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Abstract: The purpose of this paper is to present a retinal vessel classification technique. First, in 
order to delimitate the area of interest, the optic disc is identified and modelled. The radius of the 
circle model is used as a parameter to extract the working area, which is outside of an inner circle 
concentric with the circle model and inside of an outer circle with a bigger radius. To localize the 
optic disc, a two steps technique was used: a) based on texture indicators and pixel intensity variance 
analysis in the green component of RGB image the optic disc area is roughly identified; b) disc edges 
are extracted and the resulted boundary is approximated by a Hough transform in the segmented area. 
Then from the thinned vessel image a vascular graph is extracted and filtered. The main branches of 
each connected sub-graph are identified starting from the graph edges near the optic disc. Various 
label configurations are propagated along each main branch edges and recursively along each 
secondary edge derived from the main one. The label propagation ends in case of conflicts at 
crossings. The no error label configuration or the one with the most classified edges is retained. The 
method has the advantages that the initial manual labelling of the starting vessels is no longer 
necessary and it is able to process high resolution images in which the line graph is too complex for 
other methods. 
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1. INTRODUCTION 

The retinal arteries and veins are differently affected by diseases as diabetic retinopathy, glaucoma, 
atherosclerosis or macular degeneration. The most observed indicator in such cases is the ratio between 
arteries and veins diameters (AVR). Usually the calibres of arteries decrease relatively to the calibres of 
veins, so AVR does. Another feature differently modified for arteries and veins is vessel tortuosity. To 
compute indicators as AVR or vessel tortuosity a classification of retinal vessels is necessary. The region of 
interest is nearby around the optic disc so the optic disc location and modelling are needed. Because the 
recognition and assessment of optic disc in retinal images are also tasks during the evaluation of the retina 
diseases as diabetic macular oedema or glaucoma, a vast literature on this subject was proposed. Some of the 
proposed methods, so called bottom-up techniques, locate directly the optic disc based on texture and 
intensity variance analysis. Another approach, namely top-down technique, identifies the main vessel 
branches and gets the optic disc area as the root of the vessels tree.  

The bottom-up technique presented in [1] recognizes the optic disc and models it in two steps. First, 
three methods for an approximate identification of optic disc area are used: the maximum difference between 
the maximum and minimum grey levels in the working window, the maximum variance method and the 
frequency low pass filter method. The area of interest is located with a voting procedure: 1) if all three 
candidates are close to their centre then this one is proposed as the area centre; 2) if only two from three 
candidates are close to the centre the average point of these two is chosen; 3) if all candidates are far apart 
the candidate proposed by the second method is chosen. Secondly, in a 400×400 window centred on the 
estimated point previously chosen a morphological filter is employed as in [2] to erase the vessels in the 
window. Next, the optic disc edges are extracted with a Prewitt edge detector and the edge image is binarized 
using Otsu method [3]. The artefacts are eliminated by morphological erosion and finally a Hough transform 
is applied to get the final optic disc boundary. The second step of optic modelling is performed in both red 
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and green channels of the RGB original image and the circle with the best fitting score is finally chosen. Part 
of the optic disc area segmentation was implemented in our first algorithm to roughly locate the disc [4]. 

Once the optic disc was modelled, the working region would be the area located outside of a circle 
concentric with the disc model with a radius twice of the model radium and inside of a circle concentric with 
the first one with a radius eight times larger. The vessel labelling procedure includes the following main steps 
performed in the previously selected area: 1) vessel network segmentation; 2) network landmarks (branching, 
crossover, end points) extraction and analysis; 3) vessel graph generation and filtering; 4) graph edges 
classification. The main rules used by the final labelling process are: a) the 3D vascular structure is cycle free, 
so each binary tree included in the 2D vessel graph represents a vessel; b) in the vicinity of the optic disc area 
vessels at crossings are of different type (an artery never crosses an artery, the same for veins).  

