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Abstract: The spatial distribution of contact orientations and anisotropy in granular assemblies stand 
for the directional features of contacts and contact forces. Contact anisotropy and contact force 
anisotropy are two fundamental concepts for microscopic and macroscopic mechanics of granular 
materials. In this paper, a kind of diagrammatic description for illustrating anisotropy in granular assemblies, 
named contact orientation distribution diagram (CODD), is proposed. A group of statistical indicators 
are developed to determine anisotropies. As a result, contact anisotropies and contact force anisotropies in 
different granular assemblies which are simulated with different existing methods, under different 
boundaries and using different densification procedures are compared and discussed. 
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1. INTRODUCTION 

Since the inception of research on granular materials, contact between particles inside has been 
intensively focused on with great interest and expectation all the time, such as coordination number (Bernal 
and Mason, 1960; Agnolin and Roux, 2007), contact forces (Liu et al., 1995; Kruyt and Rothenburg, 2002; 
Bagi, 2003; Trentadue, 2011), contact network (Liu et al., 2015; Radjai et al., 1996; Silbert et al., 2002), etc. 
Contact is the most fundamental property and produces some unusual features of granular materials.  

Intergranular contact is microscopic characteristics of granular materials and is always used as basic 
element to construct theories and models (Nemat-Nasser, 2000; He, 2014). As an essential parameter of 
contact, contact orientation can interact with contact anisotropy and contact force anisotropy to impact on 
mechanical behaviors of granular materials (Horne, 1965; Ouadfel and Rothenburg, 2001; Majmudar and 
Behringer, 2005). In some configurations contact orientation can also produce indirect interactions with other 
parameters. For example, in configuration of inertial granular flows, coordination number and inertial number 
indirectly interact with contact orientation (Azema and Radjai, 2014). Obviously, isotropy and anisotropy of 
granular materials significantly depend on the contact orientation. It has been revealed in several publications 
that induced anisotropy in contact orientations plays a key role in microscopic behavior of cohesionless 
granular materials (Cundall et al., 1982; Thornton and Barnes, 1986; Rothenburg and Bathurst, 1989). In this 
paper, contact orientation and anisotropy in granular assemblies are focused on and discussed. 

In accordance with Cundall and Strack analysis (Cundall and Strack, 1983), two types of anisotropies 
are defined: fabric anisotropy (i.e. contact anisotropy above) and anisotropy in contact forces (i.e. contact force 
anisotropy above). Contact anisotropy denotes directions of contact normals and is necessary for the link 
between macroscopic stress tensor and microscopic contact forces. Contact force anisotropy denotes direction-
dependent deviations of contact forces from the mean and is associated with the deviatoric part of the stress 
tensor. It can be seen from the definition that contact anisotropy is a kind of ‘geometrical’ anisotropy of contacts 
and contact force anisotropy is ‘mechanical’ anisotropy. Because of large quantities of contacts in granular 
assemblies, a statistics of contact orientations is necessary and practicable. Following the works of Horne, 
Ouadfel, Rothenburg, etc., in the case that the entire orientation domain is divided into a number of equal 
intervals, contact anisotropy can be represented as probability distribution of contact normals over all the 
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orientation intervals, and contact force anisotropy can be expressed as distribution of ratio of average contact 
forces in each orientation interval and overall orientation intervals (Horne, 1965; Ouadfel and Rothenburg, 2001). 

To characterize contact orientation distribution, in section 2, a diagrammatic description referred to as 
contact orientation distribution diagram (CODD) is introduced and a statistical anisotropy model for cohesionless 
granular materials is proposed. Based on the statistical anisotropy model, in section 3, anisotropies in different 
particle arrangements (different generating approaches, boundaries and densification procedures) are compared 
and discussed. Some important conclusions are presented in section 5. 

2. STATISTICAL ANISOTROPY MODEL 

2.1. Contact orientation distribution diagram (CODD) 

In spherical coordinates, orientation can be parametrized by its zenith angle φ and azimuth angle θ. 
Here stereographic projection is introduced to characterize orientations of contacts and contact forces using 
two parameters R and Θ. For simplification, orientations of contacts and contact forces are collectively 
denoted as contact orientations throughout the paper. 

Specifically, the sphere center (point O in Fig.1) of stereographic projection is arbitrarily selected in 
space. According to the mapping principle of stereographic projection, each contact orientation (vectors OA 
and OD in Fig. 1) in a granular assembly can be projected to a point (points C and F in Fig. 1) on the equatorial 
plane, one contact orientation corresponds to one point on the equatorial plane, and one contact orientation 
interval corresponds to one area element (area Z in Fig.1) on the equatorial plane. The projection principle 
can be expressed as 

tan (0 ) ; cot ( )
2 2 2 2

R Rϕ π ϕ π⎧ = ≤ ϕ ≤ = < ϕ ≤ π⎪
⎨
⎪Θ = θ.⎩

                                        (1) 

Subsequently number of projections or average contact force for each area element is calculated, and 
contour lines of the collected values for each area element are plotted on the contact orientation distribution 
diagram (CODD). 

