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Abstract. Fractional-slot windings, tooth-concentrated windings, multilayer windings and other 
“new” windings have been gained a great interest over the last years due to some advantages that this 
type of windings provides for synchronous permanent magnet machines. In spite of theirs advantages, 
these windings exhibit high content of space harmonics in the air-gap magneto-motive force (MMF) 
distribution that can give rise unwanted effects in a.c. electrical machines. This paper aims to help the 
machine designer to select the proper winding configurations and to sort out the best winding layout. 
Firstly, the paper reminds the theoretical concepts based on star of slots and Fourier-series expansion 
of the air-gap MMF wave used to compute the winding characteristics. This classical method was 
implemented on the computer to quickly determine the values of the main winding factor, space 
harmonic content and differential leakage coefficient in order to identify the optimal winding 
structure. Thus, the proposed application becomes a helpful tool in the design process and can be 
applied for any type of single or three-phase winding layout irrespective of number of layer or 
number of conductor per slot. The paper also describes how to use this new and original application 
that is free available on the website (http://acad-tim.tm.edu.ro/FastMMF/). 
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1. INTRODUCTION 

The electrical machines designer knows very well that the winding arrangement strongly and directly 
affects the machine performance. So, in the predesign stage, it is very important to choose a suitable winding 
structure with optimal characteristics. There are different machine designs with various winding structures 
and different pole/slot number combinations. Even if the pole/slot ratio is fixed, there is the possibility to 
choose the number of layer and the coil pitch. An unsuitable winding configuration can give rise to unwanted 
effects in AC electrical machines like [1]: oversaturation of the core and additional core losses, higher 
inductances, overheating, parasitic torques, unbalanced radial magnetic forces, noise and vibrations, etc. 

Generally, an improper winding choice produces a higher magneto-motive force (MMF) harmonic 
content that may be so high to cause also a degrading of the machine power. It is well known that distributed 
overlapping windings used for classical synchronous or asynchronous machines results in a more sinusoidal 
air-gap MMF distribution. However, the slot-concentrated windings for low-speed permanent magnet 
machines have been gaining a great interest over the last years [2, 3, 4, 5, 6]. That is why the windings 
performances analyses or winding layouts optimization are becomes again a very important and timely 
subject in this field [6, 7, 8, 9]. The paper [6] analyzes the impact of different space harmonics caused by air-
gap MMF distribution on the rotor losses and highlights that the sub-harmonics have a dominant effect and 
are the main causes of rotor losses. 

Also, in order to reduce the space harmonic content and improve the winding performance, the papers 
[10, 11, 12, 13] propose to use different number of conductors per machine slots (unequal-turn coils); the 
authors in [13] propose a design program flowchart to optimize the turn number of the coils. 
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Because the tooth concentrated windings generate some additional and specifically problems, some 
authors try to introduce “new concepts” and “new methods” to analyze these “new” windings. In the paper 
[14] are made some appreciations about the “new” terminology in this field “in order to prevent the wander 
of the defined notions from the classical acceptance”. Cistelecan et al. [14] state that “these windings do not 
need any new methods and no new methods can be claimed. The classical star of the slots is perfectly valid 
even for these “new” concentrated windings”. 

From the classical theory it is known that the winding performances are represented by some 
characteristics: the main winding factor, the harmonic content (amplitudes of each MMF space harmonic) 
and differential leakage coefficient. These characteristics [15] are generally used in the predesign stage in 
order to sort out the different winding layout and to find the best winding structure.  

The paper reminds the classical method based on star of slots and Fourier-series expansion of the air-
gap MMF wave used to compute the winding characteristics. The method has been implemented on 
computer for quickly find the values of the main winding factor, harmonic content and differential leakage 
coefficient for any type of single or three-phase windings layout irrespective of number of layers or number 
of conductors per slot. The main objective of this paper is to present the theoretical basis of this program and 
how to use this application that is free available on the website. 

2. THE AIR-GAP MMF WAVE 

A stator winding must be arranged to utilize as fully as possible the stator periphery in order to obtain 
the greatest air-gap flux density. For this purpose, it is favorable to distribute each side of the coils in several 
slots. But this distribution of the AC winding in the slot is “more an art then a science” [16]. If no unipolar 
fluxes pass through machine air-gap and A(θ) is the distribution of the current layer intensity along the outer 
side of the air-gap, than the distribution curve of the magnetomotive force is defined by the relation [17]: 

0
( ) ( ) dF H A

θ
θθ = δ ⋅ = θ θ∫ , (1)

where: δ is the length of a constant air-gap and Hθ is the magnetic field intensity at the point having the 
coordinate θ. In this relation the iron core with infinite magnetic permeability is assumed.  

