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Abstract. A gradient-type dynamical system is designed using a data-dependent Lyapunov function 
constructed using the Support Vector Data Description (SVDD) algorithm. Invariance to standard 
geometric transformations is inferred by combining SVDD with the tangent distance (TD), which has been 
shown to yield superior performances against the Euclidean distance in a number of pattern recognition 
applications. Experimental results using the USPS handwritten characters database and the Olivetti face 
images database confirm the superiority of the proposed approach over existing solutions. 
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1. INTRODUCTION 

John Hopfield’s seminal work in the early 80’s triggered a plethora of papers dealing with the subject of 
associative memories. In the training phase, such systems use a diversity of learning procedures in order to 
store a set of (binary, multi-level, or even continuous) patterns from a given training database. In the recovery 
phase, the system should deliver previously stored patterns even if adverse input information in terms of noise, 
missing data, or distortions is provided. Two main approaches have been followed to fulfil this task: a) 
appropriate information has been used to train feedforward networks, speculating their proven generalization 
capabilities. As such, correct association between (similar or distinct) input and target data may still be valid, 
despite the fact that corrupted data is provided as input; b) recurrent networks that rely on well-established 
results from nonlinear dynamical systems theory, mainly related to gradient-type systems. The energy 
landscape, the number, positions, and nature of equilibrium states (or, more generally, stable manifolds) of such 
systems were especially investigated. Various approaches aim at designing the patterns to be stored as stable 
equilibria of the systems, while corrupted data should be provided as initial states. The theory guarantees that, 
under certain conditions, such systems may become globally stable, hence no other (complex) behaviour may 
occur, except from evolving from any initial state towards a particular stable equilibrium [7]. 

In order to be used in practical applications, such systems should ideally exhibit no other equilibria except 
for the (as many as possible) desired ones, their corresponding basins of attraction should be under control, and 
the addition/elimination of equilibrium states should be performed with minimal redesign of the system. 

Pattern recognition applications are often required to exhibit robustness against geometric 
transformations such as translations, rotations, or scale changes (moreover, character recognition 
applications should also tackle line thickness and special deformations, while face recognition is very 
sensitive to illumination variability). Most of the existing solutions rely on various preprocessing algorithms 
to extract specific invariant features from the data, while special distance metrics may also include the effect 
of (typically, affine) transformations. Tangent distance (TD) [18] is a well-known example of the later 
approach, which showed significantly improved performances over the classical Euclidean distance in 
handwritten character recognition applications. 

The present paper extends the results in [3] by merging TD with the construction of a special gradient-
type dynamical system, whose associated Lyapunov function is generated using the Support Vector Data 
Description (SVDD) [19] algorithm. The same basic approach has also been used in a series of papers 
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dealing with clustering and denoising [8, 10-15], but not related to invariant properties. As described next, 
the proposed solution offers advantages in terms of computational complexity, while still preserving the 
robustness against geometric transformations, and improving the recognition performances when compared 
to the Euclidean distance alternative. The paper is organized as follows: section 2 introduces the components 
of the proposed approach, namely the SVDD algorithm, the proposed dynamical system, and tangent 
distance. Experimental results for handwritten character recognition and face recognition are given in section 
3, while conclusions and directions for future work are finally outlined. 

2. ASSOCIATIVE MEMORY DESIGN 

2.1. Support Vector Data Description 

Support Vector Data Description (SVDD) has been originally introduced as an outlier/novelty 
detection procedure [19]. It follows the “learning with kernel” paradigm in order to efficiently and flexibly 
estimate the support of the data distribution. Basically, the method aims at obtaining a spherically shaped 
boundary around the “normal” data, whose volume should be minimized in order to leave outside potential 
outliers. More flexible boundaries may be obtained by using the well-known “kernel trick” from SVM 
theory, namely by mapping the original input data to a feature space after preprocessing with a proper 
nonlinear function, and then performing SVDD on the mapped data. More specifically, consider {xi , i = 1:N} 
a set of vectors whose distribution we seek to obtain. We search for a closed boundary around the given data 
as a sphere with center a and radius R. An optimization problem is formulated in order to minimize the 
radius while including all data within the sphere as [19]: 

2 2min ,   such that ,  1iR R i N− ≤ ∀ =x a … . (1)

