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Abstract. Structural properties of deterministic mass and surface fractals are studied using small-
angle scattering (SAS; X-rays, neutrons) method. The corresponding scattering curves are analyzed in 
momentum space. The scattering amplitude form a surface fractal can be written as a sum of 
amplitudes of composing mass fractals. We show that when the distances between scattering units are 
much larger than their overall dimension, the scattering from a surface fractal can be explained, in a 
good approximation, in terms of a power-law distribution of the scattering units. We illustrate the 
above findings on randomly oriented and non-interacting 2D mass and surface fractal systems whose 
scattering units are equilateral triangles. In our model, the scattering units of the mass fractal are 
triangles of equal sizes composing the well-known Koch snowflake. For the surface fractal, a sum of 
triangles of different sizes is considered to form the Koch snowflake. 
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1. INTRODUCTION 

Various natural nano- and microstructures, such as polymers, colloids, or gels appear similar under a 
change of scale. The theoretical framework able to describe the scaling behavior of such systems is provided 
by fractal geometry [1, 2]. Often, the optical, mechanical, statistical or dynamical properties [3–6] are 
correlated with spatial configurations of the “basic” units (e. g. molecules of bisterpyridine [7]) forming the 
fractal structures. Thus, understanding their microstructural properties has important applications in 
preparation of nanomaterials with pre-defined functions. 

The mathematical modeling of fractal microstructures involves either random (statistical self-similar) 
or deterministic (exact self-similar) fractals. The most common approach to describe natural structures is to 
use models of random fractals, such as those generated by ballistic deposition or Eden growth model [8]. 
However, in the last decade with the advent of nanotechnology, new methods for preparation of nano- and 
microfractals such as Sierpinski gaskets, Cantor sets, Menger sponge or octahedral structures, have been 
developed [7, 9–11]. These technological achievements have determined a growing interest in the 
implementation of existing, and development of new deterministic fractal models, since in this case, they 
provide a framework that gives “exactly solvable models”. In addition, sometimes deterministic models are 
good approximations for natural processes, such as modeling the transfer across random fractal surfaces [12]. 

Experimentally, small-angle scattering (SAS; X-rays, neutrons, light) [13, 14] is the preferred method 
for probing the structure at nano and micro scales for disordered systems, and in particular for fractal 
systems [15–17]. When X-rays are used, the scattering is mostly determined by the interaction of the incident 
radiation with electrons. However, in the case of neutrons, the scattering is determined by their interaction 
with the atomic nuclei and with the magnetic moments in magnetic materials. Basically, SAS yields the 
elastic cross section per unit solid angle as a function of the magnitude of the scattering vector q, and 
describes, through a Fourier transform, the spatial density distribution of the investigated sample. When the 
cross section is normalized to the unit volume of the sample, the scattering intensity ( )I q  is obtained. Here, 

(4 / )sin 2q π λ θ≡ , λ  is the wavelength of the incident radiation, and 2θ  is the scattering angle.  
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Although the loss of information in a scattering experiment is a severe limitation, the SAS method has 
few important advantages as compared to other structural methods. First, it is a non-invasive method, and 
usually the investigated samples don’t require any special preparation. Second, the physical quantities of 
interest such as specific surface, radius of gyration or the fractal dimension are averaged over a macroscopic 
volume. Third, when neutrons are used, SAS has important applications in the study of magnetic properties 
of materials [18–20]. By exploiting the variation of the neutron scattering lengths, the contrast variation 
method [21, 22] can be used in biological samples to emphasize or to conceal certain features [23, 24]. 

In the case of fractal structures, SAS can also distinguish between mass [25] and surface fractals [26]. 
These two types of structures are revealed through the value of the scattering exponent τ in the fractal region, 
i. e. in the region in the reciprocal space where the scattering intensity has a simple power-law decay, such as 

( ) .I q q τ−∝  (1)

This holds also for generalized (a superposition of the maxima and minima on a power-law decay) or a 
succession of generalized power-law decays [27–31]. In a two-phase system in which one phase has a mass 
fractal dimension mD  and the second phase has the pore fractal dimension pD , the boundary between 

phases forms a set of surface dimension sD . For a mass fractal s mD D d= <  and pD d= , while in the 

case of surface fractals m pD D d= =  and 1 sd D d− < < . Here, d is the Euclidean dimension of the space 
in which the fractal is embedded. The scattering exponent in Eq. (1) can be written, in terms of the fractal 
dimensions, as [15, 16] 

for mass fractals

for surface fractals
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In practice, if the measured scattering exponent from SAS experimental data is dτ < , then the sample has a 
mass fractal structure, and if the measured exponent is 1d dτ− < < , then the sample is a surface fractal. 

