
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 19, Number 2/2018, pp. 337–344 

ASYMPTOTIC QUANTUM CORRELATIONS IN OPEN QUANTUM SYSTEMS 

Aurelian ISAR1,2 

1 National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, 
P. O. Box MG-6, RO-077125, Bucharest-Magurele, Romania 

2 Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania 
E-mail: isar@theory.nipne.ro 

Abstract. We describe the asymptotic behaviour of quantum correlations (quantum entanglement, 
quantum discord, and quantum steering) in a system composed of two coupled bosonic modes 
immersed in a thermal reservoir, in the framework of the theory of open systems. The time evolution 
of quantum correlations is described in terms of the covariance matrix for Gaussian initial states. We 
show that, depending on the values of the strength of interaction between the two bosonic modes, and 
independent of the initial state, in the limit of infinite time the system evolves asymptotically to an 
equilibrium state, which may be entangled or separable. We show also that for all non-zero values of 
the strength of interaction between the modes, Gaussian quantum discord tends asymptotically for 
large times to some definite non-zero value. The asymptotic values of entanglement and discord 
depend on the strength of interaction between the bosonic modes, temperature, and dissipation 
parameter. We calculate also the Gaussian quantum steering and find out that in the limit of large 
times it is zero for all values of the strength of interaction between the two modes. 
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1. INTRODUCTION 

The physical understanding of different kinds of quantum correlations, like nonlocality, steering, 
entanglement, and discord constantly advanced in the last decades [1]. The genuine properties of quantum 
states in comparison with classical ones consist in such quantum correlations [1–3], which have proven to be 
useful in quantum information processing. Consequently, characterizing and quantifying quantum 
correlations represent a key subject in the theory of quantum information [2]. In this respect, quantum 
entanglement is considered to be a strong physical resource for quantum information processing and 
communication tasks and protocols [4, 5]. However, not all non-classical properties of quantum correlations 
are described by entanglement. In this sense, Zurek [6, 7] introduced the quantum discord as a measure of 
quantum correlations that includes entanglement and which can also be present in separable states. Steering 
is also a type of quantum nonlocality first identified in the Einstein-Podolsky-Rosen paper [8], which is 
distinct from both nonseparability and Bell nonlocality, allowing for new practical applications such as one-
sided device-independent quantum key distribution [9]. To infer the steerability between two parties is 
equivalent with verifying the shared entanglement distribution by an untrusted party, by performing local 
measurements and classical communications [10].  

To implement quantum information tasks into the real quantum systems is a difficult procedure, 
since they are not isolated, but always interact with their own environment. Consequently, quantum 
coherence and quantum correlations are inevitably affected during the interaction of quantum systems with 
their external environment. Therefore, it is necessary to take decoherence and dissipation into consideration 
in order to obtain a realistic description of quantum processes. In the last years decoherence and dynamics of 
quantum correlations in open systems of continuous variables have been intensively studied [11–49].  

Recently we studied, in the framework of the theory of open systems based on completely positive 
quantum dynamical semigroups, the dynamics of quantum correlations of two uncoupled bosonic modes 
embedded in a common thermal reservoir, for initial Gaussian states of the subsystem [50–55]. In Ref. [56] 
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we described the dynamics of the quantum entanglement of a subsystem composed of two coupled bosonic 
modes interacting with a common thermal reservoir and have shown that, for a separable initial squeezed 
thermal state, entanglement generation may take place, for definite values of the squeezing parameter, 
average photon numbers, temperature of the thermal bath, dissipation coefficient, and the strength of 
interaction between the two modes. In Ref. [57] we have shown that, for initial uni-modal squeezed states, 
the generation of Gaussian quantum discord takes place during the interaction with the thermal bath, for all 
nonzero values of the strength of interaction between the coupled bosonic modes. In Ref. [58] we considered 
the system of two uncoupled bosonic modes interacting with a common thermal reservoir and described the 
behaviour of the Gaussian quantum steering, when the initial state of the system is a squeezed thermal state. 
We have shown that the suppression of the Gaussian steering takes place in a finite time, for all temperatures 
of the thermal reservoir and all values of the squeezing parameter, this behaviour being similar to the well-
known phenomenon of entanglement sudden death. This kind of evolution of Gaussian steering and 
entanglement is in contrast with the dynamics of quantum discord, which decreases to zero asymptotically in 
time for uncoupled modes. We studied also the dynamics of quantum correlations of two bosonic modes in 
the case when each mode is coupled to its own thermal reservoir, for Gaussian initial states [59, 60].             

