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Abstract. In our previous paper (Proc. Romanian Acad. A 18, 323, 2017) we have built and 
examined some properties of the k-coherent states, expressed through the k-hypergeometric functions. 
As a continuation of that paper where we have focussed only on the pure states, in the present paper 
we deal with mixed (thermal) states for the systems with linear, as well as quadratic energy spectra.  
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1. INTRODUCTION 

The classical generalized hypergeometric (GHG) functions have a series of applications in different 
branches of physics [1]. Among them, they are used for defining the most general class of coherent states 
(CSs) – generalized hypergeometric coherent states (GHG-CSs) introduced in [2] and applied to thermal 
states of the pseudoharmonic oscillator in [3]. Even if the classical GHG functions turned out to be very 
useful in terms of applications, in the last decades were defined the so called k – generalized hypergeometric 

(k-GHG) functions ( ){ } ( ){ } 
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where C∈x ,  R∈k  and  +∈Nn . Particularly, for 1=k  the k-GHG lead to the usual GHG functions.  
In a previous paper [6] we have built and examined some properties of the k-GHG-CSs, by using the 

diagonal ordering operation technique (DOOT). We have limited only to the k-CSs of the Barut-Girardello 
kind (k-GHG-BG-CSs), although this procedure can be used also in the case of Klauder-Perelomov or 
Gazeau-Klauder CSs. In order to avoid rehearsals, we appeal and use here the notations and formulae of 
paper [6].  
           We consider two Hermitic conjugate operators that act on the Fock vectors >n|  as   

       
>−>=− 1|| ),(

, nenA qp
kn ,         >+=> ++ 1|| ),(

,1 nenA qp
kn . (1.2)

They are connected with the dimensionless Hamilton operator −+≡ AAH  as follows: 

             >>=>= −+ nenAAnH qp
kn ||| ),(

, . (1.3)

 The dimensionless energy eigenvalues ...,2,1,),(
, =me qp
km  and the structure constants )(),( nqp

kρ  are 
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which, as we will see below, appear in the expression of k-GHG-CSs. The following equality holds 
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 The vacuum state projector can be obtained through the standard procedure, using the DOOT rules [6]: 

                  
( ){ } ( ){ } #

;;

1#|00|

1,1,, 






=><
−+==

AAbaF q

jknj
p

iknikqp

. (1.6)

 The k-generalized hypergeometric Barut-Girardello coherent states (k-GHG-BG-CSs) kz >|  are 

defined as usual, i.e. as the eigenstates of the lowering operator −A  [7]: kk zzzA >=>− ||  where the 
complex number )iexp(|| ϕzz = , with ∞≤|| z   and πϕ 20 ≤≤ , labels the k-GHG-BG-CSs. 

Their expansion into the Fock vector basis >n|  is 
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 In [6] we have showed that the k-GHG-BG-CSs satisfy all Klauder’s requirements imposed to any CS: 
a) continuity in complex label, b) normalization, c) non orthogonality, d) unity operator resolution with 
unique positive weight function of the integration measure, e) temporal stability, and  f ) action identity [8]. 
 Generally, the integration measure is expressed using the Meijer’s G-function:  
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2. MIXED STATES 
 

Let us we examine the thermal states described by the density operator kρ  
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where ωββ =
~

 is a dimensionless thermal parameter and kZ  is the partition function: 



3 Thermal states in the k-generalized hypergeometric coherent states representation 433 

                  

( , )
,

0 0
Tr | e | e

p q
n keA A

k k
n n

Z n n ββρ + −

∞ ∞
−−

= =

= = < > =∑ ∑ . (2.2)

By using the DOOT, Eq. (1.5) and their conjugate counterpart, the density operator becomes: 
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    The Husimi’s Q-distribution function defined in the k-GHG-BG-CSs representation is [9] 
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and it is normalized to unity: ( )2d ( ) | | 1k kz Q zµ =∫ . 

