER ON SYSTEM RESPONSES 

The damping force variable fractional order α(t) of the fractional model given by equation Eq. (6) is 
introduced as a linear function of time. In this Section the effects of α(t) on the uncontrolled and controlled 
fractional systems’ responses are investigated. Figure 10a shows the uncontrolled fractional systems’ 
responses y(α(t), t) against the linear function of α(t) and t. The introduced discrete-time PID controller is 
applied to the fractional system whose responses are shown in Fig.10a. The controller gains’ values are 
chosen to be relatively more effective with respect to the system parameters (M ,  C  and K), see Eq. 5. 
Figure 10b shows the effects of α(t) on the controlled system responses y(α(t), t), when relatively more 
effective controller gains’ values are applied. In order to investigate the effects of α(t) on the controlled 
fractional system responses, the PID controller gains’ values are chosen to be relatively low, see Fig.10c. 
 

 
Fig. 10 − The effects of α(t ) on the: a) uncontrolled,  

b) relatively high controlled, c) relatively low controlled fractional system response. 
 

It is deduced from Fig.10a that the uncontrolled fractional system response reaches the steady state 
faster, as α(t) is close to one. It is concluded from Fig.10 that the effects of the fractional derivative variable 
order α(t) on the uncontrolled and controlled fractional system are similar. However, the effects of α(t) on 
the controlled fractional system responses are decreased, when the controller gains’ values are chosen to be 
relatively more effective with respect to the system parameters, see Fig.10b. 



7 Controlled forced fractional vibrating system 301  

 

9. CONCLUSION 

A forced damped variable order fractional oscillatory system is modeled and controlled by the discrete-
time PID controller. The damped fractional force of the system is modeled by the C-F fractional derivative. 
The system responses are obtained by applying numerical and discretization techniques. Uncontrolled and 
controlled fractional system responses are compared to the conventional integer model responses. The results 
demonstrate that the fractional system responses at α(t) = 0.99 matches the integer system response for the 
same systems’ parameters. This comparison shows the feasibility and effectiveness of the applied numerical 
and discretization techniques. The effects of the PID controller gains on the fractional system responses are 
investigated. The results show that both fractional system and integer system responses' characteristics have 
similar behaviors versus the variations of the controller gains. The effect of the fractional derivative variable 
order α(t) is studied. The study shows that the steady state of the fractional system response reaches faster, 
as α(t) is close to one. In summary, this study has illustrated that the same parameters integer and fractional 
oscillatory systems have similar responses’ behaviors. However their responses’ characteristics are different, 
being based on the choice of different α(t) values. That result is due to the properties of visco-elastic 
material of the dashpot element in the fractional system. 
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