Since outliers may be present in the training data, the optimization problem is modified such that the distance 
may become larger than R2, but penalties should occur in these situations. The new formulation of the 
problem now includes the slack variables 0iξ ≥  and it becomes [19]: 
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where the scalar parameter C controls the trade-off between the volume of the sphere and the number of 
input vectors defined as outliers. The method of Lagrange multipliers is used to solve the problem, and the 
main results give the expressions of the minimal radius R  and sphere center a  as [19]: 
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where vectors xi for which αi > 0 are called support vectors (only those influence the center of the sphere a), 
and xk are the subset of the support vectors for which 0 <αi < C  (support vectors for which αi = C  are treated 
as outliers). Parameters αi are obtained as a result of the optimization procedure. 

Since the expression of R2 only includes scalar products of the support vectors, we may use the 
classical kernelization approach to increase the flexibility of the boundary in order to accommodate more 
complex data distributions. More specifically, consider a nonlinear function Φ(.) that maps the original data 
into a (typically, higher dimensional) feature space. The SVDD approach now seeks a spherically shaped 
boundary in the new feature space, whose center and radius are easily determined if there exists a kernel 
function such that scalar products in the original space are conveniently expressed according to 
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It is worth noting that for Gaussian-type kernels the SVDD method is similar (learns the same decision 
function) as the one-class Support Vector Machines (OC-SVM) approach [17]. More specifically, the 
minimal sphere enclosing the nonlinearly transformed data is equivalent to finding a maximal margin 
hyperplane separating the normal points and outlier data.  

A number of other approaches for estimating data distribution exist, mostly rooted in statistical theory 
related to clustering or probability density estimation. Examples include Gaussian processes support 
functions [10] and Parzen windows, but those suffer from the “curse of dimensionality” and are sensitive to 
the data density distribution. Extensions of the basic approach have been also reported, aiming at reducing 
the computational complexity of the optimization process, using the data density information, or including 
additional regularization parameters related to the relevance of the individual data points [13,14]. 

2.2. Gradient-Type Associative Memory 

Most of the existing associative memory solutions based on recurrent networks exhibit additional 
spurious equilibria apart from the desired ones, have (too) limited capacity, and offer no simple control over 
the extent of the basins of attraction around such equilibria. One notable exception is the idea described in 
[2,3] (originally introduced in [6] to solve a toy-problem classification task) that has been successfully used 
in a broad range of applications, including soft decision decoding of block codes, face recognition, and 
handwritten characters recognition. The basic approach relies on defining a gradient-type neural network 
whose associated Lyapunov function is constructed as a (weighted) sum of individual functions exhibiting 
good space localization properties. More specifically, we sum up a number of multidimensional Gaussian-
type pulses centered on the patterns to be stored, such that those will act as isolated minima of the Lypaunov 
function (such minima are asymptotically stable states of the gradient-type system [2,3]): 
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where V(X) is the Lyapunov function, N is the order of the system, M is the number of memories to be 
stored, and wm are (possibly identical) scalar weights. Function V(X) has the appearance of a RBF-type 
representation, and may be seen as a particular case of a Gaussian process support function estimation 
procedure [10]. Apart from the solid theoretical support, advantages of the proposed solution include the 
direct relation between the above equations and the memories to be stored, and an obvious interpretation of 
the effect of various parameters on the system dynamics. Nevertheless, a clear drawback is the computational 
complexity, which may become prohibitive if a great number of (high-dimensional) patterns are to be stored. 

A superior alternative has been proposed in a series of papers by Lee et al. [8,12,15] that also make use 
of a gradient-type system, but the definition of the Lyapunov follows the input data distribution modeled by 
the SVDD algorithm, as in equation (4). Accordingly, the dynamics of the system is given by: 
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One key advantage of SVDD is that kernel values are evaluated only for the support vectors (which typically 
represent only a small fraction of the entire training set), while Gaussian processes support functions and 
Parzen windows require evaluation on the whole database. In order to illustrate the basic idea, a simple 
example is presented in Fig.1 (this is the triangle dataset used in [13]). Bi-dimensional training data vectors 
belonging to 3 distinct classes are used to determine the corresponding support vectors. Contour plots and 3D 
views of the associated Lyapunov function are given, showing deep minima for each data cluster. 
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Fig. 1 – 2D training data from 3 distinct classes: contour plots of function V (X )  (left); 3D view of the V (X )  landscape (right). 

