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General Berthelot 16, Iaşi 700483, Romania
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Abstract: In the present paper we employ the Fokker-Planck equation for completing an image with missing infor-
mation. Using this equation has three advantages. The first one is the fact that this equation has a mild solution. The
second advantage is that the implicit approximation scheme provides a sequence of solutions which converges to the
solution of the Fokker-Planck equation. The third quality of this equation is the low regularization effect on the initial
data, thus preserving the edges from the inpainted image. The numerical experiments show that this equation provides
a good solution for the inpainting problem.
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1. INTRODUCTION

Inpainting is the process of filling in missing parts from an image. It deals with the problem of coherently
completing a damaged image, taking into account the surroundings of the absent/omitted regions. It is an inter-
polation problem that can be addressed using discrete or continuous methods. The discrete methods are using
patch matching and/or sparse representation [1–3]. The continuous methods employ variational formulations
or partial differential equations (p.d.e.) [4–6]. Very good surveys on image inpainting techniques can be found
in [7, 8].

In the exemplar based approach, the missing information is filled in pixel by pixel, pixels that are placed on
the border between the regions with and without information. The regions without information are completed
by using patches from the image that suit best to the surroundings of the pixel to be inpainted.

In the p.d.e. approach the inpainted image is the solution of a conveniently chosen p.d.e or optimal control
problem [6, 9–11]. Methods that use p.d.e. for image restoration or noise reduction can also be adapted for
image inpainting [12].

Usually, the partial differential equation have a (strong) regularization effect on the starting data, producing
regular solutions even if the initial data are not so smooth. From the image processing point of view this
regularization process means loosing edge information, producing blurred images.

In this paper we use the Fokker-Plank equation [13,14] in order to fill the missing parts of a damaged image.
The Fokker-Plank equation is a second-order, non-linear, parabolic p.d.e. that has a diffusion and a transport
term. This equation has its origin in statistical physics, but it has also many applications in other domains as
stochastic analysis, stochastic optimal control. We chose this equation because it has several advantages for
the inpainting process. The first one is the fact that it is a well-posed problem. This equation has a weak/mild
solution, it can be shown that the discrete, implicit approximation scheme’s solutions (weakly) converge to
the Fokker-Planck solution. This mild solution is also one of the possible solutions of the inpainting problem,
providing an image with filled in information. This convergence property is seldom addressed in inpainting
methods that use p.d.e. Another advantage/benefit in using the Fokker-Planck equation is provided by the fact
that it does not have a strong regularization effect, thus preserving the edge information of the image.
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2. FOKKER-PLANCK EQUATION FOR IMAGE INPAINTING

For the inpainting problem we use the following Fokker-Planck equation:

∂u
∂ t
−

2

∑
i, j=1

∂ 2

∂xi∂x j

(
ai j(x,u)u

)
+div

(
b(x,u)u

)
= 0 for x ∈ R2 , t > 0

u(0,x) = u0(x) x ∈ R2

(1)

where b(x,u) = (b1(x,u),b2(x,u)). The rectangular region Ω ⊆ R2 represents the image, R2 \Ω is the back-
ground and u0(x) is the damaged image. We denote by u∗(x) the original image, the image with complete
information. Starting from the damaged image u0(x), the purpose is to find an image ũ(x) visually as close as
possible to u∗. We assume that u∗ and, consequently, u0 are not affected by noise.

We can write the domain Ω as a reunion of two disjoint regions Ω = Ωi∪Ωm, Ωi∩Ωm = /0, such that:

u0(x) =
{

u∗(x) for x ∈Ωi

0 for x ∈Ωm
(2)

(Ωm is the region of the image with missing information).
We assume that the functions b,ai j : R2× R+ −→ R, i, j = 1,2 satisfy the following conditions:

(i) ai j ∈C1(R2×R)∩Cb(R2×R),
∂ai j

∂xk
∈Cb(R2×R), ∀i, j,k = 1,2, a12 = a21;

(ii) there exists a positive constant γ > 0 such that

2

∑
i, j=1,2

(
ai j(x,u)+u

∂ai j

∂u
(x,u)

)
ξiξ j ≥ γ|ξ |2 , ∀ξ ∈ R2,x ∈ R2,u ∈ R; (3)

(iii) bi ∈Cb(R2×R).