Because the winding coils are placed inside the machine slots the magnetomotive force is a stepped 
curve with the steps situated exactly in the slot axes. That means that the effect of slotting is disregarded (the 
slot openings are neglected in order to highlight firstly the influence of the winding arrangement). In 
consequence, the both MMF and air-gap flux density curves are not sinusoidal waves. Due to the discrete 
position of the winding coils inside the slots, the air-gap MMF at the time t, according with (1) is: 

1
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where: A(λ, t) is the total current intensity (at the time t) within the λ-order slot and F(k, t) is the air-gap 
MMF in the axis of k-order slot, at the time t. From this equation the MMF stepped curves can be described 
by a matrix that has a number of elements equals to the slot number of the stator. 

Thus, for the computing of total air-gap MMF wave form it is necessary to know the current 
distribution in all the stator slots. At the symmetrical three-phase induction machine, the phase windings 
distributions are usually identical in layout being space-displaced by 120º electrical degree from each other. 
So, the layout of one phase is enough to draw MMF waveform.  

In this purpose it is convenient to use the classical concept [17] of coils with “go-side” and “return-
side” placed within the slots. A unidimensional matrix has to describe the winding distribution because one 
intends to implement the method on the computer. According to (2) the air-gap MMF at the instant of time 
can be computed if the current intensity distribution within the slots of one phase is known.  

Firstly, on define this phase current matrix A that consist of Z-number of elements equal to slot number 
of the machine. Each element of this matrix is equal to per unit filling degree of the corresponding slot and 
the sign (±) is assigned according to “go-side” or “return-side” of the coils. In Fig. 1 it is presented three 
cases of phase winding arrangement with all the phase coils series connected. 
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a) 
 

b) 

c) 
Fig. 1 – Different phase winding layout: a) Single layer winding (24slots/4poles configuration); b) Double layer winding 

(27slots/4poles configuration); c) Single layer tooth-concentrated winding (12slots/10poles). 

Case 1 in Fig. 1a: Single winding layer; Z = 24 slots; 2p = 4 poles; q = 2 slots per pole per phase. 
According to the phase winding layout from Fig. 1a the phase current matrix is: A = [1, 1, 0, 0, 0, 0, –1, –1, 
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, –1, –1, 0, 0, 0, 0], because all the four coils of the phase have the same number of 
turns. It is easy to see the correspondence between the elements of matrix A and the phase layout from Fig. 
1a. The matrix elements have zero-values if there are no current within the corresponding slots. For instance, 
A(2) = 1, A(3) = 0, A(7) =–1, A(13)=1. 

Case 2 in Fig. 1b: Double layer winding; 27 slots; 4 poles; q = 2.25 slots per pole per phase. For this 
case the corresponding matrix is: A = [2, 2, 1, 0, 0, 0, –1, –2, –2, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, –1, –2, –1, 0, 0, 
0, 0]. The first slot is completely filled by two sides of two different coils; so, the first matrix element has the 
value “2” that means 100% slot filled. The third slot includes only one coil side and thus the corresponding 
matrix element has the value “1” that means 50% slot filled. Instead of the value “2” and “1”, in the matrix A 
one can use the values“4” and “2”, or others integer numbers. 

Case 3 in Fig. 1c: Single layer – tooth concentrated winding; 12 slots; 10 poles; q = 0.4 slots per pole 
per phase. The phase consists of only two coils (tooth concentrated coils). The corresponding matrix A can 
be written very easy: A = [0, 0, -1, 1, 0, 0, 0, 0, 1, –1, 0, 0].     

Secondly, knowing the current distribution matrix of one phase, using (2) one can obtain the elements 
of MF1 matrix corresponding to the phase “1”, at the time t = 0 for instance: 

,)((Z)........................... ...  (3);(2)(1)(3)
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Owing to symmetry, the matrix MF2 and the matrix MF3 can be obtained very easy by changing the 
place of the elements of the matrix MF1. For generality, the elements of the matrix MF2 are displaced with 
Z/3 positions and for MF3 the displacement is 2Z/3, excepting the cases in which p = 3k, k = 1, 2, 3, …, 
when the displacement is Z/3p and 2Z/3p. 

