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Abstract. We approach different types of optomechanical attenuators with shutters and filters. 
Common devices are reviewed, and their advantages and drawbacks are discussed from the point of 
view of a set of characteristic parameters – in contrast to other devices that we have developed and/or 
optimized. Polarizing and step-by-step filters are thus compared with the translational Risley prisms 
that we have developed; the optimal solution of the latter is presented. Commercially available 
shutters are pointed out, while choppers with disks are approached in detail for optical attenuation. 
For the latter, classical disks with windows with linear margins are considered, and their transmission 
coefficient is determined for finite diameter sections of top-hat laser beams in the plane of the disk. 
The case of beam sections with diameters smaller that the width of the chopper window is considered, 
as well as the case of beam sections that overlap the outer and/or inner window margins. The latter 
case is proposed as a solution to adjust the average transmission coefficient of the device. 

Key words: optical attenuators, transmission coefficient, filters, shutters, Risley prisms, translational 
optical wedges, neutral density filters, optomechanics, disk choppers. 

1. INTRODUCTION 

Optical attenuators are utilized in numerous applications [1]. The most common devices are 
optomechanical, with different types of shutters and filters. Various such attenuators are commercially 
available, each of them with specific advantages and drawbacks that makes it more suitable for certain 
systems. Taking into account requirements of different applications, we have developed novel devices or 
optimized existing ones, often focusing on other functions than optical attenuation. Thus, we have utilized 
choppers [2-7] to generate controlled laser impulses [8-12]. We approached Risley prisms [13-15] as laser 
scanners [16], but also in their translational variant [17,18], as attenuators [19]. 

The aim of this work is to approach such devices as optical attenuators. Their characteristic functions 
and parameters are deduced in this respect, and compared with those of commercially available attenuators, 
including various types of shutters and filters. A classification of such devices in these two main types also 
define their two functioning principles [20]. Thus, shutters adjust the transmitted flux by modifying the 
dimension (of the section) of the light beam. In contrast, filters make this flux adjustment by modifying the 
intensity and/or the spectrum of the transmitted light beam (while its section remains essentially unchanged). 

The remaining of this paper is structured as follows: Section 3 discusses optical filters, from classical 
polarizing and step-by-step filters to the optimization of the more fine tuning Risley prisms. Section 4 
approaches shutters, from common iris diaphragms to disk choppers. Section 5 concludes the study and 
provides directions of future work. 

2. GENERAL PARAMETERS OF OPTICAL ATTENUATORS 

Regardless of the type of attenuator considered, the main function that characterizes such a device is 
(i) the transmission coefficient:  

( ) ( ) ix xτ = Φ Φ , (1)
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where x  is the (generic, i.e. translational or rotational) adjustment parameter of the device, Φi is the incident 
(energetic/radiometric or photometric) light flux, and Φ is the emergent flux. Alternatively, one could use 
the attenuation coefficient 1-τ, as a black box model is considered throughout the study: all the light that is 
not transmitted is considered attenuated, regardless of the phenomenon involved, i.e. absorption, reflection 
on certain surfaces, polarization, chopping, etc. 

The minimum and the maximum transmission levels of the device, τmin and τmax (involving a minimum 
and a maximum transmitted flux Φmin and Φmax , respectively) allow for defining [19]: 

(ii) the attenuation ratio 

max min .k = τ τ  (2)
(iii)  the attenuation interval 

max minΔτ = τ − τ . (3)
In order to (still) provide a minimum (i.e., satisfactory) flux or illumination level in the optical system, 

(iv) the minimum transmission coefficient τmin is also important. This is for example the situation in 
colorimetry, where not only k  and Δτ are relevant (to provide an as large as possible distinguishable gamut 
of colors), as one cannot actually distinguish colors unless a minimum flux (therefore τmin) is provided [21]. 