To perform the steps 2)-4) above for a full artery/vein (A/V) classification process, several methods 
have been proposed [6, 7, 8, 9]. The graph analysis proposed in [6] decides the type of each intersection 
point represented by a graph node. The nodes can be meeting point, or branch point, or cross point, 
depending on the orientation and the width of the incident vessel edges. The vessel width is computed based 
on initial vessel image analysis – from step 1 of the general labelling procedure. Then the vessels are 
classified using the rules a) and b) but for a large label domain. Finally, based on a combination of structural 
information and vessel intensity information, the domain of initial vessel labels is restricted to a binary 
domain (artery/vein) in two ways: by a supervised classification technique and by an unsupervised 
alternative. In [7], an initial labelling of the main vessels near the disc is manually performed. Then, in a grid 
of disjoint square cells of size 20×20 pixels, superimposed on the vessel image, each cell is analysed, starting 
from the optic disc area. The cell characteristics are computed as the number of connected components or the 
number of contacts of vessels with the cell edges. Based on previous cells and current cell characteristics the 
vessel type for the next cell is identified and propagated across the cell analysis. A percentage of 83.80% of 
correctly classified vessels is reported. The colour, the transverse intensity profile, and graph path properties 
of crossings and bifurcations of vessels were used as features in [8] to synthesize an energy function. To 
optimize the energy function by means of graph cuts, first a classification of the most significant six 
artery/vein pairs around optic disc is performed. Then in the area of interest the process is extended to the 
other pairs. An accuracy of 94.0% for the six widest vessels, respectively of 88.0% for all vessels, is 
reported. Another approach, presented in [9], proposes a heuristically AC-3 algorithm to differentiate in the 
graph the two vessel classes. The procedure propagates along the vascular tree the labels of some manually-
classified starting vessel segments. 

Our previous methods to label the retinal vessels were presented in [10] and [11]. We proposed a 
stratified strategy based on main vessels identification located in the optic disc vicinity. In [10] each main 
starting vessel is classified as vein or artery using an interactive classification technique. The established 
label is then propagated along the most significant descendant vessels. In [11] for each graph with at least 
two starting branches, various label configurations are used to classify the graph’s secondary edges. The 
label propagation ends in case of conflicts at crossings. The no error label configuration or the one with the 
most classified edges is retained. The initial manual labeling for the starting vessels of each graph is no longer 
necessary. An improved (A/V) classification technique, tested on a new data set, is proposed in this paper. 

The remainder of this paper is organized as follows. In Section 2 the optic disc area localization and 
modelling are presented. The preliminary retinal image processing techniques and network landmarks 
extraction and analysis [7] are summarized in Section 3. The proposed A/V classification algorithms are 
described in Section 4. The results are analysed in Section 5. The work is concluded in Section 6. 

2. OPTIC DISC AREA LOCALIZATION 

For a first attempt to locate the optic disc area we followed a similar methodology as the one proposed 
in [1]. From the three methods of the voting procedure presented in [1] we obtained good optic disc area 
localization with a modified Low-Pass Filter Method and the Frequency Low Pass Filter Method [4]. 

To cope with the image characteristics of public retinal image databases [12, 13], and specific 
databases provided by Grigore T. Popa University of Medicine and Pharmacy Iasi, mentioned in [4] and [5], 
a new method was proposed in [5]. The image was transformed in the frequency domain and the magnitude 
result of the FFT transform was filtered by a Gaussian low-pass filter [1]. The filtered result was transformed 
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back to the spatial domain. Using the histogram of the new image, a binarization threshold was computed. A 
21×21 median filter was applied to eliminate isolated peaks. The result is the image I(i,j). Each I(i,j) pixel 
with a grey value greater than the threshold computed earlier is denoted “bright”. On each “bright” pixel a 
square window of the same dimension as the one used by median filter was centred and the intensity pixel 
variance, denoted Var(i,j), was computed. Also, for every pixel I(i,j), a texture measure was computed, using 
the Modified Maximum Difference Method [1]. A new image Diff(i,j) was generated. Each Diff(i,j) pixel is 
the difference between the maximum grey value and minimum grey value of the pixels inside a 21×21 
window centred on the current I(i,j) pixel: 

  ( ) ( ) ( )max minDiff , , , .W Wi j I i j I i j= −   

An image, denoted F(i,j), of normalized texture values, was created. Finally, the pixel O(m,n) of image 
I(i,j) with F(m,n) > F(i,j) and Var(m,n) > 0.7max(Var(i,j)), 0 ≤ I ≤ H–1, 0 ≤ j ≤ W–1, was declared as the 
centre of a window containing the optic disc. 

