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Abstract. In this paper, we define the Jacobsthal-Padovan p-numbers. Then we obtain the generating 
matrix, permanental representation, the Binet formula, the generating function, the exponential 
representation and the combinatorial representations of the Jacobsthal-Padovan p-numbers. Also, we 
study the Jacobsthal-Padovan p-numbers modulo m  and then, we obtain the cyclic groups which are 
generated by reducing the multiplicative orders of the generating matrix and the auxiliary equation of 
the Jacobsthal-Padovan p-numbers modulo m. Finally, we give the relationships among orders of 
these cyclic groups and the periods of the Jacobsthal-Padovan p-sequences. 
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1. INTRODUCTION AND PRELIMINARIES 

Suppose that the ( )thn k+  term of a sequence is defined recursively by a linear combination of the 
preceding k  terms: 

0 1 1 1 1n k n n k n ka c a c a c a+ + − + −= + + +" , 

where 0 1 1, , , kc c c −…  are real constants. In [9], Kalman developed a number of closed-form formulas for this 
generalized sequence by the companion matrix method as follows: 
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It is known that the Jacobsthal sequence { }nJ  is defined by a second-order recurrence equation: 

1 22n n nJ J J− −= +  

for 2n ≥ , where 0 10 and 1J J= = . 

The Padovan sequence ( ){ }P n  is defined by a third-order recurrence equation: 

( ) ( 2) ( 3)P n P n P n= − + −  

for 3n ≥ , where (0) (1) (2) 1P P P= = = . For more information on this sequence, see [8]. 
The Jacobsthal-Padovan sequence { }( )J n  is defined [4] by a third-order recurrence equation: 

( 2) ( ) 2 ( 1)J n J n J n+ = + −  
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for 0n ≥ , where ( 1) 0 and  (0) (1) 1J J J− = = = . 
Number theoretic properties such as these obtained from homogeneous linear recurrence relations 

relevant to this paper have been studied by many authors [2,6,10,12–20]. In [4–7,11], the authors obtained 
the cyclic groups via some special matrices. In this paper, we define the Jacobsthal-Padovan p-numbers. 
Then we obtain their miscellaneous properties such as the generating matrix, permanental representation, the 
Binet formula, the generating function, the exponential representation and the combinatorial representations. 
Also, we consider the multiplicative orders of the generating matrix and the auxiliary equation of the 
Jacobsthal-Padovan p-numbers according to modulo m and then, we produce the cyclic groups. Furthermore, 
we study the Jacobsthal-Padovan p-sequence modulo m and then, we obtain the relationships among orders 
of the produced cyclic groups and the periods of the Jacobsthal-Padovan p-sequences. 

2. THE JACOBSTHAL-PADOVAN p -NUMBERS 

We next define the Jacobsthal-Padovan p-sequence as 

( 2) ( ) 2 ( )p p pJPa n p JPa n p JPa n+ + = + + ,        for 0n >  (1)

where 2p ≥  and (1) (2) ( ) 0,  ( 1) 1p p p pJPa JPa JPa p JPa p= = = = + ="  and ( 2) 0pJPa p + = . 
When 2p =  in (1), we obtain 2 (2 1) nJPa n J+ = .  

It is clear that 
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The matrix M is said to be the Jacobsthal-Padovan p-matrix. It can be readily established by 
mathematical induction that for 1n ≥ , 
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We easily derive that 

( ) 1det 1 2p+= − ⋅M . 

Now we consider a permanental representation for the Jacobsthal-Padovan p-numbers. 
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Definition 2.1. Let ,i jc⎡ ⎤= ⎣ ⎦C  be an n m×  real matrix. If column (resp. row) α contains exactly two 

nonzero entries, the matrix C is called a contractible matrix column (resp. row) α. 
Let 1 2, , , nu u u…  be row vectors of the matrix C and let C be contractible on column α with 

, ,0, 0 and  i jc c i jα α≠ ≠ ≠ . 