In the present work we describe, in the same framework of the theory of open systems, the 
asymptotic behaviour in the limit of large times of quantum correlations of a subsystem composed of two 
coupled bosonic modes interacting with a common thermal reservoir. The initial state of the subsystem is 
taken of Gaussian form, and the Gaussian form of the state is preserved during the evolution under the 
quantum dynamical semigroup. 

The paper is organized as follows. In Sec. 2 we write the Markovian master equation for the density 
operator of the considered open system interacting with a general environment and solve the evolution 
equation for the covariance matrix of the state of the bimodal bosonic system. Then we describe in Sec. 3 the 
asymptotic behaviour of the logarithmic negativity, Gaussian quantum discord, and Gaussian quantum 
steering for the considered open system. We show that in the limit of infinite time the system evolves 
asymptotically to an equilibrium state, which may be entangled or separable. We also show that for all initial 
states, the Gaussian discord tends asymptotically for large times to a definite non-zero value, which depends 
on the parameters characterizing the thermal bath (temperature and dissipation coefficient), as well as on the 
strength of interaction between modes, which determines actually the preservation in time of the quantum 
discord. We calculate the asymptotic Gaussian quantum steering and find out that it is zero for all values of 
the strength of interaction between the modes in the limit of large times. A summary is given in Sec. 4. 

2. MASTER EQUATION FOR BOSONIC MODES INTERACTING 
WITH THE ENVIRONMENT 

In order to study the dynamics of the subsystem consisting of two coupled bosonic modes (harmonic 
oscillators) in weak interaction with a thermal reservoir, we use the axiomatic formalism based on 
completely positive quantum dynamical semigroups. In this framework, the Markovian irreversible time 
evolution of an open system is described by the following Kossakowski-Lindblad master equation for the 
density operator )(tρ  [61–64]: 

† †d ( ) 1= [ , ( )] (2 ( ) { ( ), } ),
d 2 j j j j

j

t i H t B t B t B B
t +

ρ − ρ + ρ − ρ∑= =
 (1)

where H  denotes the Hamiltonian of the open system and the operators †, jj BB  are defined on the Hilbert 

space of ,H  and describe the interaction of the subsystem with a general environment. 
The Hamiltonian of two coupled in coordinates non-resonant harmonic oscillators of identical mass 

m  and frequencies 1ω  and 2ω  is given by  
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where yx,  are the coordinates and yx pp ,  are the momenta of the two quantum oscillators, and q  is the 
coupling parameter. We are interested to use the Gaussian states, therefore we introduce such quantum 
dynamical semigroups that preserve this set during the time evolution, by taking the operators jB  as 
polynomials of the first degree in the canonical variables of coordinates and momenta. 

The equations of motion for the quantum correlations of the canonical observables yx,  and yx pp ,  
are the following ( T  denotes the transposed matrix) [64]:  
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D is the matrix of diffusion coefficients and λ  the dissipation coefficient. We introduced the 44×  bimodal 
covariance matrix σ (t), the elements of which are defined as = Tr[( ) ]/2, , = 1,..,4,ij i j j iA A A A i jσ + ρ  with 

},,,,{= yx pypxA  which fully characterize any Gaussian state of a bimodal system (up to local 
displacements). The time-dependent solution of Eq. (3) is given by [64]  

),()()]((0))[(=)( T ∞+∞− σσσσ tStSt  (5)

where the matrix )(exp=)( ZttS  has to fulfill the condition 0.=)(lim tSt ∞→  The values at infinity are 

obtained from the equation .2=)()( T DZZ −∞+∞ σσ                                                                                           

3. DYNAMICS OF QUANTUM CORRELATIONS 

3.1. Dynamics of quantum entanglement 
For Gaussian states, whose statistical properties are fully characterized by second-order moments of 

quadrature operators, the positive partial transpose (PPT) criterion of separability is necessary and sufficient 
[65, 66]: a Gaussian state is separable if and only if the partial transpose of its density matrix is non-negative. 