Results of the new identification optic disc area procedure are depicted in Fig. 1. The original green 
channel is 1.a. The images I(i,j) and F(i,j) are illustrated by Fig. 1b and Fig. 1c. Black pixels in Fig. 1c are 
“dark” pixels of I(i,j) not considered as possible optic disc centre candidates. The final result is depicted in 
Fig. 1d, where the cross indicates the centre of the working window in the selected channel.  
 

    
a. b. c. d. 

Fig. 1 – Result of detecting an approximation of the optic centre position: a) green channel image; b) Gaussian filtering result; c) 
F(i,j) image, where black pixels are “dark” pixels of I(i,j); d) the cross indicates the working window centre [5]. 

In the located area, a morphological opening using a line as structuring element was performed for 12 
orientations of the line, as in [2]. This operation eliminates blood vessels in the area and prepares it for optic 
disc border extraction. Which is accomplished by an iterative Canny filtering followed by binarization. 
When a number of edge pixels greater than a predefined threshold is obtained, the iterative operation stops. 
The optic disc model is computed using the Hough transform.  

The optic disc modelling was performed errorless on images of DRIVE database [12], respectively 
“High-Resolution Fundus (HRF) Image Database” [13] used in retinal labelling process. The modelling 
results are illustrated in Fig. 2a, and Fig. 5b. 

3. PRELIMINARY RETINAL IMAGE PROCESSING STEPS 

A set of manually segmented images of the public DRIVE database [12] and a set of segmented images of 
HRF database [13] were the test input for our vessel labelling application. The working image synthesis is 
illustrated by Fig. 2a, b, c, using DRIVE [12] images (RGB original image and the manually segmented image):  

1) The radius r of the circle model is used as a parameter to extract the working area in the thinned 
image of the vessel network; 

2) From the DRIVE [12] vessel image (Fig. 2b) a centreline image, denoted TV, is generated by 
thinning; 

3) A working image, noted RV, is built by deleting in TV image any vessel pixel outside the outer 
circle of radius 12r or inside the inner circle of radius 2r. The vessel graphs of RV images are filtered using a 
procedure described below. The filtering results are illustrated in Fig. 2c.  

For landmark point set analysis and final A/V classification two other feature images are needed: 
– A vessel width image, denoted WV; 
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– For each vessel pixel in TV image, the intensity variance in the green channel of the original colour 
image is computed, using a 14×14 window. The result is stored in a floating point array, noted VV. 

By scanning the RV image, multiple point (vessel point with more than two vessel neighbours) 
structures are generated. The structure set is filtered to retain only the essential multiple points. The essential 
multiple point set of the RV image is ordered with respect to point distance to the optic disc centre. Besides 
the essential point coordinates each significant point structure includes also the coordinates of the nearest  
2-neighbour vessel pixels considered as starting points for vessel tracking in the RV image. The tracking 
process generates a line structure including: line end points; essential points associated to end points; line 
length; tracked vessel pixel coordinates set; a binary attribute to mark the line as allocated (processed) during 
the graph structures generation process. Along tracking for each current pixel, there are picked from WV, VV 
and the green channel of RGB images the following parameters: vessel width; intensity variance and the grey 
level. At the tracking end, for short segments, the average of each parameter is computed. If the vessel length 
is greater than a threshold experimentally established, at each end just a fraction of the stored vessel points are 
used to compute the parameter average. The vessel slope is computed in the same manner, but this time using 
the coordinates of the whole set of stored vessel points or of a fraction of points at each vessel end. The line 
structure includes also a graph index, to indicate the graph membership. Then, each line structure is completed 
with pointers to the incident lines at its ends. For each incident line at crossings, the associated line index 
structure field is completed if the two lines have almost the same width, local orientation, intensity and 
variance means. Later, the line structures are filtered in order to: detect and delete short lines bounded by 
bifurcations that hide crossings and associate properly the remaining crossing segments; detect tangency 
situations and associate segments; eventually associate vessel segments at crossings with more than two 
vessels (four branches) [10, 11]. Also, the very thin branches connected to much more significant ones are 
eliminated in order to simplify the graph analysis [10, 11]. For images from the DRIVE database [12] the 
result of all line structures processing is depicted by Fig. 2c. For the HRF database [13], in cases of 
intersections of two vessels with much different widths, as depicted by Fig. 3a, a special configuration would 
be generated in the thinned vessel image, as depicted by Fig. 3c. 