Finally, the finesse, as well as the linearity of the tuning of the transmitted flux has to be characterized, 
using: (v) the sensitivity of the attenuator 

( ) /S x d dx= τ . (4)

3. OPTICAL FILTERS AS ATTENUATORS 

3.1. Polarizing and step-by-step filters 

Numerous commercially available types of optical filters are utilized as attenuators. They can work in 
reflection or transmission (the latter with polarizing or absorption materials), they can be continuous or step-
by-step, translational or rotational. A few of the most representative ones are pointed out in the following. 

A pair of polarizing filters has (Fig.1), from Malus’ law, the transmission function 
2

2( ) cos
2

An PI
I

τ
τ ϕ = = ϕ , (5)

where φ  is the angle between the axis of the polarizer (ΔPo) and of the analyzer (ΔAn); I  is the intensity of 
the incident, natural light; IAn is the intensity of the light emerging the An; τP ≈ 0.3 is the common 
transmission coefficient of a filter. 
 

 
Fig. 1 – Optical attenuator with a pair of polarizing filters. Po, polarizer; An, analyzer. 

While this attenuator has an interesting range from τmin = 0 to τmax = τP
2/2, it has the disadvantage of a 

non-linear transmission function, with S(φ) ~ sin2φ. 
Transmission filters can perform a continuous adjustment, (with linear devices or rotational disks, Fig.2a 

[22]) or a step-by-step attenuation. The former has a linear transmission characteristic – Fig.2b, but the beam 
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has to be focused in the plane of the filter in order to perform such a transmission. The latter, more common 
in optical setups, can be done with rotational disks (with filters with thin films depositions) – Fig.3a, with 
variable width plates – Fig.3b, or, often, with sets of filters that can be utilized in various combinations. 

The latter variant comprises the well-known pair of filter wheels where colored or neutral density 
filters can be mounted [22]. Commercially available (manual or motorized) double wheels (Thorlabs Inc, 
Newton, NJ, USA) for example have 6 or 24 filter mounts each, therefore such a device has 2

6 15C =  or 
2
24 276C =  possible steps of the transmission coefficient, respectively. Micro-devices are also developed for 

fine tuning attenuation [23], but we focused on more sturdy, macro-devices, as presented in the following. 

 
 

Fig. 2 – a) Circular attenuator with metallic 
film deposition; b) optical density D. 

Fig. 3 – Step-by-step neutral density (ND) filters: a) with absorption filters;  
b) with metallic thin films; c) step-by-step transmission function. 

3.2. Attenuators with translational Risley prisms 

The issue of the above devices is the lack of controlled fine tuning of the transmission coefficient,  
Eq. (1). As we had to solve this for colorimetry applications, we have approached a different type of attenuator, 
with a pair of translational Risley prisms [19]. As in the literature two such devices were mentioned (but without 
characteristic parameters), we investigated all their three possible variants: (i) with a fix prism and a mobile one 
sliding along the hypotenuse; (ii) with both prisms moving symmetrically in opposite directions; (iii) with a fix 
prism and a mobile one sliding parallel to a leg. We demonstrated that the second variant is the best both from a 
mechanical and an optical point of view [19], and also developed its designing calculus. 
 

 
Fig. 4 – Optical attenuator with symmetrically moving translational Risley prisms, developed in detail in [19]. Not at scale. 



144 Virgil-Florin DUMA 4  

For the device in Fig. 4, using Lambert-Beer’s law, the flux Φe that emerges the two identical prisms is: 

( )( ) exp ( )e ix d xΦ = Φ ⋅ −α ⋅ , (6)

where α  is the absorption coefficient, while the current thickness of the filter formed by the prisms can be 
deduced as (Fig.4) 

0( ) (2 ) tand x d x= − + δ θ . (7)

In this expression θ  is the prism angle, x = 0…  xmax is the (equal, but in opposite directions) displacement 
of each prism, d0 is the maximum possible width of the plate that can be formed, and δ is the displacement 
of the light beam passing through the prisms: 