We have denoted by Cb the space of continuous, bounded functions and by C1 the space of continuous differ-
entiable functions.

As regards existence for equation (1) we note the following result established in [13].
THEOREM 2.1. Assume hypotheses (i)-(iii) are true. Then, for each u0 ∈ L1(R2), there exists a unique

solution u = u(·,u0) ∈C([0,∞);L1(R2)) to equation (1). This solution u has the following properties:

‖u(t,u1
0)−u(t,u2

0)‖1 ≤ ‖u1
0−u2

0‖1 , ∀u1
0, u2

0 ∈ L1(R2), t ≥ 0, (4)

u≥ 0 a.e. in (0,+∞)×R2 if u0 ≥ 0 a.e. in R2 (5)∫
R2

u(t,x)dx =
∫
R2

u0(x)dx , ∀u0 ∈ L1(R2), t ≥ 0, (6)

and u is a solution of (1) in the sense of Schwartz distributions on [0,∞)×R2, that is:

∫
∞

0

∫
R2

(
u(t,x)ϕt(t,x)+
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∑
i, j=1

ai j(x,u(t,x))u(t,x)
∂ 2ϕ(t,x)
∂xi∂x j

+

+b(x,u) ·∇xϕ(t,x)u(t,x)
)
dtdx = 0, ∀ϕ ∈C∞((0,∞)×R2).

(7)

Here ‖ · ‖1 is the norm of L1(R2).
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The proof of this theorem relies on Crandall–Liggett existence result for non–linear Cauchy problems of
the following form:

du
dt

+Au = 0 , t ≥ 0 ,

u(0) = u0 ∈ X
(8)

in a Banach space X , with the norm ‖ · ‖, where the nonlinear operator A : D(A)⊆ X −→ X is m-accretive, i.e.,
for each λ > 0, R(I +λA = X and:

||(I +λA)−1u− (I +λA)−1v|| ≤ ||u− v|| ∀u,v ∈ X ,λ > 0. (9)

A mild solution for equation (8) is a continuous function u : [0,+∞)−→X that satisfies, for each 0< T <∞,
the following relations:

(a) u(x) = limh→0 uh(t) strongly in X , uniformly in t ∈ [0,T ], where uh : [0,T ]−→ X is defined by:

(b) uh(t) = ui
h , t ∈ [ih,(i+1)h), i = 0,1, ...,N,N =

[
T
h

]

(c) the sequence ui
h is obtained by solving the following equations:

(I +hA)ui+1
h = ui

h, i = 0, ...,N−1 , u0
h = u0 (10)

For the Fokker-Planck equation (1), the space X = L1(R2) and the operator A is given by:

Au =−
2

∑
i, j=1

∂ 2

∂xi∂x j

(
ai j(x,u)u

)
+div

(
b(x,u)u

)
in D ′(R2)

D(A) =
{

u ∈ L1(R2);Au ∈ L1(R2)
} (11)

Then, under assumption (9), for each initial data u0 ∈ D(A) there is a unique mild solution u ∈C([0,T ];X)
to equation (1) (see [15, p. 130]).

The finite difference scheme (b), (c) has in this case the following form:

ui+1
h −h

2

∑
k, j=1

∂ 2

∂xk∂x j

(
ak j(x,ui+1

h )ui+1
h

)
+

+div
(
b(x,ui+1

h )ui+1
h

)
= ui

h in D ′(R2)

u0
h = u0 in R2.

(12)

We have denoted by D ′(R2) the space of Schwartz distributions on R2.

As shown in [13], for all i, the solution ui+1
h ∈ L1(R2) to the above equation (12) exists in sense of distribu-

tions; however, by elliptic regularizations it follows via bootstrap arguments that ui+1
h ∈W 1,q

loc for some q > 1 if
i is sufficiently large. Anyway, even for small values of i (i = 0,1), ui+1

h is more regular that the initial data u0.
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3. NUMERICAL APPROXIMATIONS AND EXPERIMENTS

The existence of the weak solution to equation (1) guarantees that the discrete solution of the numerically
approximated problem converges to this solution.

