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Abstract. In this paper the contribution of the spectral image of a sine-wave fundamental component 
on the amplitude and phase estimators provided by the Interpolated Discrete Fourier Transform 
(IpDFT) method based on the Maximum Sidelobe Decay (MSD) windows is analyzed. In particular, 
accurate analytical expressions for the amplitude and phase estimation errors are proposed. Leveraging on 
these expressions, amplitude and phase estimators that compensate the above detrimental contribution 
are proposed. The accuracies of the derived expressions are verified through computer simulations. 
Simulations are then used also to compare the accuracies of the uncompensated and compensated 
amplitude and phase estimators.   
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1. INTRODUCTION 

In many engineering applications such as audio, radar, instrumentation, power systems, and vibration 
analysis, sine-waves are employed and their parameters need to be accurately estimated in real-time. For this 
purpose frequency domain based procedures are commonly employed. One widely adopted frequency 
domain procedure is the so-called Interpolated Discrete Fourier Transform (IpDFT) method [1–11]. Firstly it 
compensates the contribution of picket-fence effect on the estimated sine-wave parameters by determining 
the inter-bin frequency location of the acquired sine-wave. This task is performed by interpolating the two 
highest DFT spectral samples. Then, the sine-wave amplitude and phase are estimated using the derived 
inter-bin frequency location value. To reduce the contribution on the estimated parameters due to spectral 
leakage from the image component and other disturbances such as harmonics and inter-harmonics, the 
analyzed signal is usually weighted by a suitable window function. Windows belonging to the cosine-class 
[12, 13] are usually employed. In particular, when the Maximum Sidelobe Decay (MSD) windows are 
adopted the sine-wave parameter estimators returned by the IpDFT method are given by simple and accurate 
analytical expressions [1, 3–5]. Moreover, these windows ensure a high spectral leakage rejection since the 
H-term MSD window (H ≥ 2) has the highest sidelobe decay rate, equal to 6(2H – 1) dB/octave, among all 
the H-term cosine windows.  

The IpDFT method estimates the inter-bin frequency location by assuming that the contribution of the 
spectral image of the fundamental component is negligible. Therefore, the returned estimates are biased by 
that contribution, which can be relevant when a small number of sine-wave cycles is observed. In [6] an 
analytical expression for the related frequency estimation error has been derived. However, expressions for 
the contribution of the spectral image of the fundamental component on the estimated sine-wave amplitude 
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and phase have not been derived yet in the scientific literature. These expressions are very useful in practice 
since they allow the compensation of the above detrimental contribution on the amplitude and phase 
estimation. Hence, the goal of this paper is to derive the above expressions when an MSD window is used.  

The remaining of the paper is organized as follows. In Section 2 the sine-wave parameter estimators 
provided by the IpDFT method based on an H-term MSD (H ≥ 2) windows are shortly presented. In Section 3 
the expressions for the amplitude and the phase errors due to the effect of the spectral image of the fundamental 
component are derived and their behaviors are analyzed. Moreover, leveraging on the derived expressions, 
amplitude and phase estimators that compensate the contribution of the interference from the spectral image 
of the fundamental component are proposed. The accuracies of the derived expressions and the main 
properties of amplitude and phase errors are verified through computer simulations in Section 4. Also, the 
accuracies of the compensated estimators are compared with those provided by the classical IpDFT method 
by using simulations. Finally, Section 5 concludes this work.     

2. THEORETICAL BACKGROUND 

The analyzed discrete-time sine-wave is modeled as:  

( ) ( ) 1,,2,1,0,2sin −=φ+π= MmfmAmx …  (1)

where A, f, and φ are the amplitude, normalized frequency, and initial phase parameters, and M is the number 
of analyzed samples. The normalized frequency f is expressed by: 

,
M

l
Mf

f
f

s

in δ+
=

ν
==  (2)

where fin is the frequency of the continuous-time sine-wave, fs is the sampling frequency, ν = l + δ is the 
number of acquired sine-wave cycles or the normalized frequency expressed in bins, where l is the integer 
part of ν and δ (–0.5≤ δ < 0.5) is the inter-bin frequency location. In the following it is assumed f < 0.5 to 
satisfy the Nyquist theorem. 

In most encountered practical situations the sampling process is non-coherent, i.e. δ ≠ 0, so that 
spectral leakage and picket-fence effects occur [14]. To reduce spectral leakage windowing is applied to the 
analyzed signal, while picket-fence effect is compensated by IpDFT method.  