The density operator kρ  can be expanded as a superposition of CSs projectors (see, e.g. [9]): 

           ( )2d ( ) | | | |k k k k kz P z z zρ µ= > <∫ . (2.5)

 To determine the expression of the quasi-distribution function ( )2|| zPk  we follow the same 
procedure as there for determining the integration measure, with the function change and the resolution of 
suitable Stieltjes moment problem (see, [6]). This function is also normalized to unity: 

( )2d ( ) | | 1k kz P z =∫ . 
The expectation value of a physical observableA in a mixed (thermal) state is calculated as  

                ( )2
,# # Tr(#  #) d ( ) | | # # ,k k k k z kz P zρ µ< > = = < >∫A A A    (2.6)

where the notation #...#  signifies the diagonal ordering (DOOT) of product operators ( ) ## sAA −+  [3]. 
 In analogy with the Mandel parameter calculated in the k – GHG-BG-CSs, we have defined the 
Mandel parameter for the thermal states, called the thermal counterpart of the Mandel parameter )(TQk  

[10]: 
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The sign (positive, zero or negative) of )(TQk as function of equilibrium temperature T  show whose 
kind of statistics (super-Poissonian, Poissonian or sub-Poissonian) obey the thermal states. 

3. SOME SIMPLE PARTICULAR CASES 

We will illustrate the above ideas in two cases of dimensionless energy eigenvalues: a) the linear 
spectra nkee qp

k
qp

kn +=  ),(
,0

),(
, , and b) the quadratic spectra 2),(

,0
),(

, nBknee qp
k

qp
kn −+= , with respect to the 

energy quantum number n . Here B  is a positive constant and 0
),(

,0 ee qp
k ≡  is the dimensionless zero energy 

term. We will particularize, without customizing it again, the main results obtained above. 
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a) The linear spectra is characteristic for some quantum oscillators, e.g. the one-dimensional 
quantum oscillator (HO-1D), for which 2/10 =e  [9], or the pseudoharmonic oscillator (PHO), for which 

4/2/2/1 2
0

2
0 rme ωα ++=  [10]. The dimensionless energy eigenvalues ( , )

, , 1, 2, ...p q
m ke m =  are 
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  Consequently, 1=p  and 1=q , so that the structure constants become 
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and the k – GHG function in this case is the Kummer confluent k-hypergeometric function: 
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 By particularizing 1=p  and 1=q , we easily get the vacuum projector             
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 Then, the k –GHG-BG-CSs for the case of linear spectra becomes 
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where ka =1  and keb += 01 , while the integration measure that assure the unity operator decomposition is 
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For the particular case of HO-1D, 1=k  and 00 =e  (i.e. if we neglect the insignificant term of zero 

energy), we recover the integration measure ( )
2

(1,1) 2d dd ( ) d | | .
2HO

zz zϕµ
π π

= =   

The density operator for the case of linear spectra is independent on the constant 0e  
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where ωββ =
~

 is a dimensionless thermal parameter, and ( ) 1
e 1k

kn β
−

= −  is the Bose-Einstein 

distribution function or the average of the photon number in the thermal state. Consequently, by normalizing 

the density operator to unity, we obtain the partition function: ( )0 0( )
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With the help of the DOOT rules and the vacuum projector, the density operator becomes: 
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The Husimi’s Q- function is obtained by replacing the operator product −+ AA  with the  2|| z  [6]  
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 This function is normalized to unity i.e. ( )(1,1) 2d ( ) | | 1k kz Q zµ =∫  and this can be demonstrated by 

using an integral of kind 7.621.4 (see [11, p. 822]).                                                                                                                  
The quasi-distribution function ( )2|| zPk  from the spectral decomposition of the density operator  

                ( )(1,1) 2d ( ) | | | |k k k k kz P z z zρ µ= > <∫  (3.10)

is determined by solving  a suitable Stieltjes moment problem and the final (normalizable to unity) result is 
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The thermal expectation value of integer powers ...,2,1,0=s   of number particle operator is  
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with  )~exp( kX β−= . With the above formula, we obtain kk nN =><  , and 22 2 kkk nnN +=><  , so that 

the thermal counterpart of the Mandel parameter is ( ) 1~
1)(

−
−== k

kkk ennQ β . As a function of equilibrium 

absolute temperature βω ~/ BkT = , the thermal Mandel parameter is a positive function for all finite 
temperatures. So, the corresponding thermal states obey super Poissonian statistics. 