Finally, the resultant air-gap MMF is the sum of the three air-gap magnetomotive forces (at the instant 
of time t) corresponding to the each phase. But, the currents of the three-phase machine are time delayed by 
2π/3. Thus, the resultant MF matrix can be calculated as follows: 
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Without loss of generality, the calculation below was made always at the time t=0, when the current i1 
in phase “1” is maxim and i2 =  i3 = –0.5 i1. In consequence, the last relation, in per-unit, becomes: 

MF3MF2MF1MF
2
1

2
1

−−= . (5)

For instance, in the above Case 2 the current matrix A with 27 elements is known. Using this matrix, 
with (3) one can obtains the MF1 matrix corresponding to the phase “1” having the following elements (Fig. 2.a): 
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MF1 = [2, 4, 5, 5, 5, 5, 4, 2, 0, 0, 0, 0, 0, 1, 3, 4, 4, 4, 4, 4, 3, 1, 0, 0, 0, 0, 0]. In the next stage, both MF2 and 
MF3 matrices are obtained directly by displacement with Z/3 = 9, respectively 2Z/3=18 positions of the 
elements of MF1. Finally, with (5) results: MF = [0, 2, 3.5, 4.5, 4.5, 3.5, 2, 0, –2, –3, –4, –4, –3, –1.5, –0.5, 
2, 3, 4, 3, 2, 0.5, –1.5, –3, –4, –4, –3, –2]. The matrix of one phase MF1or the resultant MF matrix allows to 
draw the air-gap MMF waveform that is a stepped curve. Figure 2 shows how to use the elements of the 
matrix MF1 or MF to draw these stepped functions.  

The number of matrix element corresponds to the number of slots and to the number of function steps. 
In the Fig. 2a can be see the correspondence between few matrix elements and the curve steps. Of course, 
some “steps” of curve can have zero-value. 

According to the above remarks, the air-gap MMF space distribution at the instant of time can be 
considered as a mathematical function and can be expressed as the following stepped function: 
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where: α = 2π/Z is the angular displacement between two adjacent slots considering a regular distribution of 
the slots. 

 

3. THE AIR-GAP MMF HARMONICS CONTENT 

The stepped curves in Fig. 2 highlight that the air-gap resultant MMF waveform is more sinusoidal 
than the MMF for one phase, but both waves differ from sinusoidal. For this reason in the AC machine air-
gap there are a significant MMF space harmonics content. 

The function described by (6) can be easy expanded as a Fourier series in order to assess the MMF 
space harmonics. In the general case of a periodical function F(θ), the very well-known harmonic relations of 
Fourier-series expansion are: 
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where Mμ and βμ are the amplitude and the initial phase of the harmonic of μ-order: 

μ
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BAM arctan;22 =+= , (8)

with the assumption that there is no constant term in this series. In the particular case of step function (6) the 
amplitudes Aμ and Bμ from (7) can be expressed using the elements of resultant MF matrix as follows: 

a) 

b) 

Fig. 2 – Airgap MMF waveforms as stepped functions: a) MMF corresponding to phase “1”; b) resultant MMF wave as sum of the 
three phases (i2  =  i3 = –0.5 i1). 
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The sums (9) are made along the entire bore of the machine to which corresponds the air-gap periphery 
angle of 2π. From this reason μ is called the mechanical harmonic order. 

In consequence, the first harmonic of the lowest order μ = 1 forms a one pole-pair wave corresponding 
to the entire air-gap periphery. If the machine has p-pole pairs, the space harmonic producing a MMF wave 
with p-pole pairs is called the working harmonic [17], or the main harmonic and is of the order μ = p. 
Related to this working harmonic, all the wave of order μ > p are called upper space harmonics and all the 
wave with μ < p are called subharmonics. So, the harmonic of order μ = 1 has one pole-pair, the harmonic of 
order μ = 2 has two pole-pair, and of the order μ = p has p pole-pair, and so on.  

For particular case of integer slot windings (integer number of slots per pole per phase) there are no 
subharmonics and beside the working harmonic μ = p there exists upper harmonics only of order: μ = 5p, 
μ = 7p, μ = 11p, μ = 13p,…, μ = (6k+1)p, k = 0, ±1, ±2,…. For instance, in order to clarify the space 
harmonic types that arise in the air-gap MMF wave, one consider the above three phase winding (p = 2) with 
phase distribution in Fig. 1b and resultant MMF distribution in Fig. 2b. At the instant t = 0 and using (8) and 
(9) the MMF harmonic amplitudes up to the harmonic of order μ = 214 are presented in Table 1. 