Then the ( 1) ( 1)n m− × −  matrix , ,i j αC  obtained from C by replacing row i with , ,i j j ic cα α+u u  and 

deleting row j  and column α  is called the contraction on column α  relative to rows i  and j .  
In [1], Brualdi and Gibson showed that per( ) per( )=A B  if A  is a real matrix of order 1m >  and B  is 

a contraction of A .  
Let p be a fixed integer such that 2p ≥  and let ,

n
p i jm⎡ ⎤= ⎣ ⎦M  be the n n×  super-diagonal matrix with 

, 1 1, , 12,  1i i i i i i pm m m+ + + += = =  for all i  and 0 otherwise, that is, 
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where 1 0pM = . 

THEOREM 2.1. For 1n ≥ , per n
pM  is the ( 1)thn p+ +  Jacobsthal-Padovan p-number, 

( 1)pJPa n p+ + . 

Proof. We prove this by mathematical induction. Firstly, us consider the case 2n p< + . From the 

definitions of the matrix n
pM  and the Jacobsthal-Padovan p-numbers it is clear that 

1per ( 2) 0p pJPa p= + =M  and ( )2per 3 1p pJPa p= + =M . Also, we have the following matrix for 
3 1k p≤ ≤ +  
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per ( 1)n
p pJPa n p= + +M  for 1 1n p≤ ≤ + . 

Now, let us consider the case 2n p≥ + . Suppose that the equation holds for 2n p≥ + . Then we show 

that the equation holds for 1n + . If we expand the per n
pM  by Laplace expansion of the permanent 

according to the first row, we obtain 
1 1 1per per 2 pern n n p

p p p
+ − − −= +M M M . 

Since 1per ( )n
p pJPa n p− = +M  and 1per ( )n p

p pJPa n− − =M , we get 1per ( 2)n
p pJPa n p+ = + +M . 

Thus this proof is complete. 

LEMMA 2.1. The characteristic equation of the Jacobsthal-Padovan p-numbers 2 2 0p px x+ − − =  
does not have multiple roots. 

Proof. Let 2( ) 2p pg x x x+= − − . Suppose that α is a multiple root of ( )g x . Then ( ) 0g α =  and 
( ) 0g′ α = . It is clear that 0 is not a root of ( )g x .  So, we obtain  
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If p  is even or α  is positive, then we obtain 
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contradiction. Thus the proof is complete. 
 

Let ( )g x  be the characteristic polynomial of the Jacobsthal-Padovan p-matrix M, then 
2( ) 2p pg x x x+= − − . If 1 2 2, , , px x x +…  are eigenvalues of the matrix M, then by Lemma 2.1, we have 

already known that 1 2 2, , , px x x +…  are distinct. Let V  be a ( 2) ( 2)p p+ × +  Vandermonde matrix such that 
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Let ( , )i jV  be a ( 2) ( 2)p p+ × +  matrix obtained from V  by replacing the j th column of V  by 2
i
p+X  

where 2
i
p+X  is a ( 2) 1p + ×  such that 
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THEOREM 2.2.  Let 
,
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Proof. Since 1 2 2, , , px x x +…  are distinct, the matrix M is diagonalizable. Suppose that 

( )1 2 2, , , px x x +=D … , then we can write =MV VD . Since also V  is invertible, ( ) 1− =V M V D . So we 

get that the matrix M is similar to D. Therefore, we obtain the matrix equation n n=M V VD  for 1n ≥ . Since 

,
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n nm⎡ ⎤= ⎣ ⎦M , we can write the following linear system of equations for 1n ≥ : 
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From which we obtain 

( )( )
,

( ) det ,
det ( )i j

n i j
m =

V
V

 for each , 1, 2, , 2i j p= +… . 

This yields the Binet-type formula for the Jacobsthal-Padovan p-numbers, namely: 

COROLLARY 2.1. Let ( )pJPa n  be the n th Jacobsthal-Padovan p-number, then 

( )( ) ( )( ) ( )( )det 2,1 det 2,3 det 1, 2
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Suppose that ( )f x  is generating function of the Jacobsthal-Padovan p-numbers. Then 
2 1( ) ( 1) ( 2) ( 3) ( 1) ( 2) .n n

p p p p pf x JPa p JPa p x JPa p x JPa p n x JPa p n x += + + + + + + + + + + + + +" "  

So, we can write 
2 2( ) ( ) 2 ( ) ( 1) 1p

pf x x f x x f x JPa p+− − = + = . 