In this work, we calculate the monodisperse SAS intensity from a regular and from a generalized 2D 
Koch snowflake (KS) surface fractal consisting of mass fractals at various iterations. For regular KS, the 
distance between its composing structural units (equilateral triangles) are of the same order as their size. For 
the newly introduced generalized KS, the distances between its composing triangles are much higher than 
their sizes. By using these models, we show that modeling the surface fractal using a power-law distribution 
of triangles holds in a good approximation for the generalized KS. The results can be applied to arbitrary 
surface fractals and with arbitrarily shapes of scattering units that follow a power-law distribution. We explain 
also how the main structural parameters of surface fractals can be obtained from the scattering intensity. 

2. THEORETICAL BACKGROUND 

We consider scattering from a system of 2D monodisperse, randomly oriented and non-interacting 
fractals of scattering length density (SLD) fρ  and concentration c embedded in a solid matrix of SLD 0ρ .  

We denote the quantity 0fρ ρ ρΔ ≡ −  the scattering contrast and consider that the total volume irradiated by 
the incident beam is 'V . Then, the elastic cross section per unit volume of the sample (scattering intensity) is 
given by [13] 

2 2 21 d( ) | | | ( ) | ,
' d

I q c V F
V

≡ = Δ
Ω
σ ρ q  (3)

where  ( ) (1/ ) di

V
F V e− ⋅≡ ∫ q rq r  is the normalized scattering amplitude (also known as the normalized form 

factor) and satisfies the condition (0) 1F =  and V  is the volume of each fractal. The symbol  denotes 
the mean value of the ensemble averaging over all orientations. In spherical coordinates, for 3D orientations 
and for an arbitrarily function f, the mean value is calculated according to [29] 
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where cos sinxq q φ θ= , sin sinyq q φ θ= , and coszq q θ= .  
The main properties of mass and surface fractals can be easily understood in terms of generic 

expressions of the corresponding normalized form factors. In the general case of a mass fractal of fractal 
dimension mD  and size L , consisting of p  scattering units of size l  separated by distances d , the SAS 
intensity can be written as 
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where p  is of the order of ( / ) mDL d . In the case of surface fractals composed of scattering units of 
maximum size 0r  and minimum size l , the generic expression for the normalized SAS intensity is  
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Equations (5) and (6) show that the main feature is the presence of the three main structural regions: 
the Guinier region at 2 /q Lπ<  for mass fractals and at 02 /q rπ<  for surface fractals, the fractal region at 
2 / 2 /L q lπ π< <  for mass fractals and at 02 / 2 /r q lπ π< <  for surface fractals, and the Porod region at 
2 / l qπ <  for both mass and surface fractals. The end of the Guinier region gives information about the 
overall size of the fractal, the exponent in the fractal region is connected with the fractal dimension (see 
Introduction section), and the Porod region provides information about the specific surface of the fractal 
[13]. For the purposes of this paper, our analysis will focus in the interpretation of the scattering intensity in 
the fractal region. 

For a mass-fractal, the normalized scattering amplitude can be written as the product [29] 
( ) 1 1

0 0 1 1 1( ) ( ) ( ) ( ) ( ),m m n n
n s s sF F qr G G Gβ β β− −=q q q q  (7)

where 0 ( )F q  is the form factor of the scattering unit and 1( )G q  is the generative function. The latter one 
gives the positions of the scattering objects inside the fractal.  

Thus, using Eq. (2), the total SAS intensity from a surface fractal can be written as [32, 33] 
2( ) ( ) ( )( ) (0) ( ) ,s s s

m m mI q I F= q  (8)

where 
2( ) 2(0)s

m mI c Vρ≡ Δ , the surface fractal normalized amplitude ( ) ( )s
mF q  is a weighted sum of the mass 

fractal amplitudes given by Eq. (7), and mV  is the volume of the surface fractal at the m-th iteration. 
It has been recently shown that in the case of a surface fractal at any arbitrary iteration m and with 

scaling factor βs, the approximation of mass-fractal amplitudes (i.e. when we consider correlations only 
between scattering units composing a given iteration of the mass fractal) can be written as [32]: 

22 ( )( ) 2 ( )
0

0
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I q V Fβ −

=
∑ q  (9)
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where V0 is the volume of the scattering unit composing the fractal (or equivalently, the volume of mass 
fractal at zero-th iteration). If the spatial correlations between the scattering units are completely neglected, 
the approximation of incoherent amplitudes of the scattering units is given by [32, 33]: 

(2 )( )
0

0
( ) ( ),m

m
n d Ds n

m s s
n

I q I qβ β−

=
∑  (10)

where 22 2
0 0 0( ) ( )I q V F≡ q . Figures 1 and 2 show the approximation of the mass fractal amplitudes (black) 

and the approximation of incoherent amplitudes from a surface fractal (blue dotted) for different values of 
the control parameter /d l . The scattering intensities for composing mass-fractal are shown for each 
iteration (red).   