The implicit approximation scheme for the Fokker-Planck equation (1) is the following:

ut+1(x) = ut +δtAhut+1(x), x ∈ Ω̄, t = 0,1, ... δt < 1
u0(x) = u0(x), x ∈ Ω̄

(13)

where Ω̄⊆ R2 is the discrete correspondent of domain Ω,

Ω̄ =
{
(xi

1,x
j
2); i = 1,M , j = 1,N

}
for a N×M digital image.

The operator Ah, h = (h1,h2), is the discrete approximation of operator A (11) by using the following finite
difference approximations for the partial derivatives:

∂ 2g
∂x2

1
(x1,x2) ≈ g(x1 +h1,x2)−2g(x1,x2)+g(x1−h1,x2)

h2
1

∂ 2g
∂x2

2
(x1,x2) ≈ g(x1,x2 +h2)−2g(x1,x2)+g(x1,x2−h2)

h2
2

∂ 2g
∂x1x2

(x1,x2) ≈
g(x1 +h1,x2)−g(x1−h1,x2)+g(x1,x2 +h2)−g(x1,x2−h2)

2h1h2

∂g
∂x1

(x1,x2) ≈ g(x1 +h1,x2)−g(x1−h1,x2)

2h1

∂g
∂x2

(x1,x2) ≈ g(x1,x2 +h2)−g(x1,x2−h2)

2h2
.

(14)

In these numerical approximations we consider:

ut(x) = 0 when x 6∈ Ω̄, ∀t.

For ai j, i, j = 1,2,bi, i = 1,2 we used polynomial functions of the following form:

ai j(x,u) = ai j(u) = γ +upi j , i, j = 1,2 , p12 = p21
bi(x,u) = w1(α +uqi) , i = 1,2

(15)

with pi j,qi ∈ [−0.5,2].
In order to evaluate the quality of the inpainting process three classical estimators were employed: peak

signal to noise ratio (PSNR), structural similarity (SSIM) and L1-norm:

PSNR(u,v) = 10log10
L2

MSE(u,v)

MSE(u,v) =
1

MN

M−1

∑
i=0

N−1

∑
j=0

[
u(xi

1,x
j
2)− v(xi

1,x
j
2)
]2

SSIM(u,v) =
(2µuµv + c1)(2σ2

uv + c2)

(µ2
u +µ2

v + c1)(σ2
u +σ2

v + c2)

(16)
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where u and v are two digital images to be compared, L is the dynamical range (usually, for 8-bit images
L = 255), µu,µv, σ2

u ,σ2
v , σ2

uv are the expected values, variances and cross-variances of the two images, respec-
tively.

(a) Botero’s Monalisa1 (b) Siriu Lake, Romania2 (c) da Vinci’s Monalisa3

Fig. 1 – Images to be inpainted.

In order to test this method, we use three images for inpainting, that can be seen in Fig. 1. Starting from the
same shape, we buid four small masks (50×50) with four orientations: horizontal, vertical, ±45◦ (see Fig. 2).
We apply these small masks in a regular, grid like manner as in Fig. 3.

(a) Horizontal (b) Vertical (c) 45◦ (d) −45◦

Fig. 2 – Small masks.

We performed 150 iterations with δt = 0.05, without the transport term of (1) and obtain the results from
Table 1 where we denoted by Im1 Botero’s Monalisa, Im2 is the Siriu Lake image and Im3 is da Vinci’s
Monalisa. Note that for the portrait images the best results are for the diagonal masks and for the landscape the
horizontal mask provided the best errors.