Because this winding is a fractional slot winding (q  = 2.25) in the MMF harmonic spectrum (Table 1) 
there exist all types of the harmonics (the working harmonic of order μ/p = 1, with the amplitude considered 
of 100%; the subharmonic of order μ/p = 1/2, with amplitude M1 = 11.06% related to working harmonic; 
even harmonics: μ/p = 4/2, μ/p = 8/2, etc.; fractional harmonics: μ/p = 5/2, μ/p = 7/2, etc.; the first “step 
harmonics”: μ/p = 25/2, μ/p = 29/2 are the harmonics of order μ/p = (Z·k ± p)/p with k = 1; the second “step 
harmonics”: μ/p = 52/2, μ/p = 56/2, with k = 2). 

Table 1 

Orders and Space Harmonic Amplitudes [%]; case of Fig. 1b 

μ 1 2 4 5 7 8 10 11 13 14 16 17 20 25 29 
ν=μ/p 1/2 1 2 5/2 7/2 4 5 11/2 13/2 7 8 17/2 10 25/2 29/2 
Mμ[%] 11.1 100 1.02 1.35 1.99 0.98 2.65 1.18 0.78 0.73 0.81 1.56 0.7 8.0 6.9 
μ 37 44 52 56 79 83 106 110 133 137 160 164 187 191 214 

ν=μ/p 37/2 22 26 28 79/2 83/2 53 55 133/2 137/2 80 82 187/2 191/2 107 
Mμ[%] 0.72 0.6 3.85 3.57 2.53 2.41 1.89 1.82 1.5 1.46 1.25 1.22 1.07 1.05 0.93 

One can be seen in Table 1 that the highest upper harmonics are the step harmonics. The amplitudes of 
these harmonics are depending of the number of slots and not depending of the winding type. The step 
harmonic of order μ = 25 has an amplitude M25 = 8.0% related to working harmonic. 

The space harmonic content of the air-gap MMF can be characterized by the differential leakage 
reactance coefficient (σ0). According with [16, 17] this coefficient can be calculated by means of harmonic 
amplitudes with the relation: 

11

1

2
20 −⋅=σ ∑

∞

=μ
μM

M p

, (10)

where Mμ and Mp are the amplitude of μ-order harmonic and respectively of main harmonic μ = p. 
Because all the MMF harmonic amplitudes are known, is very easy to use (10) in order to assess 

σ0-coefficient. In the presented case (Fig. 1b), the value is σ0 = 0.032917. 

4. THE MAIN WINDING FACTOR 

Beside the differential leakage reactance coefficient (σ0), the main winding factor (kw) is a significant 
criterion for the winding design. The electromagnetic torque of an electrical machine is proportional to this 
winding factor. In consequence, a low winding factor has to be compensated with more number of turns or 
higher current. 



 Gheorghe MADESCU, Erhard BERWANGER, Marius BIRIESCU, Martian MOT 6 374 

To calculate this winding factor corresponding to main MMF wave one use the classical star of slots 
method with the defined notions from the classical acceptance. It is very well known that this star of slots 
represents the phasors of electromotive force (EMF) induced in each coil side placed in the stator slots. Some 
details about use the star of slot in windings design and in harmonics determination are reported in [18]. 
Owing to the phase symmetry the main winding factor can be calculated using only one phase.  

The electrical periodicity of the winding is represented by the greatest common divisor (GCD) between 
the number of slots and the number of pole pairs (p). For instance, in the Case 1 in Fig. 1a the greater 
common divisor between the number of slot (Z = 24) and the number of pole pairs (p = 2) is GCD = 2 and 
the star of slots has 12 spokes (Fig. 3). 

According to Fig. 1a the spokes corresponding to phase A are: (1, 2, 7, 8, 13, 14, 19, 20). Assuming a 
same turns number in each slot, the corresponding EMF phasors are: 1j

1 e pE E α= ; 2j
2 e pE E α= ; 

7j
7 e pE E α= − ; 8j

8 e pE E α= −  and so on; the angle p·αi is the electrical angle of the i -EMF phasor, and αi 
is the mechanical slot angle of the i -slot; the sign (±) depending on the current sense in the respective slot. 

The winding factor is defined as the ratio between modulus of geometrical sum of the EMF phasors 
and the arithmetical sum of EMF phasors modulus. In consequence, the winding factor for this case will be: 

EEk sumw 8= , where: 

( )201914138721 αααααααα −−++−−+= jpjpjpjpjpjpjpjp
sum eeeeeeeeEE . (11)

On the contrary, in Case 2 in Fig. 1b the greater common divisor between Z = 27 and p = 2 is GCD = 1, 
and in consequence there is no periodicity of the winding and the star of slots has 27 spokes (Fig. 4). 

  
Fig. 3 – Star of slots for the case in Fig. 1a. Fig. 4 – Star of slots for the case in Fig. 1b. 