 
Fig. 1 – Illustration of stereographic projection of contact orientations. 

By this means two kinds of CODD are defined: the one contouring number of projections for each area 
element is used to describe probability distribution of contact normals over all the orientation intervals and 
characterize contact anisotropy; the other contouring average contact force for each area element is used to 
describe distribution of contact forces over all the orientation intervals and characterize contact force anisotropy. 

A CODD for contact anisotropy of a granular assembly is illustrated in Fig. 2b. The assembly is 
provided by DEM. Briefly, 40 000 spherical particles with uniform diameter of 2 units are confined in a 
cylindrical space whose diameter is 70 units under the gravity which is normal to projection plane, and a 
spherical sampling volume is defined inside the granular assembly for CODD. Probability distribution of 
contact normals over all the orientation intervals in the sampling volume, expressed as P(n)=ΔM(n)／M／
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Δn, is plotted on the CODD, where n denotes an orientation, Δn denotes magnitude of the orientation 
interval, ΔM(n) denotes the number of contacts in the orientation interval, and M denotes the total number 
of contacts in the sampling volume. 

 
a)                                                      b) 

Fig. 2 – Projections and probability distributions of contact normal. 

CODD illustrated in Fig. 2 involves 13481 contacts and 200 uniform orientation intervals. Number of 
contacts ΔM(n) in each orientation interval varies within the range 2–119 with the average of about 70. As 
one physical contact corresponds to two contact normals in reverse directions, only the contact normals 
located in the domain z > 0 (or z < 0) are selected for the CODD. 

2.2. Statistical model for contact anisotropy 

In configuration of stress-force-fabric relationship (S-F-F) for granular assemblies (Ouadfel and 
Rothenburg, 2001), contact anisotropy is expressed as the second-order term in Fourier series of spherical 
harmonics of contact orientation distribution, which is an anisotropy tensor r

ija  

 ( ) 1 1
4

r
ij i jP a n n⎡ ⎤= +⎣ ⎦π

n  (2) 

The definition of the anisotropy tensor is mainly for the link between macroscopic stress tensor and 
microscopic contact forces, and is a mechanical and macroscopic anisotropy parameter. However in this 
paper a group of statistical anisotropies are defined to straightforward characterize contact anisotropy in detail. 

To determine the contact anisotropy in the assembly above, probability distributions of contact normals 
in R (or φ) and Θ (or θ) orientations are collected and shown in Fig. 3. 
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,
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Fig. 3 – Probability distributions PR and PΘ of contact normals in R and Θ orientations. 

Contact anisotropies in R and Θ orientations may be expressed as 
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where PR and PΘ are abbreviations of P(R) and P(Θ), < PR > and < PΘ > denote the average of PR and PΘ. 
Contact anisotropy for entire orientations may be represented as 

 ( ) ( ) d , ( ) d 1cA P P P= − =∫ ∫n n n n n n  (4) 

where < P(n) > denotes the average of P(n). 
Here, a supposition is proposed that the probability distribution PR is Θ-independent and PΘ is R-

independent. In this case there is no interaction between PR and PΘ. Then 
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In view of Eq. (5), Eq. (4) can be rewritten as 

 d d ,cA P P P P= −∫∫
~

n R R RΘ Θ Θ  (6) 

where denotes the virtual contact anisotropy under the supposition. 
In accordance with the supposition, in the case that  ,   is  -independent and   is  -independent. So the 

interaction between   and   may be indicated by 

 c c cA A AΔ = −
~

n n n . (7) 

Table 1 

Values of contact anisotropies in the granular assembly 

Contact anisotropies cAR  

cAΘ  
cAn  cA

~

n  

cAΔ n  

Values 0.2622 0.0317 0.4141 0.5517 0.1376 

The values of statistical contact anisotropies in the granular assembly are shown in Table 1. It is 
demonstrated that contact anisotropy in R orientation is extremely stronger than that in Θ orientation, and the 
interaction between and is observed. 

2.3. Statistical model 
for contact force anisotropy 

Different from the CODD for contact anisotropy, distribution of average normal contact forces over all 
the orientation intervals in the sampling volume is plotted on the CODD for contact force anisotropy. 
Distribution of average normal contact forces is defined as 

( ) ( ) , ( ) ( )d ,n n n nE f f f f P= = ∫n n n n n                                                 (8) 

where n denotes an orientation, E(n) denotes distribution of average normal contact forces, ( )nf n  

denotes average normal contact forces in the orientation interval, and nf  denotes the mean value of 

( )nf n  over entire orientations. 