2 2 2( ) 2 cos 1 sin 1 sinx x n n⎡ ⎤δ = ⋅ θ − θ − θ⎢ ⎥⎣ ⎦
, (8)

where n  is the refractive index of the prisms. In order to maintain unchanged the exit diameter D  (e.g., in 
colorimetry), a diaphragm is placed at the exit of the prism assembly – Fig.4. Taking this into account and by 
imposing the condition to use the full length a = D +2xmax+δm a x  of a prism, from Eqs. (6) and (7) the 
transmission function of the device, Eq. (1), is (Fig.5): 

1 0 2( ) exp[2 tan ]x r r xτ = τ ⋅ α ⋅ ⋅ θ , (9)

where 0 0exp ( )dτ = α ⋅  and two coefficients were introduced [19]: 

( )2
1 / ir D D= ;   ( )2 2 2

2 sin 1 sin cos cosr n n= θ − θ + θ θ . (10)

δmax = δ(x =xmax)  is the maximum displacement of the beam. 
 

 
Fig. 5 – Transmission curve of a Risley prisms attenuator [19]. 

 
The extreme values of the transmission coefficient are obtained, using Eq. (9), for x = 0 and x = xmax 

(Fig.5): 

min 1 0rτ = τ      and    2 21
max 1 0

r rr C−τ = τ , (11)

respectively, where the exp ( tan )iC D= −α ⋅ ⋅ θ  constant was introduced. 
Using Eqs. (11), from Eqs. (2) and (3), the characteristic parameters of the attenuator, i.e. its 

transmission ratio and interval are [19]: 

( ) 2
0

rk C= τ    and    ( ) 2
1 0 0 1rr C⎡ ⎤Δτ = τ τ −⎣ ⎦ , (12)

and from Eq. (4), the sensitivity of the device is 

2( ) 2 ( ) tanS x r x= ⋅ α ⋅ τ ⋅ θ . (13)

The non-linearity of the characteristic function (reflected in this non-constant sensitivity) is one of the issues 
of this attenuator. The other one is the limited attenuation range, of approximately 2.5× demonstrated in [19] 
for the optimal prism angle, θ ≈ 10º. The advantages of this solution are its small error regarding the 



5 Optical attenuators with Risley prisms and disk choppers 145  

transmission coefficient (evaluated in [19] to a maximum of 0.002% because of high-precision available 
components), but more important its fine tuning. The latter is the one that makes the device appropriate for 
colorimetry: it allows for a fine adjustment of color coordinates by finely tuning the flux of color 
components in a mixture [21]. 

4. SHUTTERS AS OPTICAL ATTENUATORS 

4.1. Classical shutters 

Translational shutters are the most well-known, because of their early and extensive use in 
photographic cameras. It is worth mentioning that their simple principle (which is not discussed here) also 
stands for the functioning of novel devices that, to our knowledge, we have introduced, i.e., choppers with 
rotational shafts that are capable to reach much higher chop frequencies than disk choppers [11]. 

Another attenuator is the iris diaphragm, common as a macro-, but also developed as a micro-device 
[24]. Its transmission coefficient is (Fig.6) 

( )2( ) ( ) ( )i iD Dτ ϕ = Φ ϕ Φ = ϕ , (14)

where Di is the diameter of the incident beam and D = Dmin … Dmax is the diameter of the emergent beam; 
the latter is a function of the (manually or motorized [22]) rotational (adjusting) angle φ  of the precision 
screw. 
 

 
Fig. 6 – Iris diaphragm. 

4.2. Optical attenuators with disk choppers 

Such types of shutters are more complex and interesting. A chopper with a rotational disk in its 
classical configuration (i.e., with windows with linear margins) is presented in Fig.7a. While in practice it is 
common to consider the light (usually laser) beam perfectly focused in the plane of the disk, this ideal 
situation is actually not met. Thus, in a rigorous approach one must take into account the finite diameter 2r 
of the beam section in the plane of the disk – Fig.7a [8]. This means that the laser pulses produced by the 
device (when chopping the incident continuous wave laser beam) do not have an ideal, rectangular shape, but 
a shape like the one in Fig.7b, with transition periods of time intervals τ = 2δ /ω, where 2δ is the angle the 
beam section is seen from the pivot O of the disk, and ω  is the rotational speed of the disk – Fig.7a. 