 

 

a. 
 

b. 
 

c. 

Fig. 2 – a) Working area on an RGB image from the DRIVE database [12] (area outside of inner circle and inside of outer circle);  
b) manually segmented image; c) blood vessels graph.  

 
a. 

 
b. 

 
c. 

 
d. 

 
e. 

Fig. 3 – a) Area intersection of two vessels with very different widths; b) the same area in the manually segmented vessel image;  
c) thinning result; d) line lnew induced by the inflexion points v1 and v3; e) final configuration. 

 
In this case the following procedure is applied in order to associate the vessel segments at intersection.  
1. For each secondary (thin) branch, l1, respectively l3, compute the inflexion point, v1, respectively v3, 

using the procedure proposed in [14]. If a significant inflexion point is not detected, the procedure is 
aborted. 
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2. In the working image: build the v1v3 line and erase the l1 line points between v1 point and its end 
connected to l4 and lc, respectively erase the l3 line points between v3 point and its end connected to l2 
and lc. 

3. Cancel the point structures of the essential points of l1 and l3 from their intersections with lc. Add 
the point structure of the essential point generated by intersection of v1v3 line with lc line.  

4. Rebuild the line structure set using the new point structure set, generated at previous step. Update 
the widths and slopes at the working ends of new segments l1 and l3. 

4. STRATIFIED RETINAL VESSEL LABELLING PROCEDURE 

Graph structure sets are synthesized by tracking the pointers to incident lines at current line end, [10], 
[11]. First, the graph index of the line structure is set accordingly and the current line is marked as processed 
to avoid tracking cycles. After all line set was processed, for each line set with the same graph index, the main 
branches, starting from the inner circle of the working area, are identified. Each starting main branch is 
tracked in order to extract the rest of the main vessel and to fill the graph structure. The graph main branches 
detection procedure is described in Fig. 4. 

 
Algorithm 1 Graph main branches detection 
Input: Lines set 
Output: Graphs set 
1. for each line set with the same index graph do 
2.  if current line has one “1- neighbour” end located from 
      inner circle at a distance less than  
        a specific threshold 
3.   if the “1- neighbour” end has at least two vessel  
        neighbours in the original image of the  
        thinned vessels  
4.    if the starting segment has a significant length 5.  
    index_starting_lines[nmb_starting_lines++] =  
       current line index; 
     else 
6.     search each branch until branches of significant 
        length are found; 
7.     for each branch 
8.      index_starting_lines[nmb_starting_lines++] = 
        current branch index; 
9.     end for 
10.    end if 
11.   end if 
12.  end if 

 
13. end for 
14. reorder the index set, index_starting_lines[], and  
   the others fields of the graph structure by starting 
    segment width (the largest width on first position ).  
15. if nmb_starting_lines >=1 do 
16.  for each starting_line  do 
17.   current_line = starting_line; 
18.   if current_line end is a “1-neigbour” end go to 7; 
   end if  
19.   if current line end has two incident lines 
20.    branch_for_starting_lines[][]=current_line index; 
21.    current_line = line with greatest width from two  
      incident ones; 
22.   end if 
23.   if current line end has at least three incident lines 
24.    branch_for_starting_lines[][]=current_line index; 
25.    current_line = index of associated line at crossing; 
26.    if the other lines at crossing are not associated 
27.     fill the fields of non-associated lines at crossings; 
28.   end if     // ifs on routine lines 26, 23 
29.  end for 
30. end if 

Fig. 4 – Algorithm for graph main branches detection. 

Step 3 of the Algorithm 1 avoids considering as starting main branch segment an ending segment of a 
vessel located in the optic disc area. The main branches detection result is illustrated in Fig. 5b, for all 
connected sub-graphs. 