Figure 2 shows that by setting up the ratio / 3d l = , i.e. by increasing the distance between scattering 
units three times relative to their size, the approximation of incoherent amplitudes is very good. This 
indicates that, in general, the SAS from a surface fractal can be written in a good approximation as a sum of 
intensities of scattering units composing the fractal with the condition that the distances between them are 
much higher than their size. An important factor for such a good agreement at / 3d l =  is that Eqs. (9) and 
(10) are model-independent and the corresponding fractal region is linear on a double logarithmic scale.  

 

Fig. 1 – Generic SAS from a surface fractal (black), the 
approximation of incoherent mass-fractals amplitudes (blue 

dotted), and the intensities of composing mass-fractal 
iterations (red) for / 1d l = . 

Fig. 2 – Generic SAS from a surface fractal (black), the 
approximation of incoherent mass-fractals amplitudes (blue 

dotted), and the intensities of composing mass-fractal 
iterations (red) for d/l = 3.  

However, the SAS from KS, or in general from an arbitrarily surface fractal is characterized by a 
superposition of maxima and minima on a linear power-law decay, in the fractal region. This is also known 
in the literature as the generalized power-law decay. Therefore, a good agreement between the mass-fractal 
amplitudes and the approximation of incoherent amplitudes for KS can be observed only for / 1d l  [33]. 

3. RESULTS AND DISCUSSIONS 

3.1. Construction and properties 
of the regular and generalized koch snowflakes 

In order to construct the regular two-dimensional KS of overall size L , we adopt here an algorithm 
which takes into account each mass fractal iteration (Fig. 3, upper part). For this purpose, we start with a 
single equilateral triangle of edge a  and surface area 23 / 4S a= . We call this the zero-th mass fractal 
iteration ( 0n = ). First iteration ( 1n = ) is obtained by dividing each edge of the triangle from 0n = , into 
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three segments, each of length / 3a . Then, an equilateral triangle pointing outward and with base coinciding 
with the central segment is added to each segment. After the first iteration, the resulting shape is a hexagram, 
also known as Star of David (black and orange triangles only, in Fig. 3, upper part, 2m = ). The second 
iteration ( 2n = ) is obtained by repeating the same procedure to each line segment. In the infinite number of 
iterations, the fractal dimension is given by 

log3 4 log 4lim 1.26,
log / log3

m

s m
m

D
a a→∞

⋅
= =  (11)

where / 3m
ma a=  is the edge length of the triangle at m -th iteration. Therefore the KS has a finite area 

given by 4 /15(6 4 / 9 )m m
mS S= −  which is bounded by an infinite long curve, continuous everywhere but 

differentiable nowhere. In the limit m →∞  the area becomes 22 3 / 5S a∞ = [33].  

 
 

 
Fig. 3 – Representation of the KS surface fractal at second iteration ( 2m = ) 

as a sum of composing mass fractals at iterations 0,1, 2n = . Upper part: regular KS ( / 1L a ). Lower part: 

generalized KS with / 1L a > . 

Figure 3, upper part, shows the construction of the regular KS surface fractal at ( 2)m = . The figure 
depicts each composing mass-fractal iteration: 0n =  (black), 1n =  (orange), and 2n =  (green). Note, that 
in the same figure, the size of the regular KS is approximately the same as of the initial triangle of edge 
length a , and thus we have / / 1d l L a= . The total scattering intensity (Eq. 8) takes into account the 
correlations between all the triangles (Fig. 3, upper part, 2m = ). However, Eq. (9) being the approximation 
of mass-fractal amplitudes, takes into account only the correlations between the triangles of a given color in 
Fig. 3, upper part, 2m = . Finally, Eq. (10) gives the scattering intensity corresponding to a random 
distribution of independent triangles, as shown in Figs. 4 and 5. The generalized version of the KS surface 
fractal is obtained in a similar way, with the exception that the overall size of the KS is much bigger than the 
size of the initial triangle of edge length a  ( 0n = ), and thus / 1L a > . As a consequence, the distances 
between the units composing the KS become much bigger than their sizes. Figure 3, lower part, shows the 
construction of the generalized KS at ( 2)m = . 
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Fig. 4 – A random distribution of triangles 
forming the 2nd iteration of the KS surface fractal shown in Fig. 3.