Table 1
Inpainting error results for small patches – without transport term

L1-error PSNR
Im1 Im2 Im3 Im1 Im2 Im3

Horizontal 74.9608 91.2995 74.502 43.4653 43.7074 46.7556

Vertical 65.0824 107.3804 77.8157 44.5495 42.4596 46.6387

45◦ 56.4275 104.2353 72.7608 46.5424 42.8236 47.3217

-45◦ 59.5137 102.1765 71.5804 46.064 42.4068 46.961

1https://images-na.ssl-images-amazon.com/images/I/51a3mOcIR%2BL.jpg
2https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Siriu_Lake.jpg/1920px-Siriu_Lake.jpg
3https://upload.wikimedia.org/wikipedia/commons/e/ec/Mona_Lisa%2C_by_Leonardo_da_Vinci%2C_from_C2RMF_

retouched.jpg

https://images-na.ssl-images-amazon.com/images/I/51a3mOcIR%2BL.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Siriu_Lake.jpg/1920px-Siriu_Lake.jpg
https://upload.wikimedia.org/wikipedia/commons/e/ec/Mona_Lisa%2C_by_Leonardo_da_Vinci%2C_from_C2RMF_retouched.jpg
https://upload.wikimedia.org/wikipedia/commons/e/ec/Mona_Lisa%2C_by_Leonardo_da_Vinci%2C_from_C2RMF_retouched.jpg
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In order to test the influence of the shape of the missing part and the content of the image to be inpainted we
used the same parameters on two small subimages from Botero’s Monalisa (see Fig. 4). In these computations
we also introduced the transport term. We used the Fokker-Planck equation with and without the transport term.
The employed parameters are:

p =

(
0.8 1.5
1.5 1.3

)
, q =

(
0.8
0.8

)
, α = γ = 0.01 , w1 = 2.5 (17)

Fig. 3 – Images with missing information.

Patch 1

Patch 2

Fig. 4 – Subimages from Bortero’s Monalisa (to be inpainted).

In Fig. 5 are some inpainted images using different masks.

In Table 2 are the results for the L1-norm and SSIM evaluators for inpainting without the transport term and
in Table 3 are the results for the method using also the transport term. These results show that the inpainting
procedure we propose is strongly infulenced by the shape and orientation of the missing part and the content of
the image to be inpainted.
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(a) (b) (c)

Fig. 5 – Inpainted subimages from Bortero’s Monalisa: a) patch with missing information; b) inpainted without transport term;
c) inpainted with transport term.

Table 2
Inpainting error results for small patches – without transport term

Patch 1 Patch 2
L1-error SSIM L1-error SSIM

Horizontal 13.6016 97.7472 2.892 98.6697

Vertical 11.3729 97.7861 5.151 98.64

45◦ 8.28 98.6806 2.732 98.7883

-45◦ 16.3789 96.9242 2.5171 99.0878



232 Anca IGNAT 8

Table 3
Inpainting error results for small patches – with transport term

Patch 1 Patch 2
L1-error SSIM L1-error SSIM

Horizontal 12.0833 98.0576 3.8518 98.0771

Vertical 10.6993 98.2388 6.3955 97.8867

45◦ 8.5845 98.3152 3.0625 98.5772

-45◦ 17.4326 96.1304 5.874 97.5897

From these computations it seems that the best results are obtained using the Fokker-Planck equation with-
out the transport term. Although, other computations show that the inpainting process depends on the param-
eters we choose the functions involved in equation (1), so it is possible to obtain better results using other
paramaters. For example, for Patch 1 and mask −45◦ the parameters q = (0.8,0) and w1 = 1 yield an L1-error
of 12.1977 and SSIM 97.8936 which is better than the result obtain without transport term.

4. CONCLUSIONS

We presented in this paper a new method for image inpainting using a numerical approximation for the
Fokker-Planck equation. The solution for the Fokker-Planck equation is computed as the mild limit of solutions
for discrete implicit schemes associated to equation (1), thus providing a robust method for image inpainting.
Numerical results show that this equation completes the missing parts of the images in a visually coherent
manner. The inpainting process is influenced by the functions involved in Fokker-Planck equation, the shape
of the missing part and the content of the image to be inpainted. It needs to be further studied how to choose
these parameters in order to obtain results as good as possible.
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