In the following the H-term MSD window (H ≥ 2) is considered. It is defined as:   
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in which ah, h = 0, 1,…, H - 1 are the window coefficients, with [5]: 
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The Discrete-Time Fourier Transform (DTFT) of the windowed signal xw(m) = x(m)⋅w(m), m = 0, 1,…, 
M – 1, is given by: 
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where W(⋅) represents the DTFT of the window w(⋅). When M is high, as occurs in many engineering 
applications, and |λ| << M, with high accuracy we have [5]: 
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It is worth noticing that the second term in (4) represents the spectral image of the fundamental component. 
Assuming that the related contribution to the DFT samples Xw(l+i), i = 0, ±1 is negligible, the inter-bin 
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frequency location estimator provided by the IpDFT method based on the H-term MSD window (H ≥ 2) is 
given by [1, 5]: 
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in which i = 0 if |Xw(l – 1)| ≥ |Xw(l + 1)| and i = 1 if |Xw(l – 1)| < |Xw(l + 1)|.  
Moreover, the related amplitude and phase estimators are [4]: 
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where δ̂  is given by (6). 

3. THE EXPRESSIONS FOR THE AMPLITUDE 
AND PHASE ESTIMATION ERRORS 

DUE TO THE SPECTRAL IMAGE COMPONENT  

An accurate analytical expression for the amplitude relative estimation error due to the spectral image 
component is given in the following proposition (see the proof in Appendix A). 

PROPOSITION 1. When using the IpDFT method based on the H-term MSD window (H ≥ 2), the 
amplitude relative estimation error due to the spectral image of the sine-wave fundamental component is 
given by: 
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where |)(|)(~
λ=λ

Δ
WW , )('~

λW is the derivative of )(~
λW  with respect to λ, Δδ is the inter-bin frequency 

location estimation error due to the spectral image component (see (A.8) in Appendix A), and p = (–1)Hsgn(δ), 
in which sgn(⋅) is the sign function. 

It is worth noticing that )(~
⋅W is an even function, while )('~

⋅W is an odd function with 0)('~
>δW when -

0.5 < δ < 0 and 0)('~
<δW  when 0 < δ < 0.5. 

An accurate analytical expression for the phase estimation error due to the spectral image component is 
given in the following proposition (see the proof in Appendix B). 
PROPOSITION 2. When using the IpDFT method based on the H-term MSD window (H ≥ 2), the phase 
estimation error due to the spectral image of the sine-wave fundamental component is given by: 
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From expressions (9) and (10) the following remarks can be drawn: 
– εA has two errors components which behave like a cosine function; only the first component depends 

on the frequency error Δδ;  
– due to the sign of )('~

δW and the value of i the error components of εA provide opposite contributions, 
thus partially compensating each other; 

– Δφ has two errors components which behave like cosine functions, whose arguments differ by π/2 
rad; only the first component depends on the frequency error Δδ, while the second component is smaller than 
the first one since H ≥ 2 and assuming l ≥ 2 cycles;  

– when coherent sampling occurs, since 0)2(~
=lW for l > H/2 cycles both εA and Δφ are nulls; 

– when ν > H/2, both  εA and Δφ decreases as H increases. 
Expressions (9) and (10) allow us to propose the following amplitude and phase estimators which 

compensate the contribution of the spectral image of the fundamental component: 
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where ,ˆ,ˆ Aδ and φ̂ are the estimators for the parameters δ, A, and φ, respectively, provided by the IpDFT 
method. 

It is worth noticing that when ν is high enough the contribution of the spectral image of the 
fundamental component becomes negligible. As a consequence the compensated estimators are almost equal 
to those provided by the IpDFT method. 

4. COMPUTER SIMULATIONS  

In this Section, computer simulations are employed, at first, to verify the accuracies of expressions (9) 
and (10) for the amplitude relative estimation error εA and the phase estimation error Δφ. Then, simulations 
will allow to compare the accuracies of the compensated amplitude and phase estimators (11) and (12) and 
the classical the IpDFT method. 

Simulation results reported in the following are obtained considering the amplitude of the simulated 
sine-waves A = 1, the number of analyzed samples M = 512 and the two-term MSD window (also known as 
Hann window) or the three-term MSD windows[13].   

Figure 1 shows both the theoretical and the simulation results for the amplitude relative estimation 
error εA (Fig. 1a) and phase error Δφ (Fig. 1b) as a function of the sine-wave phase φ for ν = 2.75 and 3.25 
bins when the two- or three-term MSD windows are adopted. The phase φ was varied in the range [0, 360) 
deg. with a step of 3.6 deg.  

In Figure 1 it can be observed that the simulation and theoretical results are in very good agreement. 
Moreover, it can be seen that both errors εA and Δφ decreases as H increases, as expected from the theoretical 
expressions (9) and (10), respectively. 

It is worth noticing that many other simulations were performed using different values for the parameters. 
However, behaviors very similar to those reported in Fig. 1 have been always obtained for the amplitude 
estimation error, the phase estimation error and their respective components as soon as ν > 1.5 bins. 
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a) b) 

Fig. 1 – Amplitude relative estimation error εA (a) and phase estimation error Δφ (b) versus sine-wave phase φ 
when ν = 2.75 and 3.25 cycles are observed and M = 512 samples are analyzed. Two-term or three-term (b) MSD windows. 