From which we obtain 

2 2
1( )

1 2 pf x
x x +=

− −
. (3)

for 2 20 2 1px x +≤ + < . 
Now we can give an exponential representation for the Jacobsthal-Padovan p-numbers. 
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THEOREM 2.3.  Let ( )f x  be generating function of the Jacobsthal-Padovan p-numbers, then 
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Now we consider the combinatorial representations for the Jacobsthal-Padovan p-numbers. Let 
2 2( ) 2 ph x x x += +  be such that 2 20 2 1px x +≤ + <  and let u  and n  be positive integers. Since 
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such that 2u pi n+ = . 
Then we can give a combinatorial representation of the Jacobsthal-Padovan p-numbers by the 

following Theorem. 

THEOREM 2.4.  Let m and n be positive integers, then 
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the coefficient of nx  in ( )f x  is ( 1)pJPa p n+ + . As we need the coefficient of nx , we only consider the 
first 1n +  terms on the right-side in the above equation. Then, the conclusion follows directly from (4). 
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Now we consider other combinatorial representations than the above for the Jacobstal-Padovan  
p-numbers. 

Let E  be a l l×  companion matrix such that 
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where the summation is over nonnegative integers satisfying 1 22 lt t lt n i j+ + + = − +" , and the 
coefficients in (5) are defined to be 1 if n i j= − . 

Then we can give some combinatorial representations for the Jacobsthal-Padovan p-numbers by the 
following Corollary. 
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where the summation is over nonnegative integers satisfying  1 2 22 ( 2) 1pt t p t n p++ + + + = − −" . 
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where the summation is over nonnegative integers satisfying  1 2 22 ( 2) 1pt t p t n++ + + + = +" . 
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where the summation is over nonnegative integers satisfying  1 2 22 ( 2) 1pt t p t n++ + + + = +" . 

 
Proof. If we take 2,  1i p j= + =  for the case (i), 2,  3i j= =  for the case (ii) and 1,  2i p j p= + = +  

for the case (iii) in Theorem 2.5, then we can directly see the conclusions from (5). 

3. THE JACOBSTHAL-PADOVAN P-NUMBERS MODULO m  

In this section, we obtain the cyclic groups which are generated by reducing the multiplicative orders 
of the Jacobsthal-Padovan p-matrix M and the auxiliary equation of the Jacobsthal-Padovan p-sequence 
modulo m. Also, we consider the Jacobsthal-Padovan p-sequence modulo m. Then, we present the 
relationships among orders of these cyclic groups and the periods of the Jacobsthal-Padovan p-sequences. 

For given a matrix ija⎡ ⎤= ⎣ ⎦A  with ijm  integers, ( )mod mA  means that each element of A  is reduced 

modulo m ,  that is, ( ) ( )mod (mod )ijm a m=A . Let us consider the set ( ){ }mod 0i
m m i= ≥A A . If 
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( )gcd , det 1m =A , then the set mA  is a cyclic group.  Let the notation mA  denote the order of the set 

mA . Since 1det ( 1) 2p+= − ⋅M , the set mM  is a cyclic group for every positive odd integer m .  
Now we consider the cyclic groups which are generated by the Jacobsthal-Padovan p-matrix M . 

THEOREM 3.1. Let 2u ≠  be a prime and let α be the largest positive integer such that 

u uα=M M . Then u uuλ
λ−α= ⋅M M  for every λ ≥ α . In particular, if 2u u≠M M , then 

1
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λ−= ⋅M M  for every 2λ ≥ . 