The covariance matrix, which is a real, symmetric and positive matrix entirely specifying a two-
mode Gaussian state, has the following block structure:  

,=)( T ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
BC
CA

tσ  (6)

where 22×  Hermitian matrices A  and B  are the covariance matrices for the single modes, and C  contains 
the cross-correlations between the modes. The covariance matrix (6) (where all first moments can be set to 
zero by means of local unitary operations that do not affect the quantum entanglement and quantum discord) 
contains four local symplectic invariants in form of the determinants of the block matrices CBA ,, , and 
covariance matrix .σ  

We use the logarithmic negativity as a measure to quantify the degree of entanglement of the two-
mode states. For a Gaussian state, the logarithmic negativity is completely determined by the symplectic 
spectrum of the partial transpose of the covariance matrix: },~2log{0,max= 2 −− nE where −n~  is the smallest 
of the two symplectic eigenvalues of the partial transpose σ~  of the two-mode covariance matrix σ  [18]: 

σdet4~~=~2 22 −ΔΔ ∓∓n and .det2detdet=~ CBA −+Δ  We obtain [67, 68] 
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E  determines the strength of entanglement for 0,>)(tE  and if 0,=)(tE  then the state is separable. In 
Refs. [33, 50, 53, 54, 67–70] we described the time evolution of the logarithmic negativity )(tE  for two 
uncoupled bosonic modes interacting with a common environment. 

Now we suppose that the only non-zero quantum diffusion coefficients have the following form (we 
put 1== ) [63]:  
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where k  is Boltzmann constant and T  the temperature of the thermal reservoir. While in the case of 
independent bosonic modes, this form of the coefficients would determine an asymptotic product Gibbs state 
describing a thermal equilibrium of the two modes with the thermal bath at temperature ,T  in the present 
model with coupled bosonic modes, the asymptotic state does not have anymore the form of a product state. 
Namely, all the elements of the asymptotic covariance matrix have non-zero values depending, besides the 
frequencies of the modes, on T, λ, and q. Independent of the initial state, in the limit of large times the system 
evolves asymptotically to an equilibrium state, which may be entangled or separable. The direct interaction 
between the two modes favors the generation or the preservation in time of the created entanglement, while 
the temperature of the thermal bath acts towards preventing the generation of entanglement, or suppressing 
it, once it was created. It is the competition between these two factors - mutual interaction between the two 
modes and interaction with the thermal bath - that determines the final state of being separable or entangled. 
Indeed, using the asymptotic covariance matrix, we obtain the following expression of the logarithmic 
negativity in the limit of large times, as a function of the strength of the interaction q , temperature of the 
thermal bath T , and dissipation coefficient λ :  
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where we have taken 1== 21 ωωω ≡ . In Fig. 1 we represent the dependence of the asymptotic logarithmic 
negativity )(∞E  (14) as a function of temperature T  and q . As expected, one can notice that the 
asymptotic entanglement is increasing with the strength of the interaction and is decreasing with increasing 
the temperature of the thermal bath. 

3.2. Dynamics of Gaussian quantum discord 

Quantum discord has been defined as the difference between two quantum analogues of classically 
equivalent expressions of the mutual information, which is a measure of total correlations in a quantum state. 
It was introduced [6, 7] as a measure of all quantum correlations in a bipartite state, including, but not 
restricted to entanglement. For pure entangled states quantum discord coincides with the entropy of 
entanglement. Quantum discord can have non-zero values also for some mixed separable states, and 
therefore the correlations in such separable states with non-zero discord can characterize the quantumness of 
these states. For bipartite continuous variable systems, closed formulas of the Gaussian quantum discord 
have been obtained for bipartite thermal squeezed states [71] and for all two-mode Gaussian states [72]. 
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Fig. 1 – Asymptotic logarithmic negativity E(∞) versus temperature T of the thermal bath 

(via C ≡ cothω/2kT) and interaction strength q, for a dissipation coefficient = 0.1λ  ( 1 2= = 1, = = 1mω ω ≡ ω = ). 

The Gaussian quantum discord of a general two-mode Gaussian state 12ρ  can be defined as the 
quantum discord where the conditional entropy is restricted to generalized Gaussian positive operator valued 
measurements (POVM) on the mode 2. In terms of symplectic invariants it is given by (the symmetry 
between the two modes 1 and 2 is broken) [72] ),()()()(= εννβ ffffD +−− +− where  
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                                                                                                                                   otherwise 

= 4det , = 4det , = 4det , = 16det ,A B C σα β γ δ  (13)

and ∓ν  are the symplectic eigenvalues of the state, given by ,4=2 22 δν −ΔΔ ∓∓ where .2= γβα ++Δ   
Recently [57] we have shown that Gaussian discord tends asymptotically for large times to some 

definite non-zero value. In the absence of coupling, the discord tends for large times to zero, corresponding 
to an asymptotic product state. In Fig. 2 it is represented the dependence of the asymptotic discord on the  
temperature and dissipation t and the strength of interaction between modes. It does not depend on the initial 
state, and the direct interaction between the two modes determines the generation of the quantum discord and 
its preservation at asymptotically large times. One can notice that the asymptotic discord is increasing with 
the strength of the interaction and decreases with increasing temperature and dissipation coefficient. 