 
Once given the actual values of the support vectors and ai coefficients, we must first determine the 

positions of the corresponding minima of function V(X), since those will act as the (stable) equilibrium 
points of the system. As such, we will use each training data point as an initial state of the system and let it 
settle towards the equilibrium point whose basin of attraction includes the given initial state. Experiments 
reported in [8] clearly indicate that the number of the stable equilibria is (sometimes, much) smaller than the 
dimensionality of the training dataset. Since we are aware of the category each training pattern belongs to, 
we will be able to label every equilibrium point accordingly. In the testing phase, we set again a test pattern 
as an initial state of the dynamical system, and assign it the label of the equilibrium point to which the given 
test point converges to. 

2.3. Tangent distance 

In order to enhance the pattern recognition performances and infer invariance to geometric 
transformations to the SVDD-based dynamic associative memory described by equations (6), we propose to 
replace the Euclidean distance with the TD distance [5,16,18]. Since patterns affected by such 
transformations define (hopefully, smooth) manifolds in space, the distance between two patterns can now be 
defined as the minimum distance between their respective manifolds, which should be invariant with respect 
to the given transformations, as exemplified in Fig.2. 
 

 
Fig. 2 – Definition of the manifold distance, tangent distance, and Euclidean distance between patterns. 

 
More specifically, when an image is affected by a transformation t(x ,β) that depends on L parameters, 

the set of all transformed patterns is a manifold of at most dimension L in the pattern space. Due to 
computational complexity and lack of analytic expressions for the generated manifolds, we must use 
approximations of the manifold. A common solution is based on a linear combination of the vectors that span 
the tangent subspace, given by the partial derivatives of t(x ,β) with respect to β [18]: 
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While double-sided TD distance may yield marginal classification performance improvements, single–sided 
TD distance is preferred in practice since it involves a smaller computational cost and the tangent vectors 
corresponding to the training data can be pre-computed and stored, increasing the speed of the testing phase. 

Due to the linear nature of the procedure, we may apply the TD computation not only on the original 
data, but also on a linearly processed (e.g., compressed) version of it [11]. Denoting by D N×∈ℜP  the 
projection matrix, we may write ( ) ( )⋅ + ⋅ = ⋅ + ⋅ ⋅ = + ⋅P x T β P x P T β x T β�� , hence the tangent vectors grouped 
in matrix T are transformed using the same subspace projection procedure as the original images. The 
method improves over the solution presented in [3], where a TD-based Gaussian kernel was evaluated on all 
available training data points. 

3. EXPERIMENTAL RESULTS 

3.1. Handwritten character recognition 

We have performed extensive experiments using the United States Postal Service (USPS) handwritten 
digits database [20]. It includes 7291 training images and 2007 test images. Each image consists of 16×16 
pixels of grayscale values ranging from 0−255. The tangent vectors were computed using MATLAB, starting 
from a publicly available C implementation [9]. Examples of tangent vectors are presented in Fig.3. 
Experiments used the single-sided TD distance and the following setups: a) original images + Euclidean/TD 
distances; b) PCA-compressed support vectors + Euclidean/TD distances; c) associative memory + PCA-
compressed SVDD support vectors + Euclidean/TD distances. In the first scenario (original images), tests 
were performed using all 7291 training data points. To assess the dependence of the recognition 
performances on the number of training images, repeated experiments using 60/200/500 images for each 
digit were performed, while all 2007 available test images were used. The dimension of the projection 
subspace varied between 20 and 50, capturing more than 90% of the energy of the original images. Results 
indicated in Fig.4 show that the TD setups yield superior performances over the Euclidean distance 
alternative. In Fig.5 we show examples of patterns that are correctly classified by the TD based approach, 
while the Euclidean version fails to. 

Classification performances are almost insensitive to the dimension of the projection subspace if it 
exceeds 40. They compare favorably with previously reported results, as indicated in Table 1, and improve 
when increasing the dimensionality of the training dataset. 