The CODD for normal contact force anisotropy in the granular assembly is illustrated in Fig. 4a, and 
distributions of average normal contact forces in R (or φ) and Θ (or θ) orientations are collected and shown 
in Fig. 4b. 
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a)                                                                              b) 

Fig. 4 – CODD for normal contact force anisotropy and distributions 
of average normal contact forces in R and Θ orientations. 

Similarly a group of statistical normal contact force anisotropies are defined as 
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where ER and EΘ are abbreviations of E(R) and E(Θ), < ER > and < EΘ > denote the average of ER 
and EΘ. 

( ) ( ) d , ( ) ( ) ( )d 1,
nfA E E E E P= − = =∫ ∫n n n n n n n n                                                (10) 

where < E(n) > denotes the average of E(n). 
In the case that ER (and PR) is Θ-independent and EΘ (and PΘ) is R-independent, the following 

expression is held 
max max
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In view of Eq. (12), Eq. (10) can be rewritten as 

d d .
nfA E E E E R= −∫∫

~

n R R RΘ Θ Θ                                                                               (13) 

The interaction between 
nfAR  and 

nfAΘ  may be indicated by 

 .
n n nf f fA A AΔ = −

~

n n n  (13) 

Table 2 

Values of normal contact force anisotropies in the granular assembly 

Normal contact force 
anisotropies 

nfAR  

nfAΘ  
nfAn  cA

~

n  

nfAΔ n  
Values 0.0564 0.0247 0.1190 0.0601 0.0589 



 A Statistical Model for Contact Orientation and Anisotropy in Granular Assemblies 6 398 

Values of statistical normal contact force anisotropies in the granular assembly are shown in Table 2. It 
is demonstrated that normal contact force anisotropy in R orientation is approximately equal to that in Θ 
orientation. The interaction between and is observed but very weak. 

As a summary of the calculated results on the contact anisotropy and normal contact force anisotropy 
in the granular assembly, it can be concluded that orientations of contacts but not contact forces dominate the 
anisotropy in the case of the provided boundary conditions and loading conditions. 

3. RESULTS AND DISCUSSIONS 

3.1. Statistical contact anisotropies in random dense arrangements 
generated with different methods 

Generally two kinds of methods are used to generate random dense arrangements of spherical particles: 
one is ‘geometrical’ method such as Jodrey-Tory algorithm (Jodrey and Tory, 1985; Anikeenko et al., 2008); 
the other is ‘mechanical’ method such as DEM (Cundall and Strack, 1979). The ‘geometrical’ method is 
usually adopted in physics to observe the microstructure in a random dense pack. The ‘mechanical’ method 
is always used to study the micro and macro mechanics in a granular assembly. As the mechanical 
information can not be provided by the ‘geometrical’ method, in this section only statistical contact 
anisotropies are compared between the random dense arrangements given by the modified Jodrey-Tory 
algorithm and DEM. 

For comparison, the simulations with the two methods are both performed in a cylinder whose 
diameter is 10 units. Two random dense arrangements of 15 000 spherical particles with uniform diameter of 
0.39832927829832 units are generated in the cylinder. Gravity in DEM and translation in Jodrey-Tory 
algorithm are adopted for the densification of the arrangements. The diameter of particles is unknown before 
simulation for Jodrey-Tory algorithm, so Jodrey-Tory algorithm is performed first and DEM is performed 
later using the calculated diameter in the Jodrey-Tory algorithm. In the DEM R and Θ orientations are both 
assigned wall boundary condition, and in the Jodrey-Tory algorithm R orientation is assigned periodic 
boundary. CODD for contact anisotropies in the two random dense arrangements are illustrated in Fig. 5. 

 
       a) DEM                                     b) Jodrey-Tory algorithm 

Fig. 5 – CODD for contact anisotropies in the two particle arrangements 
generated with DEM and modified Jodrey-Tory algorithm. 

Contact anisotropies in the two random dense arrangements are clearly and precisely illustrated in 
CODD. It can be seen from Fig. 5 that in the two particle arrangements contact anisotropies present a similar 
distribution, and contact anisotropies in R orientation make the major contributions. 

Table 3 
Contact anisotropies in the two particle arrangements 

with DEM and Jodrey-Tory algorithm 

Contact anisotropies cAR  
cAΘ  

cAn  cA
~

n  

cAΔ n  
DEM  0.2457 0.0617 0.4480 0.5368 0.0888 
Modified Jodrey-Tory algorithm 0.2674 0.0572 0.3849 0.6447 0.2598 
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Values of statistical contact anisotropies in the two random dense arrangements generated with DEM 
and modified Jodrey-Tory algorithm are collected in Table 3. From comparison it can be concluded that the 
entire contact anisotropy in the arrangement with modified Jodrey-Tory algorithm is smaller than that with 
DEM, however has larger anisotropy in R orientation and significant interaction between R and Θ 
orientations. The difference between the results with the two methods may be attributed to inherences of 
‘geometrical’ and ‘mechanical’. 