Fig. 5 – The same random distribution as in Fig. 4  
but with higher /L a  ratio (see text). 

3.2. SCATTERING PROPERTIES 

For the regular KS, the scattering intensity can be calculated by starting with a recurrence formula for 
the scattering amplitude ( )( ) ( )s

m m mA S F≡q q , where mS  is the area of KS at a finite iteration (see above). 
Thus, provided that the amplitudes at 1m =  and 2m =  are known, the recurrence formula is given by [33] 

[ ]2 4 2 2
2 1 1 2 1 1( ) 6 ( ) ( ) 6 ( ) ( ) ( ) 1 6 ( ) ,m s m s s s m s s m sA G A G A A Gβ β β β β β β− − −⎡ ⎤= − + +⎣ ⎦q q q q q q q  (12) 

where the generative functions are given by 
5

1 0
( ) (1/ 6) ji

j
G e− ⋅

=
= ∑ q cq and 

5
2 0
( ) (1/ 6) ji

j
G e− ⋅

=
= ∑ q bq , with 

{ }(2 / 9) cos( ( 1/ 2) / 3),sin( ( 1/ 2) / 3)j a j jπ π= + +c  and { }(2 / 3 3) cos( / 3),sin( / 3)j a j jπ π=b . Thus, 
by inserting Eq. (12) into Eq. (8), the total scattering intensity is obtained (Figs. 6 and 7).  We are interested 
here in the behavior of the scattering curves only in the fractal region. 

  

Fig. 6 – SAS from regular KS ( / 1L a ) at 3m = , and intensities 
of the four (n = 0, 1, 2, 3) mass-fractal iterations. 

Fig. 7 – SAS from regular KS ( / 1L a ) at 3m = .  
Vertical  lines show the fractal region. 

The results in Figs. 6 and 7 show that the fractal region is at 21 180qa< < , and is delimited by 
vertical lines in Fig. 7. The scattering exponent is 2.74τ =  and it gives the proper value of the surface 
fractal dimension 1.26sD = , through the relation 4 sDτ = −  (see Introduction). This value coincides, as 
expected, with the theoretical value obtained with the help of Eq. (11). Figure 6 shows that the total 
scattering intensity of KS can be described in terms of contributions from individual mass fractals. A detailed 
discussion can be found in Ref. [32]. One way to approximate the total intensity is to completely neglect the 
interference terms in Eq. (8) and to consider the incoherent sum of mass fractal amplitudes (Eq. 9). A 
rougher approximation is to completely neglect the spatial correlations between composing triangles. 
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Figure 7 shows that at / 1L a  the approximation of mass fractal amplitudes (Eq. 9) and the 
approximation of independent units do not give satisfactory approximations (in the fractal region) to the total 
scattering intensity. 

By increasing the ratio /L a , the scattering intensities of each individual mass fractal iteration is 
characterized by the presence of a second plateau (e.g. at 40 100qa< <  in Fig. 8 for 3n = ). This region 
arises due to the fact that the distances between individual triangles is much higher than their size and the 
correlations become less important with increasing q . Similar scattering curves have been observed recently 
for fat and multiscale fractals [34, 35]. Thus, both the approximations of mass fractal amplitudes and of 
independent units give a much better agreement with the total scattering intensity (Fig. 9).  

  
Fig. 8 – SAS from generalized KS ( / 10L a ) at 3m = , and 
intensities of the four ( 0,1, 2,3n = ) mass-fractal iterations. 

Fig. 9 – SAS from generalized KS ( / 10L a ) at 3m = . Vertical 
lines show the fractal region. 

4. CONCLUSIONS 

We introduce a new surface fractal model as a sum of mass fractals, which generalizes the well-known 
2D Koch snowflake. Its main feature is that the size of the composing triangles relative to the distances 
between them can be varied. This is controlled through the ratio /L a , where L  is the overall size of the 
fractal and a  is the edge size of the biggest triangle. 

We calculate the corresponding SAS intensities and construct two-approximations. For the first one we 
consider only the incoherent sum of mass fractal amplitudes and for the second one we completely neglect 
the spatial correlations between composing triangles. We compare the results with scattering from a regular 
Koch snowflake ( / 1L a ) and we show that both approximations work very good for the newly introduced 
model (i. e. when / 1L a ). This shows that the SAS from a surface fractal can be explained in terms of a 
power-law type polydispersity of sizes, provided the fine structure of the intensity is neglected. 
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