 

 
Fig. 7 – a) Chopper with disk with windows with linear margins (at t  = 0, when the window margin is tangent to the beam 

section); b) transmission function (top-hat laser pulses); c) un-obscuration of the beam section in the plane of the disk. 
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The time intervals τ  characterize both the obscuration and the un-obscuration periods – Fig.7c, while 
the period of full transmission has the time interval (α−2δ) /ω , where α  is the angle of a window – Fig.7a. 
The angle of a wing is γ = 2π /n − α , where n  is the number of windows of the disk. 

In order to characterize the light transmission through the chopper, in Fig.7a the t = 0 moment is 
considered when the margin of a window is tangent to the section of the beam, in the point T – Fig.7c, and 
the un-obscuration of the beam begins. For a top-hat laser beam (i.e., with a constant intensity on the entire 
beam section), the light flux transmitted is: 

2
( )( ) i

S
r
θ

Φ θ = Φ
π

, (15)

where tθ = ω⋅ , as .cstω=  and S(θ) is the uncovered area of the beam section. Using Fig.7c, 

1 2B B 2 CS tg= ⋅ β ,   CS cos sin( )r R= β = δ − θ . (16)

The semi-angle that characterizes the position of the chopper blade (its intersection points B1 and B2 
with the beam section) is therefore, from Eq. (16)2, 

sin( )( ) arccos
sin
δ − θ

β θ =
δ

, (17)

where sin r Rδ = . From Eqs. (15) to (17), 

( ) 2 21 2CS B B sin 2( )
2 2

S r r⋅ β⎛ ⎞β θ = β − = β −⎜ ⎟
⎝ ⎠

. (18)

From Eqs. (1), (15), and (18), the transmission function for the un-obscuration of the beam section is: 

2

sin cos(2 )1 sin 2 1 sin( )( ) arcos sin( )
2 sin sin

⎛ ⎞θ δ − θβ δ − θ⎛ ⎞τ θ = β − = − δ − θ⎜ ⎟⎜ ⎟ ⎜ ⎟π π δ δ⎝ ⎠ ⎝ ⎠
, for [ ]0,2θ∈ δ . (19)

In a similar way, for the obscuration of the beam section – Fig.7, the transmission function is: 

2

sin( )cos(2 )1 sin( )'( ) 1 arcos sin( )
sin sin

⎛ ⎞θ − α δ − θ + αδ − θ + α
τ θ = − − δ − θ + α⎜ ⎟⎜ ⎟π δ δ⎝ ⎠

, for [ ], 2θ∈ α α + δ . (20)

The graphs of the functions Φ(θ) and Φ′(θ), proportional to the coefficients τ(θ) and τ ′(θ), 
respectively, are shown in Fig.8. 

 
Fig. 8 – The area of the beam section that is uncovered by the chopper window. 

In order to determine the parameter of interest in this case, i.e., the average/total transmission coefficient 
(on a rotation period T = 2π /ω), one has to study the symmetry of these functions. One can see that the two 
graphs in Fig.8 are not symmetrical with regard to their middle vertical line (i.e., from Eq. (19): Φ(θ) + 
Φ(2δ−θ ) ≠ Φi , and from Eq. (20): Φ′(θ)+Φ′(2α+ 2δ−θ ) ≠ Φi), but from these equations 

( ) ( )' iΦ θ +Φ α + θ = Φ . (21)
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In consequence, the average transmission coefficient (considered for a sufficiently large time interval, 
for example for a number of rotation periods T ) is from Fig.7b, using Talbot’s law, 

( )
total

2 4 / 2 /
2 /

i

i n
Φ α − δ + δ ω

τ =
Φ π ω

   ⇒   total 2 / n
α

τ =
π

. (22)

It is interesting that in the ideal situation of a beam perfectly focused in the plane of the chopper disk, for 
which the transmission function in Fig.7b would consist of rectangular impulses, this coefficient is 

total

/
2 /
i

i n
Φ α ω

τ =
Φ π ω

   ⇒   total 2 / n
α

τ =
π

. (23)

In conclusion the average/total transmission coefficient is an invariant of this device with regard to the 
size of the beam section. 