3.2. Statistical contact anisotropies in random dense arrangements 
generated with different boundaries using modified Jodrey-Tory algorithm 

As the densification of arrangement is controlled by mechanics in DEM, wall boundary is always used. 
To observe the effects of boundaries on the contact anisotropy, modified Jodrey-Tory algorithm is adopted 
for its flexibility of boundary. 

Briefly, two particle arrangements are generated: one in a cylinder with wall boundary in Θ orientation 
and periodic boundary in R orientation; the other in a cube with periodic boundaries in x, y and z 
orientations. Here the particle arrangement in section 3.1 is used as the one in a cylinder with hybrid 
boundary. CODD for contact anisotropies in the two random dense arrangements are illustrated in Fig. 6. 

 
a) cylinder with hybrid boundaries     b) cube with periodic boundaries 

Fig. 6 – CODD for contact anisotropies in the two particle arrangements 
generated with different boundaries. 

It can be seen from Fig. 6 that there are slight differences between the contact anisotropy distributions 
in the two particle arrangements. Values of statistical contact anisotropies in the two random dense 
arrangements are collected in Table 4. 

Table 4 

Contact anisotropies in the two particle arrangements 
with different boundaries 

Contact anisotropies cAR  
cAΘ  

cAn  cA
~

n  

cAΔ n  
Cylinder with hybrid boundaries 0.2674 0.0572 0.3849 0.6447 0.2598 
Cube with periodic boundaries 0.2638 0.0422 0.3825 0.5913 0.2088 

Obviously all the indicators for contact anisotropies for the arrangement in a cube with periodic 
boundaries in x, y and z orientations are more satisfactory, even compared to the indicators for DEM in Table 
3. Random dense arrangement with periodic boundaries generated by Jodrey-Tory algorithm is relatively 
appropriate for observation of geometry for its superior isotropy. 

3.3. Statistical contact force anisotropies in random dense arrangements 
generated with different densification procedures using DEM 

Generally in most simulations of DEM, random dense arrangements are created with two approaches: 
one is to place a required number of particles (with diameters much smaller than their final size) into a 
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domain of interest, then the particle diameters are gradually increased until a dense arrangement is reached; 
the other is to assign the final size to the particles and place them into a large domain, then the particles are 
moved by gravity-driven or moving-wall-driven. 

To observe the effects of densification procedures on the contact force anisotropy, two random 
arrangements with different densification procedures (gravity-driven deposition and gradually-increasing 
diameter) are studied. Here the particle arrangement in section 2.1 is adopted as the one using gradually-
increasing diameter to perform densification procedure. CODD for normal contact force anisotropies in the 
two particle arrangements are illustrated in Fig. 7. 

 
a) gravity-driven deposition              b) gradually-incresing diameter 

Fig. 7 – CODD for contact anisotropies in the two particle arrangements 
generated with different boundaries. 

Values of statistical contact force anisotropies in the two particle arrangements are collected in Table 5. 

Table 5 

Normal contact force anisotropies in the two particle arrangements 
with different densification procedures 

Normal contact force anisotropies 
nfAR  

nfAΘ  
nfAn  nfA

~

n  
nfAΔ n  

Gravity-driven deposition 0.0564 0.0247 0.1190 0.0601 0.0589 
Gradually-increasing diameter 0.0391 0.0338 0.0976 0.0422 0.0554 

From comparison it can be concluded from Fig. 7 and Table 5 that the random arrangement using 
gradually-increasing diameter as densification procedure has a little better isotropy. 

4. CONCLUSIONS 

In this paper contact orientation distribution diagram (CODD) for illustrating anisotropy in granular 
materials is proposed, and a group of statistical indicators are developed to determine anisotropy. The 
statistical indicators are introduced to compare anisotropies in different granular assemblies which are 
simulated with different existing methods, under different boundaries and using different densification 
procedures. The results of comparisons demonstrate that: 
(1) As a typical ‘geometrical’ method to generate random dense arrangement of spherical particles, Jodrey-

Tory algorithm has a better performance in entire isotropy than DEM. But as a typical ‘mechanical’ 
method, DEM has a better overall performance in all the statistical indicators. 

(2) For random dense arrangements created with Jodrey-Tory algorithm, periodic boundaries in x, y and z 
orientations are relatively appropriate for observation of microscopic geometry, because the particle 
arrangement has a better isotropy. 

(3) For random arrangements simulated with DEM, the densification procedure of gradually-increasing 
diameter is more beneficial for contact force isotropy of the arrangement than gravity-driven 
deposition. 
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