The next step identifies for each connected sub-graph with at least two starting branches the set of 
associated crossing lines. If at least one four lines set, with line indices i, j, k, n, fulfilling the conditions 
index_cross of Lines[i] = k, index_cross of Lines[k] = i, index_cross of Lines[j] = n, index_cross of Lines[n] = 
j, is found out then a process to get the non-conflict label configuration or the one with the most correctly 
labels is started. In what follows, the labels denoted "0" are allocated to the veins and the "1" labels are given 
to the arteries. Starting from the label configuration {01, 02, ..., 0m} allocated to the start segment set of the 
main branches, the labelling process continues with the rest of possible configurations until the right starting 
label set is found. Meaning that for all i, j, k, n associated crossing lines the labelling fulfil the rule b) of the 
classification process: label of Lines[i] = label of Lines[k], label of Lines[j] = label of Lines[n] and label of 
Lines[i] ≠ label of Lines[j]. 
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a. b. c. d. 

Fig. 5 – a) Original high resolution RGB image; b) main branches of all connected sub-graphs; c) alg. 2 result; d) final result. 

Due to the reordering of step 14 in the above algorithm, the first position of initial label set would be 
always allocated to a vein because in the optic disc vicinity veins have larger diameters than arteries. So the 
labelling process would be finished in the worst case when the first configuration of type {11,x2, ...xm} is 
reached. The procedure to get the right starting label configuration is shown in Fig. 6. 

 
Algorithm 2 Graph structures labelling validation 
Input:   Current graph, label configuration for main branches 
Output:  0 = error at crossings or 1 = no errors; number of  
        labelled vessels.  
1. for each main branch (starting_line) do 
2.  for each line in current main branch do 
3.   initialize a line index stack; stack_level = -1; 
4.   error_flag = 0; 
5.   current_line = current line from main branch; 
6.   label = current_line label //(artery = 0, vein = 1) 
7.   do  //recursive labelling 
8.    if current_line it is not labelled  
9.     current_line label = label; 
10.    else if current_line is not a main branch line 
11.     return 0; 
12.    end if //ifs on routine lines 10, 8  
13.    if current_line end is a “1-neigbour”  
14.     if stack_level < 0 go to 2; end if 
15.     current_line = current line from index_stack. 
16.     stack_level--; 
17.    end if  // if on line 13 
18.    if current line end has two incident lines 
19.     if both incident lines have widths less than current 
          line  
20.      current_line = incident line with greatest width; 
21.      stack_level++; push the second incident line  
          index; 
22.      continue; //resume do loop 
     else 
23.      if stack_level < 0 go to 2; end if 

 24.      current_line = current line from index_stack;  
25.      stack_level--; continue; 
26.      end if   //ifs on routine lines 19, 18 
27.      if current line end has three incident lines 
28.       if current line is associated 
29.        current_line = index of associated line at  
             crossing; 
30.       if the other two lines at crossing are associated 
          and are labelled with the same value as 
          current label 
31.        return 0; 
32.       if the other two lines at crossing are not  
          associated fill the fields of non-associated 
          lines at crossings; 
33.       continue; 
34.       else if the other two lines at crossing are  
          associated 
35.       find out the index of the other non-associated 
          line; 
36.       if the width of the line is of the same range as 
          current one 
37.        current_line = current other line; continue; 
38.       if stack_level < 0 go to 2; end if 
39.        current_line = current line from index_stack;  
40.        stack_level--; continue; 
41.   end if  // ifs on routine lines 36, 34, 32, 30, 28, 27. 
42.  end do 
43. end for….// for on routine lines 1, 2. 
44. return 1; 

Fig. 6 – Algorithm for graph structures labelling validation.  
 
Besides the optimal starting label configuration, algorithm 2 leads to the classification of the main 

vessel of the entire blood network. Also, along the classification process a list of ambiguous labelling cases 
is generated. An algorithm 2 result is depicted in Fig. 5c. In the last phase of the labelling process, when 
more information is obtained, the ambiguous cases would be reconsidered using algorithm 3.  