In this figure only the EMF phasors corresponding to one phase are marked. For the same reason as in 
the first case all the EMF phasors E7, E21, E8, E22, E9, E23 have the sign (-). Finnaly: 

(
)

15 16 3 714 1 2 21

8 9 2322

j j j jj j j j

j j jj

e 2e 2e 2e e e e e

2e 2e 2e e ,
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E E α α α αα α α α

α α αα

= + + + + + − − −

− − − −
 (12)

and: EEk sumw 18= . 
Beside of the old technical literature, recent papers [7, 11, 18] uses the star of slots method in winding 

analysis. It is understood that the star of slot allows calculating the winding factor of the working harmonic if 
the phase winding diagram layout is given. 

5. THE APPLICATION OF THE FastMMF 

The program FastMMF allows the calculation of winding characteristics on the basis of the star of 
slots theory and Fourier-series expansion of the air-gap MMF wave according to above considerations in this 
paper. FastMMF is original free software (http://acad-tim.tm.edu.ro/FastMMF/) and is distributed in the 
hope that it will be useful in the electrical machines design process. 
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As an example, the program starts with input data (Fig. 5) which are the number of pole pairs, the 
number of slots, the number of phases (1 or 3), minimum amplitude of displayed harmonics and phase 
current matrix. 

Fig. 5 – Input data for a specific winding. 

The amplitudes of the MMF space 
harmonics up to order μ = 4 000 are computed, 
but most of them have very small amplitudes 
(some harmonic orders are still absent). To 
reduce the number of displayed harmonics a limit 
(minimum amplitude) for the displayed harmonics 
was impose; in Fig. 5 this limit is set to 5%. 
Between the elements of phase current matrix has 
to be a blank space. Enter all the requested data 
for other specific case and press the “Calculate” 
button. To repeat the calculations relo ad the 
page. With the preset input data in Fig. 5 one 
obtains the results presented in Fig. 6. 

 

Fig. 6 – The results for the preset input data. 

These results refer to:  
– filling of the slots (these numbers must be equals; 
if not, that means that there is a mistake in the 
phase winding layout, respectively in the current 
matrix, or the winding is not feasible as three-
phase symmetrical winding); 
– differential leakage reactance coefficient (σ0); 
– main winding factor (kw); 
– amplitude of the main harmonic (this case 
μ = 5); 
– the order and the amplitude of each MMF space 
harmonic (one can see displayed only the 
harmonics of amplitudes higher than 5% 
according to the input data); 
– the resultant MF-matrix that represents the 
stepped function of air-gap MMF wave.  

The results calculated in Fig. 6 are plotted 
respectively in Fig. 7 and Fig. 8. 

In some specific cases if the Fig. 7 becomes not clearly (many harmonics overlapped) there is the 
possibility to exclude the harmonics that have small amplitudes; in this purpose we must repeat the 
calculation (reload the page) and increase the input data value “Minimum Amplitude of Displayed 
Harmonics”. As a result in Fig. 7 remain only the few significant harmonic orders with clear representation. 

Fig. 7 – The orders and the amplitudes of the MMF space 
harmonics with the numerical results in Fig. 6. 

Fig. 8 – The air-gap MMF stepped wave 
with the numerical results in Fig. 6. 
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Now, the program provide the possibility to compute the cases with single-phase windings (m = 1) and 
three-phase windings (m = 3), but the next version of this program will be extended for some significant 
cases with m > 3. 

6. CONCLUSIONS 

This paper shortly reminds the classical method based on star of slots and Fourier-series expansion of 
the air-gap MMF wave in electrical machines and proves that this method is suitable to compute the winding 
characteristics of any type of a.c. winding irrespective of number of layer, number of conductors per slot, 
number of phases, number of slots/pole/phase. However, this classical method is rather complicated for 
computer implementation that is the main drawback of the method. 

From this reason the authors propose a new software based on this method for quickly find the values 
of the main winding factor, amplitudes of each MMF space harmonics (including subharmonics), differential 
leakage coefficient, air-gap MMF wave, and for checking the feasibility of the winding layout.  

This application is free available on the website and will provide researchers and engineers a helpful 
tool to quickly compute the a.c. winding characteristics, to select the proper winding arrangement and to sort 
out the optimum winding layout.  

The application FastMMF becomes very useful tool at present owing to special types of electrical 
machines (like PM machines) that is more and more used in many applications and that uses tooth-concentrated 
windings, fractional-slot windings, multi-layer windings and other new type windings. This application has a 
user-friendly interface with minimum input data and it can be used on PC Tablet too. 
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