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Abstract. A novel structure-based image interpolation technique is proposed in this paper. It is based 
on a nonlinear anisotropic diffusion model that is properly constructed for the reconstruction process. 
A rigorous mathematical investigation of this partial differential equation (PDE) - based scheme is 
then performed, its well-posedness being treated. An explicit finite difference-based numerical 
approximation scheme that is consistent to the second-order PDE model and converges to its weak 
solution is developed next. The successful inpainting experiments and method comparison prove the 
effectiveness of the considered diffusion-based approach. 
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1. INTRODUCTION 

The digital image inpainting task represents one of the fundamental problems in the image processing 
domain. It is known also as image completion, and represents the process of automatic reconstruction of the 
missing parts of deteriorated images by employing the information obtained from the surrounding regions. 
Therefore, it represents an interpolation problem, so it is also named image interpolation. Also, the term 
inpainting is an ancient very old term that originates from the art restoration [1]. 

Image interpolation has many applications in various important image processing fields. Let us 
mention here the damaged painting reconstruction, photo and movie restoration, image and video object 
removal / replacing, solving the disocclusion, zooming and super-resolution, estimating the scene behind an 
obscuring foreground, and image de/compression and coding [1]. 

While some image completion techniques can reconstruct only structures, and other methods inpaint 
only image textures, there exist approaches that recover both of them. Some texture-based inpainting 
techniques are based on the texture synthesis [2, 3], while other schemes represent exemplar-based 
approaches [4, 5]. 

The structural inpainting techniques use energy-based and PDE-based models to reconstruct the 
missing or highly damaged regions. The energy-based, or variational, models inpaint the image by solving a 
minimization problem involving an energy functional. The most influential variational interpolation 
approaches include Mumford-Shah Inpainting [6], the model of Masnou and Morel [7], and Total Variation 
Inpainting [1, 8]. Some improved versions of total variation inpainting that have been developed in the last 
years include TV Inpainting with Split Bregman [9], Blind Inpainting using l0 and TV Regularization [10] 
and TV Inpainting with Primal-Dual Active Set (PDAS) method [11]. 

Also, many second and higher order PDE-based inpainting models have been developed in the last 
decades. An influential anisotropic diffusion model for image inpainting is that introduced by Bertalmio et 
al. in [12]. Unlike second-order diffusion models that follow variational principles, the high-order PDE 
inpainting approaches are not derived from some variational schemes, being directly given as evolutionary 
differential equations. They include the third-order interpolation models, such as Curvature-driven Diffusion 
(CDD) Inpainting [1, 13], and the fourth-order PDE-based completion schemes, like Cahn-Hillard 
Inpainting, TVH−1 Inpainting and LCIS Inpainting [1, 13]. 
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Some interpolation methods that perform simultaneous structure and texture image inpainting have also 
been developed in the last years. They combine the PDE variational models to texture synthesis based 
approaches  [14, 15].  

We have also developed numerous variational and PDE-based inpainting technique in our past works 
[16–18]. In this article we consider a novel second-order PDE-based interpolation approach based on a 
nonlinear anisotropic diffusion-based model. The proposed PDE model is described in the following section 
and a rigorous mathematical treatment is performed on it in the third section, its well-posedness being 
demonstrated. 

A robust numerical approximation scheme that is consistent to this anisotropic diffusion model and 
converges fast to its solution is developed, by using the finite difference method, in the fourth section. Our 
succesful inpainting experiments and method comparison are described in the fifth section. The work ends 
with a section of final conclusions.    

2. NONLINEAR ANISOTROPIC DIFFUSION-BASED INTERPOLATION MODEL  

Given an observed image that contains highly damaged or missing regions, it can be represented as a 
partial two-dimension function that is defined only outside of those zones, Ru →ΓΩ \:0 , where the 
image domain 2R⊆Ω  and Γ represents the missing part of the image, being expressed as a set of pixel 
coordinates. Therefore, the image that is evolving during the inpainting process has the form 

Ru →Ω: , 0\ uu =ΓΩ . We consider the following nonlinear second-order anisotropic diffusion 
model with boundary conditions that recovers the original image from the observed image: 
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where λ ∊ (0, 1]. This parabolic PDE-based model uses an inpainting mask that is provided by the next 
characteristic function: 
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The first function of the anisotropic diffusion model provided by (2.1) is constructed in the following 
form: 
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where the parameters α, γ ∊ (0, 3], β ∊ (0, 3.5], r ∊ (0, 2 ]. The next diffusivity function is proposed for the 
PDE model: 
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where ( )2,0∈δ , ( ]5,1∈ξ , ( )1,0∈ν  and { }4,3,2,1∈k . The conductance parameter in (2.4) is 
modeled as:  