Algorithm 3 (Fig. 7) includes the labelling procedures for all unsolved cases gathered along the first 
two steps of the classification process:  

– Not labelled pairs of vessels derived from a labelled main vessel. The non-labelled pairs that do not 
fulfil any association condition are considered secondary branches of the main labelled branch;  

– Not labelled vessel from an intersection with two other associated and labelled vessels and a third 
vessel with a different label than the associated pair; 
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– Not labelled vessels from four or five incident vessels groups where only the main vessel is 
classified; 

– Not labelled vessels from at least five vessel intersections with two tangent vessels. 
Figure 5d shows a result of Algorithm 3. The final version of the entire A/V classification process is 

presented below. The final A/V classification results are illustrated for high resolution images in Fig. 9. 
 

Algorithm 3 Not-marked branch labelling at crossings  
Input: Labelled graph produced by Algorithm 2 
Output: Graph with new labelled vessels 
1. for each pair of not associated line in the list do 
2.  if line pair is labelled continue; end if 
3.  if lines in the same width and orientation ranges  
  continue; end if 
4.  if the other line pair at crossing is not labelled  
   continue; end if 
5.  label = label of the other line pair //(artery 0, vein 1) 
6.  for each line in the pair do 
7.   initialize a line index stack; stack_level = -1; 
8.   error_flag = 0; 
9.   current_line = current pair line; 
10.   do the recursive labelling of Algorithm 2  
       (lines 7-43) end do  
11.  end for 
12. end for 
 

 Main Algorithm 
Input: Graphs set  
Output: Graphs set with labelled vessels 
1. for each Graph structure do 
2.  Graph main branches detection - Algorithm 1 
3.  for each label configuration of the graph main 
       branches do 
4.   result = Graph structures labelling validation – Alg. 2; 
5.   save label configuration with the most labelled  
       branches; 
6.   if result > 0 
7.    Not-marked branch labelling at crossings - Alg. 3; 
8.    go to 1; 
9.   end if  
10.  end for 
11.  use the label configuration saved in step 5 to label  
      the graph; 
12.   Not-marked branch labelling at crossings – Algorithm 3; 
13. end for 

Fig. 7 – Algorithm for not-marked branch labelling.  Fig. 8 – The main algorithm. 
 

Fig. 9 – Original RGB high resolution images, upper row; Classification result, bottom row. 

5. RESULTS 

The proposed method was tested on a set of 30 images of the DRIVE database [12] and also on a set 
of 20 high resolution (3504×2336) images from the HRF database [13]. To evaluate the results, the following 
indicator was used: ∑∑= )()( init

iiclsi lwlwR
i

, where 
iclsl  is the length of the ith vessel correctly classified; 

init
il  is the length of the ith vessel from working area. The weight wi is defined as: wi = 0.1 + 0.9 × (widthi –

widthmin) / (widthmax – widthmin), where widthi is the ith vessel width, widthmin is the minimum width for all the 
vessel network and widthmax is the maximum width. For the DRIVE [12] images, the average of the correct 
classification rate was 95.1%. For the high resolution set, an average of 92.2% correct classification rate was 
obtained. Due the fact the recognition rate is computed differently by almost every paper it is difficult to 
compare exactly the overall results. However, considering also that working area is considerable larger than 
the one used by other authors, we appreciate that our results are ones of the best in field. 
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6. CONCLUSIONS 

The proposed method was validated using two different databases. The first test was performed by 
using a set of 30 images of the DRIVE database, which was used also in our previous work [11]. Compared 
to the other methods presented in the literature, the proposed A/V labelling method has two main advantages: 
(a) the analysed area of interest around the optic disc is much larger than the one considered in other similar 
works and (b) initial manual labelling for the starting vessels of each graph it is no longer necessary. The 
proposed improvements of the line set analysis, presented in this paper, lead to a slight increase of the 
recognition rate: 95.1% versus 95%. The second test was performed by using high resolution retinal images. 
Due the fact that the line graph is much more complicated, the line set filtering has been completed to cope 
with new possible configurations. For a set of 20 high resolution images a recognition rate of 92.2% was 
obtained. The main gain of the propose method consists in the algorithm improvement to cope with high 
resolution images without the need to adjust the parameters of the algorithm.  
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