3.2. Face recognition 

In case of optical character recognition applications as originally introduced in [18], tangent vectors are 
computed by first smoothing the original images with a proper kernel, then using finite differences (the two 
steps may be combined by the Sobel operator). Unfortunately, this approach is not appropriate for other 
classes of images, since the input may not be smooth enough to reliably compute the local tangent vectors. 
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Table 1 

Comparative analysis of classification error rates for USPS database (performances of existing solutions from [3]) 

Method Error rate (%) 
Human performance 2.5 
Nearest neighbour classifier (L2) 5.6 
Nearest neighbour classifier (TD) 3.54 
Support Vector Machines 4 
Invariant Support Vector Machines 3 
Relevance Vector Machines 5.1 
Neural network 4.2 
Kernel densities 5.5 
Kernel densities + TD 3.7 
SVDD + PCA + associative memory + L2 4.98 
SVDD + PCA + associative memory + TD 3.98 

 

   
Fig. 3 – Examples of tangent vectors. 

 

  
Fig. 4 – Classification error rates vs. the subspace dimension for USPS database (500 training images per digit) (left);    

classification error rates vs. the dimensionality of the training dataset for USPS database (right). 
 

 
Fig. 5 – SVDD+TD associative memory may yield correct class label when the Euclidean alternative fails to: first row – original test patterns; 

second row – patterns recovered by the Euclidean version; third row – patterns recovered by the TD-based associative memory. 
 

As a consequence, we may obtain completely unrealistic effects, as illustrated in Fig.6 in case of face 
images. As a consequence, we followed the same approach as in [3,16], and applied controlled affine 
transformations in order to generate virtual samples to be further used for computing finite differences to 
approximate the tangent vectors. As pointed out in [12], this method may properly approximate a broader 
range of geometric transformations than classical smoothing. Only 4 transformations were taken into 
account, namely left/right horizontal translation (with ± 4 pixels), up/down vertical translation (with ±  
2 pixels), scale variation (± 5%), and in-plane rotation (with ± 10º, distinct tangent vectors were computed 
for rotation to the left and to the right, respectively). 
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The performances of the invariant associative memory have been tested on the Olivetti database. It 
comprises 10 distinct images of 40 persons, and includes variations in pose, light conditions, and expression. 
Each image has 112×92 pixels. We used a training set of 5 images per person, randomly selected from the 
available 10, and the rest for the testing phase. The original images were downscaled to yield 32×32 pixels 
by performing a multiresolution decomposition using the Discrete Wavelet Transform, with the additional 
benefit of providing robustness against face expression variation. Recognition performances (averaged over 
20 distinct trials) are given in Fig.7. The classification performances using TD are clearly better than the 
Euclidean alternative. 
 

 
Fig. 6 – Tangent vectors computed by combining smoothing and differentiation in case of rotation and scale variation. 

 

 

Fig. 7 – Classification error rates for the Olivetti database (%)  
(mean values and standard deviations averaged over 20 distinct trials). 

4. CONCLUSIONS 

Combining tangent distance and SVDD/SVM offers a convenient means of dealing with geometric 
invariances present in most of pattern recognition applications, while avoiding the excessive cost of 
alternative solutions such as virtual support vector method, invariant hyperplanes, or kernel jittering [21]. 

The proposed approach offers an efficient alternative to the method proposed in [3], since the 
construction of the Lyapunov function may now require kernel evaluations only on (a limited number of) 
support vectors instead of the entire training dataset. The SVDD data distribution support estimation may be 
further improved by using recently introduced solutions taking into account local density information [14] or 
the relevance of the training data points [21]. In case of multi-class classification problems, we could also 
consider multi-sphere modeling of the underlying training data distribution. 

As suggested in [3], the solution may be extended by considering a modular approach relying on 
multiresolution representations, or by successively visiting distinct equilibrium points in a predefined order. 
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Table 2 

Comparative analysis of classification error rates for Olivetti database (performances of existing solutions from [3]) 

Method Error rate (%) 
Eigenfaces 10 
Pseudo-2D HMM 5 
Convolutional Neural Network 3.8 
Linear SVM 3 
Waveletface + L2 7.5 
Discriminant Waveletface + L2 5.5 
Discriminant Waveletface + NFL 5 
SVDD + PCA + L2 6 
SVDD + PCA + TD 4.7 
SVDD + PCA + associative memory + L2 5.09 
SVDD + PCA + associative memory + TD 2.77 
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