 ( )( ) ( ) tutyxu ζεμη +∇=,, , (2.5) 
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where 1>ε , ( )1,0∈ζ  and ( )μ  is the averaging operator. 
The anisotropic diffusion-based framework given by (2.1) – (2.5) performs the inpainting by directing 

the diffusion mostly to the missing image regions and reducing it outside of these zones. The diffusivity 
function (2.4) is properly constructed, satisfying the main conditions required by a successful diffusion 
process [19].  

Thus, the function uϕ  is positive, since ( ) ( )∞∈∀> ,0,0 ssuϕ . It is also monotonically 
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21 ss ≤∀ . Also, this function converges to zero when s goes to infinity: ( ) 0lim =
∞→
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component based on the other function, ( )uu ∇ψ , is controlling the speed of the image diffusion 
process.  

The inpainted image is determined by solving the described nonlinear differential model. Therefore, in 
the following section we treat its well-posedness, investigating the existence and uniqueness of a weak 
solution that would represent the optimal image interpolation. A numerical approximation of that solution is 
performed in the fourth section. 

3. A MATHEMATICAL TREATMENT OF THE PROPOSED PDE MODEL 

The mathematical validity of the considered nonlinear second-order PDE model is investigated in this 
section. Thus, we demonstrate the well-posedness of this anisotropic diffusion model, meaning the existence 
and uniqueness of a weak solution for it, under some certain assumptions.  

So, we have: 
 ( ) ( )( ) ( ) ( )( ) ( ) ( ) uuuuuuudivuuu u

uu
u

u
u Δ∇∇∇−∇∇∇=∇∇⋅∇∇ 2222222 '2 ψϕϕψϕψ  (2.6) 

Let us set: 
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Finally, by (2.7) one obtains: 
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Hence we may re-write the partial differential equation is (2.1) as following: 
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We have to assume that the function ( ) ( ) ( )222 sgss u
u −ϕψ  is convex and 

( ) ( ) ( ) 0,0222 >∀>≥− ssgss u
u ρϕψ , where ρ  is a constant. A function u is said to be a weak 

or variational solution to (2.10) if it satisfies: 
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The problem (2.12) is parabolic in u and so it has a unique solution satisfying ( )( )Ω∈ 1
0

2 ;,0 HTLu  

and ( )( )Ω∈
∂
∂ −12 ;,0 HTL

t
u . Then one proves that on a small interval the operator uv → is a contraction 

in ( )( )Ω1
0

2 ;,0 HTL  and, by applying the Banach’s fixed point theorem [20], demonstrates that (2.10), 
with ( )Ω∈ 2

0 Lu  has an unique solution on some interval ( )T,0 . Thus, the proposed nonlinear diffusion 
model is well-posed. 

4. NUMERICAL APPROXIMATION ALGORITHM 

The nonlinear anisotropic diffusion model proposed and analysed in the previous sections can be 
solved numerically using an iterative discretization algorithm that approximates its solution representing the 
inpainted image. We assume a space grid size of h and a time step size of tΔ and quantize the time and 
space coordinates as following: 
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where [ ]JhIh ×  is the size of the image support. 
A robust discretization of the PDE model (2.1) is then performed by using the finite difference method 

[19, 21]. First, the PDE in (2.1) leads to 
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Then, a finite difference-based numerical approximation is applied on (2.14). The gradient magnitude 
is approximated by using central differences [21], as follows: 
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Then, by using forward difference for time derivative [21], one obtains the following discretization for 
(2.14): 
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We may consider the parameter values 1==Δ ht . The implicit approximation (2.17) leads to the 
next explicit iterative numerical approximation scheme: 
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to the anisotropic diffusion model (2.1) and converges fast to its solution representing the recovered image. 