 b) The quadratic spectra, whose dimensionless energy eigenvalues are 2
0

),(
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characteristic for some anharmonic oscillators, e.g. the Morse oscillator (MO) [12]. Here, the constant B is 

strictly positive and +∉NB . Without affecting the generality of the problem we can consider 00 =e , so the 

energy eigenvalues are ( ) )1,0(
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and the indexes of normalization function are 0=p  and 1=q .                                                               
The k – GHG function associated with this case is  
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This function can be expressed also in an equivalent manner  
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where we used the expression of the hypergeometric function through Bessel function (in fact, the Bessel 
polynomial of the degree the integer part of [ ]1

max )2( −= kBn ) of the first kind ( )xJν  [13]. 
 The vacuum projector is 
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 The k –GHG- BG-CSs for the case of quadratic spectra is 
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where k
B

b +
−

=
1

1 , while the k – HG-BG-CSs projector, by respecting the DOOT rules is 
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The integration measure that assures the unity operator decomposition is   
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Using the following integral 6.561.16, p. 676 of [11] it can be proved that this integration measure 
assure the resolution of the unity operator.  
 In order to write the normalized canonical density operator we will reorganize the energy 
exponential according to our previous introduced ansatz [12]:
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where in the front part appears the exponential operator acting on the variable β~ . 
 Then, the density operator for the case of quadratic spectra is  
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where [ ]1
max )2( −= Bkn  (the integer part) represents the number of bound states of the examined Morse 

system (e.g. the diatomic molecule). The partition function kZ  is calculated as 
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With the DOOT rules, as well as the expression of the vacuum projector, we can write the density 
operator in the following manner: 
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We observe that here the k – GHG function  ( )...;...;,10 kF  reduces to a polynomial of degree maxn . By 

replacing the product −+ AA  with 2|| z  we obtain the Husimi’s Q-distribution function   
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The density operator can be represented by the following spectral decomposition   
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and we will choose the quasi-distribution function ( )2|| zPk  
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After a function change and the resolution of a suitable Stieltjes moment problem, the final expression 
(normalizable to unity) becomes 
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By integrating this expression on the variable 2|| z and using the integral 6.561.16, p. 676 of [11], we 

lead to the definition of the partition function, which means that ( )2|| zPk  is normalized to unity. 
The thermal expectations of the integer powers of number particle operator is 
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as well as the corresponding thermal Mandel parameter 
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The character of distribution that governs these thermal states must be examined numerically.  

4. CONCLUDING REMARKS 

 In this paper we have examined the statistical (thermal) properties of the k – generalized 
hypergeometric Barut-Girardello coherent states (k – GHG-BG-CSs), by using the rules of the diagonal 
ordering operation technique (DOOT) [3]. We dealt with two kinds of systems: linear (harmonic, 
pseudoharmonic oscillators) and quadratic (Morse oscillator) energy spectrum for which we calculated both 
distribution functions: ( )2|| zQk  and ( )2|| zPk . Statistical characteristics of the k – GHG-BG-CSs for thermal 
states were examined by calculating the thermal Mandel parameter. Their values (negative, zero or positive) 
show what kind of statistics is associated to examined states (sub Poissonian, Poissonian or super 
Poissonian) as function of the equilibrium temperature T . At the limit 1→k  all formulae and expressions 
for the k – GHG-BG-CSs tend to the corresponding formulae and expressions for the usual (classical) 
generalized hypergeometric coherent states. For the harmonic limit 1→k , 00 →e  and 0→B  we recover 
formulae and expressions for the canonical CSs of the one-dimensional harmonic oscillator. 
    By concluding, the present paper is a step forward regarding the applications of the k – GHG 
functions, concretely, in defining the k – GHG-BG-CSs, and examining their thermal properties. Through 
particularization of the indices and parameters of k – GHG-BG-CSs, it can be obtained the all known CSs 
with physical significance. In this context the paper enriches the literature referring to the CSs.     
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