It is worth mentioning in this respect that the chopper solutions patented in [12] approached the 
adjustment of this average coefficient, by proposing a device with two identical disks superposed to each 
other, which allows for fixing a certain angle α of each window before starting the chopper. 

 
Fig. 9 – Double disk chopper [12], with the technology developed in [10]. 

4.3. Disk choppers with eccentric beam sections 

Another possibility to adjust the coefficient totalτ , different than the one in Fig.9 is to use a laser beam 
section eccentric with regard to the upper and/or to the lower margins of the window (i.e., overlapping them), 
as shown in Fig.10a: tangent to (i) the lower or to (ii) the upper limit; (iii) with outer margins, centered on 
the middle circle of the window. These particular cases are considered in order to be able to assure these 
positions in a precise way in optical setups. 

The lower and the upper margins of the window are characterized by the radius R1 and R2 , respectively. 
Therefore the radius of the middle circle of the window and the window semi-width are respectively 

1 2( ) 2R R R= +    and   2 1( ) 2R Rρ = − . (24)

The three cases in Fig.10a therefore correspond to r > ρ and: (i) OC – r = R1 ; (ii) OC + r = R2 ;  
(iii) OC =R , where OC is the distance between the pivot O of the disk and the center C of the beam section. 

The ascertainment of the transmitted flux for cases (i) and (ii) is made in Figs. 10b and 10c, 
respectively. 

The transmitted flux for top-hat laser beams is, as in the previous subsection, proportional to the 
uncovered area of the beam section in the plane of the chopper. The problem is to determine the maximum 
achievable transmitted flux, which is proportional to the maximum area that can be uncovered from the beam 
section: for case (i), π r2 – A(MPNQ), Fig.10b; for case (ii), π r2 – A(M′P′N′Q′′), Fig.10c. 

Case i. From the geometry in Fig.10b 

[ ]2 2 2
2 2cos OC 2 OCR r R⎡ ⎤ε = + − ⋅ ⋅⎣ ⎦ ; (25)

2DN sin PCN sinr R= = ε ;    2OD cosR= ε ;    CD cos PCNr= . (26)

Taking these relationships into account, one can obtain the area outside the uncovered beam section: 

( ) ( ) ( )MPNQ MPND MQNDA A A= − , (27)
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where, using Eqs. (26), 

( ) ( )2MPND MPN / 2 DN CD PC sin PCN cos PCNA r r N= ⋅ − ⋅ = − ⋅  (28)

( ) ( ) ( ) ( )2 2
2 2MQND MONQ MON DN OD sin cosA A A R R= − = ε ⋅ − ⋅ = ε − ε ⋅ ε . (29)

 

 
Fig. 10 – a) Disk chopper – different overlapping positions of the laser beam section with regard to the upper and lower margins 
of the window: tangent to (i) the inner margin or to (ii) the upper margin; (iii) section overlapping both margins centered on the
               middle circle of the window; b) and c) ascertainment of the transmitted flux for case (i) and (ii), respectively. 

Therefore, from Eq. (27), with (28) and (29), 

( )
2 2

2 22 2 2
22

sin sin sin sin 2MQNP arcsin 1
2

R R RA r R
r r r

⎛ ⎞ε ε ε ε⎛ ⎞⎜ ⎟= − − − ε −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
, (30)

where for the particular case of the beam section tangent to the inner margin of the window, OC=R1+r , thus 
2 2 2 2cos ( ) ( )R r R R r R⎡ ⎤ ⎡ ⎤ε = + ρ + − ρ − ρ + + ρ⎣ ⎦ ⎣ ⎦ . (31)

Case ii. From the geometry in Fig.10c the angle 

2 2 2
1 1cos OC 2 OCR r R⎡ ⎤ ⎡ ⎤ε = + − ⋅ ⋅⎣ ⎦⎣ ⎦ ; (32)