Proof. Let k  be a positive integer and I  be a ( 2) ( 2)p p+ × +  identity matrix. If 
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1 1k ku u u+ += ⋅M M . It is easy to see that 1 1k ku u u+ += ⋅M Μ  holds if and only if there is a ( )
,i j

km  

which is not divisible by u. Since α is the largest positive integer such that u uα=M M , we have 

1u uα α+≠M M . Then there exists an integer 
,

( 1)
i j

m α+  which is not divisible by u. So we find that 

1 2u uα+ α+≠M M . To complete the proof we use an inductive method on α .  

Now we consider the Jacobsthal-Padovan p-numbers modulo m.  
If we reduce the Jacobsthal-Padovan p-sequence { }( )pJPa n  by a modulus m, then we get the 

repeating sequence, denoted by 

{ } { }( ) (1), (2), , ( 2), , ( ),m m m m m
p p p p pJPa n JPa JPa JPa p JPa i= +… … …  

where ( )( ) ( ) modm
p pJPa i JPa i m≡ . It has the same recurrence relation as in (1). 

It is well-known that a sequence is periodic if, after a certain point, it consists only of repetitions of a 
fixed subsequence. The number of elements in the repeating subsequence is the period of the sequence. A 
sequence is simply periodic with period k if the first k elements in the sequence form a repeating 
subsequence. 

Now we give some properties of the sequence { }( )m
pJPa n  by the following theorems. 

THEOREM 3.2.  The sequence { }( )m
pJPa n  is periodic. 

Proof.  Suppose that ( ){ }1 2 2, , , 0 1p iQ q q q q m+= ≤ ≤ −… . Then we have 2pQ m += . Since there are 

2pm +  distinct k-tuples of elements of mZ , at least one of the ( 2)p + -tuples appears twice in the sequence 

{ }( )m
pJPa n . Thus, the subsequence following this ( 2)p + -tuple repeats and this implies that the sequence is 

periodic. 
We denote the period of the sequence { }( )m

pJPa n  by ( )J
pl m . 
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THEOREM 3.3. Let m be a positive odd integer and let 
1

, ( 1)i
k

e
i

i
m u k

=

= ≥∏  such that iu ’s are distinct 

primes. Then ( ) ( ) ( )1 2
1 2( ) lcm , , , ke eeJ J J J

p p p p kl m l u l u l u⎡ ⎤= ⎢ ⎥⎣ ⎦
… . 

Proof. Since ( )ieJ
p il u  is the length of the period of the sequence { }( )

i
i
eu

pJPa n , the sequence 

{ }( )
i

i
eu

pJPa n  repeats only after blocks of length ( )ieJ
p ik l u⋅ , ( )k N∈ . Since also ( )J

pl m  is the length of the 

period { }( )m
pJPa n , the sequence ( ){ }i

i
eu

pJPa n  repeats after ( )J
pl m  terms for all values i. This implies that 

( )J
pl m  is the form ( )ieJ

p ik l u⋅  for all values of i .  We thus prove that ( )J
pl m  equals the least common 

multiple of ( )ieJ
p il u ’s. 

We give the relationship between the period ( )J
pl m  and mM  by the following theorem. 

 
THEOREM 3.4.  If 2u ≠  is a prime and k is a positive integer, then ( ) k

J k
p ul u = M . 

Proof. It is clear that ( )J k
pl u  divides kuM . So we need only to prove that ( )J k

pl u  is divisible by 

kuM . By (2), we know that ( )( ) mod
J k
pl u ku ≡M I , where I is the ( 2) ( 2)p p+ × +  identity matrix. From 

which we obtain that kuM  divides ( )J k
pl u . Thus we have the conclusion. 

Let 2u ≠  be a prime and let 
( ) ( ) { }{ }2mod : 0 , 2n p pA u x u n Z x x+ += ∈ ∪ = +  

Then, it is clear that the set ( )A u  is a cyclic group. 
Now we can give relationships among the auxiliary equation of the Jacobsthal-Padovan p-sequence 

and the period ( )J
pl m  by the following Corollary. 

COROLLARY 3.1. Let 2u ≠  be a prime. Then, the cyclic group ( )A u  is isomorphic to the cyclic 
group uM . 
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