The results returned by (9) and (10) are marked by crosses (‘x’). 

To model real-life situations, the accuracies of the uncompensated and the compensated estimators are 
compared in the case of sine-waves corrupted by additive white Gaussian noise. The Mean Square Error 
(MSE) is used as accuracy parameter since it includes both the bias due to the interference from the spectral 
image of the fundamental component and the variance due to wideband noise. Figure 2 shows the MSEs of 
the estimators Â  and cÂ  (Fig. 2a) and of the estimators φ̂  and cφ̂  (Fig. 2b) as a function of the number of 
observed sine-wave cycles ν in the case of noisy sine-waves characterized by Signal-to-Noise Ratio (SNR) 
equal to 40 dB. The number of observed cycles ν has been varied in the range [1.51, 8) bins with a step of 
0.05 bins. For each value of ν, 1 000 records of M = 512 sample each have been generated by choosing  the 
sine-wave phase φ at random in the range [0, 2π). The Hann window has been adopted.  

 
a) b) 

Fig. 2 – MSEs of the estimators Â  and cÂ (a) and  of the estimators φ̂  and cφ̂ (b) versus the sine-wave cycles ν in the case 

of noisy sine-waves with SNR = 40 dB. The estimators Â and φ̂  are provided by the classical IpDFT method, 

while the estimators cÂ and cφ̂ are expressed by (11) and (12), respectively. Two-term MSD window 
and 1 000 runs of M = 512 samples are considered. 

Figure 2 shows that the compensated estimators cÂ and cφ̂  are more accurate than the estimators Â  and 
φ̂  provided by the classical IpDFT method when the interference from the spectral image of the fundamental 
component prevails over wideband noise, that is for small values of the number of observed cycles ν. The 
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value of ν up to which that behavior occurs increases as SNR increases. For high values of ν wideband noise 
becomes dominant and the accuracies of both compensated and uncompensated estimators are almost equal 
as expected from theory. For very small values of ν the compensated estimators exhibit low accuracy since 
the IpDFT estimators adopted for the image effect compensation are very poor. Quite interestingly, by 
comparing the results in Figs. 2a) and b) it follows that the phase estimator is more sensitive to the interference 
from the spectral image of the fundamental component than the amplitude estimator.  

5. CONCLUSIONS  

This paper has been aimed at the derivation of the amplitude and phase estimation errors due to the 
spectral image of a sine-wave fundamental component when the IpDFT method based on the MSD windows 
is employed. In practice these errors often prevail over other estimation uncertainty contributions such as 
spurious tones or wideband noise when few sine-wave cycles are observed. It has been shown that both 
amplitude and phase errors exhibit two different components. The first one depends on the frequency 
estimation error, while the other one heavily depends on the number of observed sine-wave cycles. In 
particular, while the components of the amplitude estimation error have opposite signs, thus compensating 
their effects, the phase error mainly depends only on the frequency estimation error. In addition, both 
amplitude and phase errors exhibit a cosine behavior with respect to the sine-wave phase. Leveraging on the 
derived expressions, amplitude and phase estimators that compensate the spectral image contribution have 
been proposed. Computer simulations showed that the compensated estimators outperform those provided by 
the IpDFT method when few sine-wave cycles are observed. 

APPENDIX A 

EXPRESSION FOR THE AMPLITUDE RELATIVE ESTIMATION ERROR  

The DFT spectral sample |Xw(l)| is given by [15]: 
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follows that: 
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Since δΔδ>>δ )('~)(~ WW , using the approximation ,1)1( 1 xx −≅+ − when |x| << 1, and neglecting the 
term containing the product (2 ) '( )W l W+ δ ⋅ δ� � because it is negligible as compared with the other terms, after 
simple algebra we obtain: 
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From (A.5) it follows that the amplitude relative estimation error is given by: 
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Since the error Δδ due to the spectral image component is given by [6]: 
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replacing (A.7) into (A.6), expression (9) is finally achieved. 

APPENDIX B 

EXPRESSION FOR THE PHASE ESTIMATION ERROR  

From (4) and (5) it follows that: 
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where tan-1(⋅) is the arctangent function. 
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δ+>>δ lWW , using the approximation ,1)1( 1 xx −≅+ − when |x| << 1, we obtain: 
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Since the square of the ratio )(~/)2(~
δδ+ WlW  is negligible as compared to the other terms it follows 

that: 
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By expressing the tan-1(⋅) function using the Taylor’s series about tan(πδ + φ) truncated to the first order 
term, since )2(~)(~

δ+>>δ lWW , after some algebra (B.4) becomes: 
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By replacing (B.5) into (B.2) it follows: 
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which substituted into (8) yields to: 
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By expressing the error Δδ using (A.7), from (B.7) the expression (10) is finally achieved. 
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