5. EXPERIMENTS AND METHOD COMPARISON 

The proposed nonlinear PDE-based inpainting approach has been tested on hundreds images affected 
by missing or highly damaged parts, satisfactory results being achieved. Some of the image collections used 
in the experiments are the volumes of the USC - SIPI database. The performance of our technique has been 
assessed using image similarity measures such as PSNR (peak signal to noise ratio), SNR (signal to noise 
ratio) and MSE (mean-squared error) [22]. We have determined an optimal set of values for the parameters 
in (2.1) – (2.5), by using the trial and error method with these measures. These values providing an optimal 
image reconstruction are the following:  
 3.0,7.1,2,4.0,5.3,5.0,45.0,7.1,2.1,6.0,7.0 =========== ζενξδβαγλ kr (2.19) 

Our inpainting technique is characterized by a quite low running time, since the iterative discretization 
algorithm (2.18) converges fast to the optimal reconstruction. The number of its steps, N, is rather low, but it 
is also influenced by the size of the missing (damaged) part of the processed image, and also by the amount 
of image noise, increasing proportionally with these factors.  

Also, the diffusion-based completion method developed by us interpolates successfully the deteriorated 
images while preserving their edges, corners and other essential features. It performs efficiently in noisy 
conditions too, reducing the amount of additive Gaussian noise and the unintended effects. See some 
inpainting results achieved by our technique in both normal and noisy conditions (Gaussian noise with μ  = 
0.21 and var = 0.02) in Fig.1. But, while our approach provides an effective structure-based inpainting, it 
performs considerably weaker in the textural inpainting case. 

Method comparison have been also performed. The anisotropic diffusion-based reconstruction 
technique described here has been compared to some well-known existing PDE-based and variational 
interpolation schemes. Thus, it clearly outperforms second-order PDE models, such as Harmonic Inpainting 
[1], TV Inpainting and other completion schemes derived from diffusion-based denoising methods, 
achieving higher PSNR and lower MSE values, and obtains comparable good results to fourth-order PDE 
inpainting schemes, like TV – H-1 Inpainting.  

See some method comparison results in Table 1 and Fig. 2. While TV – H-1 Inpainting achieves slightly 
better average values for these performance metrics, the AD (anisotropic diffusion) scheme described here 
converges much faster and has a considerably lower execution time. Our inpainting approach reaches the 
optimal image completion in much fewer iterations (t = 45) than other PDE-based algorithms, especially the 
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TV-based ones requiring around 1 000 steps, as one can see in Fig. 2 that displays inpainting results 
produced by several methods on [ ]512512 ×  Barbara image affected by 2 missing regions (black hand-
written texts).  

   
a) Original Lenna image b) Image corrupted by missing zone c) Inpainting result – N = 29 

                                      
d) Gaussian noise + missing part                e) Inpainting in noisy conditions: N = 39 

Fig. 1 – Inpainting output produced by the proposed AD algorithm in normal and noisy conditions. 

Table 1 

Method comparison: average PSNR and MSE values  
Inpainting technique Peak Signal to Noise Ratio (PSNR) Mean Squared Error (MSE) 

The proposed AD Inpainting 36.1338 (dB) 15.8380 
Harmonic Inpainting 29.6887 (dB) 69.8576 

Total Variation Inpainting                     34.2561 (dB) 24.4047 
TV – H-1 Inpainting 36.3805 (dB) 14.9634 

 

   
a) Original image b) Image affected by missing parts c) This AD inpainting (t = 45) 

   
d) harmonic inpainting (t = 50) e) TV inpainting (t = 850) f) TV – H-1 inpainting (t = 1 500) 

Fig. 2 – Interpolation results achieved by several PDE-based inpainting models.  
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6. CONCLUSIONS 

A novel effective non-texture PDE-based inpainting technique has been proposed in this work. It is 
based on a nonlinear second-order anisotropic diffusion model that represents the main contribution of this 
research paper.  

The proposed parabolic model is based on two properly constructed diffusivity functions and a mask 
that corresponds to the missing (or highly damaged) part of the processed image. The interpolation 
framework inpaints successfully the image by directing the speedy diffusion process to that missing part, 
while preserving the boundaries and other important details. 

The rigorous mathematical investigation on its validity, representing another contribution of this work, 
has demonstrated the well-posedness of the anisotropic diffusion scheme that admits a unique and weak 
solution under some certain assumptions. An explicit iterative finite difference method-based numerical 
approximation scheme that is consistent to the PDE model and converges fast to its variational solution has 
also been developed.  

Our successful image reconstructions experiments and method comparison show the effectiveness of 
the proposed method. It works satisfactory in noisy conditions and performs successfully any structural 
inpainting task, but provides much weaker texture inpainting results, given its non-texture character. It also 
outperforms many state of the art PDE-based structure inpainting techniques, providing better image 
reconstruction results and converging much faster. As part of our future research, we intend to further 
improve the anisotropic diffusion-based framework, so that to become able to inpaint properly image 
textures also.      
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