3.3. Dynamics of Gaussian quantum steering 

It has been shown in Refs. [10, 73] that the steerability BA→  is present if and only if the 
following relation does not hold:  

0,0
2

≥Ω⊕+ BA
iσ  (14)
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Fig. 2 – Asymptotic Gaussian quantum discord ( )D ∞  versus temperature via coth( /2 )kTω  and a) dissipation coefficient λ, 

for strength of interaction between modes = 0.5q (left) and b) strength of interaction between modes q  
and dissipation coefficient = 1λ (right) (we considered resonant modes with 1 2= = 1ω ω ≡ ω ). 

or, equivalently 

0,
2

and0,> ≥Ω+Δ B
B iA σ  (15)

where 1 T=B B CA C−
σΔ −  is the Schur complement of A in covariance matrix σ. A measure can be proposed of 

how much a state with covariance matrix σ  is A B→  steerable with Gaussian measurements, by quantifying 
the amount by which the condition (14) is violated, as follows [74]:  

( ) = max{0, ln 2 },A B BG → σ − ν  (16)

where Bν  is the symplectic eigenvalue of .B
σΔ  The B A→  steerability can be quantified in a similar manner 

by computing the symplectic eigenvalues of the Schur complement of B in the covariance matrix σ . The 
quantity in Eq. (16) vanishes if and only if the state σ is not steerable by Gaussian measurements and is 
invariant under local symplectic transformations. Note the similarity of this quantity with the negativity that 
measures the degree of entanglement of a state. In that situation the symplectic eigenvalues of the partially 
transposed covariance matrix σ are relevant, which quantify the violation of the positive partial transpose 
(PPT) criterion. However, steering is fundamentally different from entanglement, being in general asymmetric 
with respect to the interchange between steerable parties. 

The general quantity proposed in Refs. [74, 75], while easily computable for an arbitrary number of 
modes, has a particularly simple form when the steered party has one mode:  
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where S is the Renyi-2 entropy, which for Gaussian states reads 1= ln(16det ).
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the two modes, both A B→  and B A→  steerability are equivalent. For large times we obtain the following 
asymptotic value of this expression ( coth /2C kT≡ ω ):  
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which has only negative values for non-zero temperatures and is 0 for T = 0. Therefore for large times the 
Gaussian quantum steering is completely missing, independent of the fact that the two bosonic modes are 
coupled or not. 
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4. SUMMARY 

We investigated the Markovian dynamics of the quantum correlations for a system composed of two 
coupled bosonic modes, embedded in a common thermal bath, in the framework of the theory of open 
systems based on completely positive quantum dynamical semigroups.  

The asymptotic behaviour of quantum correlations does not depend on the initial states of the 
system, and depends only on the parameters characterizing the thermal reservoir (temperature and dissipation 
coefficient) and the coupling between the modes. While in the case of uncoupled bosonic modes, for an 
initial entangled state we could notice only entanglement sudden death, and in the limit of large times the 
asymptotic state was always a separable state, in the present model we have a completely different scenario, 
determined by the appearance of the competition between the direct interaction between the two bosonic 
modes and the influence of the thermal environment. Independent of the initial state, in the limit of large 
times, the system evolves asymptotically to an equilibrium state, which is not necessarily anymore a 
separable state: depending on the values of the interaction strength of the two bosons, temperature, and 
dissipation coefficient, the asymptotic state may be separable or entangled. The asymptotic entanglement is 
increasing with the strength of the coupling and is decreasing with increasing the temperature of the bath. 

Compared to the entanglement, Gaussian discord keeps for all times a non-zero value, including for 
asymptotic large times. Persistence of the non-zero discord for all times is the qualitatively novel feature of 
the model with two coupled bosonic modes embedded in a thermal environment, compared to the uncoupled 
bosonic modes model. The asymptotic discord is increasing with the strength of the coupling and decreases 
with increasing the temperature of the thermal bath and dissipation coefficient. In order to protect the 
quantum discord it is necessary to maintain the temperature of the environment and dissipation as low as 
possible. However, the permanent existence of the quantum discord during the whole time evolution of the 
system, and even more, its persistence for asymptotically large times, is itself a remarkable fact, compared to 
the finite-time existence of the quantum entanglement, which is much more sensitive to diffusion and 
dissipation effects of the environment. We investigated also the dynamics of the Gaussian quantum steering 
of two coupled bosonic modes immersed in a common thermal bath and have shown that in the limit of large 
times it is zero for all values of the temperature, dissipation, and strength of interaction between the modes. 
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