1D N sin P CN sin 'r R′ ′ ′ ′= = ε ;   1OD cos 'R′ = ε ;    CD cos P CNr′ ′ ′= . (33)

Taking these relationships into account, one can obtain the area outside the uncovered beam section: 

( ) ( ) ( )M P N Q M P N D M Q N DA A A′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − , (34)

where, using Eqs. (33), 

( ) ( ) ( ) ( )2M P N D M CN P M CN P CN sin P CN cos P CNA A A r′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − = − ⋅  (35)

( ) ( ) ( ) ( )2 2
1 1M Q N D M ON Q M ON D N OD sin cosA A A R R′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − = ε ⋅ − ⋅ = ε − ε ⋅ ε  (36)

Therefore, from Eq. (34), with (35) and (36), 

( )
2 2

1 1 12 2
12

sin ' sin ' sin ' sin 2 'M Q N P arcsin 1 '
2

R R R
A r R

r r r

⎛ ⎞ε ε ε ε⎛ ⎞⎜ ⎟′ ′ ′ ′ = − − − ε −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
, (37)

where for the particular case of the beam section tangent to the inner margin of the window, OC = R2 − r , thus 
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2 2 2 2cos ' ( ) ( )R r R R r R⎡ ⎤ ⎡ ⎤ε = + ρ − + ρ − ρ − − ρ⎣ ⎦ ⎣ ⎦ . (38)

Case iii: From Fig. 10(a) the maximum area that can be uncovered is, with Eqs. (30) and (37), 

( ) ( ) ( )2MM N N MQNP M Q N PA r A A′ ′ ′ ′ ′ ′= π − − . (39)

5. DISCUSSION AND CONCLUSIONS 

An overview of some of the most common optical attenuators was made, while two devices were 
approached in detail: with translational Risley prisms [19] and with classical disks choppers [8-12]. The 
former provides a fine tuning of the transmission, while the later has an average coefficient. However, 
choppers have the advantage of being able to selectively obscure certain wavelengths by adjusting the 
chopper frequency. A synoptic view of some of the attenuators characteristics is provided in Table 1. 

Table 1 

Characteristics of several types of optical attenuators with filters or shutters 

Device Parameter τ(x) k Δτ τmin S Remarks 
Pair of polarizing filters (Fig.1) non-lin. - τP

2/2 0 not cst. Continuous tuning  
Rotational disk filters (Fig.2) lgτ=cst Depends on the variant cst. Beam must be focused 
Variable width filter (Fig.3) 
Step-by-step thin film filters [22] 

Step-by-
step 

Depends on 
the variant 

τ0 cst. on 
steps 

Translational. 
Less used 

Double filter disks (m windows) 
2
mC  steps Depends on the filters 

used; τmax = 0 
cst. on 
steps 

Most used; practical; 
usually sufficient steps 

 
 
Filter 

Risley prisms (Fig.4) [19] non-lin. Eqs. (12) and (11) not cst. Fine tuning of τ(x) 
Translational [22] non-lin. - τmax 0 not cst. - 
Iris diaphragm (Fig.6) non-lin. From Eq. (14) not cst. Tunes radius or flux 
Classical chopper (Figs.7-10) Produces various laser pulses. τtotal – Eq. (22) or (39) 
Eclipse chopper [9,12] Produces approximately triangular laser pulses. τtotal – from [9] 

 
 
Shutter 

Chopper with shaft [11] Similar to translational, but the beam is obscured from both sides 

 
For choppers, top-hat laser beams have been considered, both with sections placed entirely inside the 

chopper’s window and with sections that overlap the upper and/or inner margins of the window. The latter is 
an alternative to the chopper windows with adjustable angles, which is one of the claims in [12]. Future work 
includes Gaussian or Bessel beams to generate laser impulses, both with classical chopper disks and with the 
eclipse choppers that we have proposed [9] and patented [12]. A particularly interesting direction of work 
comprises the development and study of the much faster choppers with shafts that, to our knowledge, we 
have introduced – patent pending [11,25]. 
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