A SUFFICIENT CONDITION FOR ALL FRACTIONAL [a, b] -FACTORS IN GRAPHS

Jiashang JIANG

Jiangsu University of Science and Technology, School of Science, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China Corresponding author: Jiashang JIANG, E-mail: jjiashangjust@163.com, jjiashang@163.com

Abstract. Let *G* a graph, and let g(x) and f(x) be two nonnegative integer-valued functions defined on V(G) with $g(x) \le f(x)$ for every $x \in V(G)$. We say that *G* has all fractional (g, f)-factors if *G* has a fractional *r*-factor for any $r:V(G) \to N^+$ with $g(x) \le r(x) \le f(x)$ for every $x \in V(G)$. If g(x) = a and f(x) = b for each $x \in V(G)$, then all fractional (g, f)-factors are called all fractional [a,b]-factors. In this paper, we verify that G-I admits all fractional [a,b]-factors for any independent set *I* of *G* if

$$\alpha(G) \leq \frac{4a(\delta(G) - b + 1)}{(b+1)^2 + 4a} \,.$$

Furthermore, it is shown that the result is sharp.

Key words: graph, minimum degree, independence number, fractional factor, all fractional factors.

1. INTRODUCTION

All graphs considered in this paper will be finite undirected simple graphs. For a graph G, we denote the vertex set of G by V(G) and the edge set of G by E(G). For every $x \in V(G)$, we use $d_G(x)$ to denote the degree of x in G, and write $\delta(G) = \min\{d_G(x) : x \in V(G)\}$. For every $x \in V(G)$, we denote by $N_G(x)$ the set of vertices of G adjacent to x, and write $N_G[x] = N_G(x) \cup \{x\}$. For any vertex subset S of G, G[S] denotes the subgraph of G induced by S, and we write $G - S = G[V(G) \setminus S]$ and $N_G(S) = \bigcup_{x \in S} N_G(x)$. For two disjoint vertex subsets S and T of G, we use $e_G(S,T)$ to denote the number of edges that join a vertex in S and a vertex in T. We denote by $\alpha(G)$ the independence number of G. Let r be a real number. Recall that |r| is the greatest integer with $|r| \leq r$.

Let g(x) and f(x) be two nonnegative integer-valued functions defined on V(G) with $g(x) \le f(x)$ for every $x \in V(G)$. A spanning subgraph F of G is called a (g, f)-factor of G if F satisfies $g(x) \le d_F(x) \le f(x)$ for every $x \in V(F)$. If g(x) = a and f(x) = b for any $x \in V(F)$, then a (g, f)-factor is called an [a,b]-factor. A [k,k]-factor is simply called a k-factor.

If $g(x) \leq \sum_{e \ni x} h(e) \leq f(x)$ holds for every $x \in V(G)$, then we call graph F with vertex set V(G) and edge set E_h a fractional (g, f)-factor of G with indicator function h, where $h: E(G) \to [0,1]$ be a function and $E_h = \{e : e \in E(G), h(e) > 0\}$. If g(x) = a and f(x) = b for every $x \in V(G)$, then a fractional (g, f)-factor is said to be a fractional [a,b]-factor. A fractional [a,b]-factor is called a fractional k-factor if a = b = k. If G has a fractional r-factor for any $r: V(G) \to N^+$ with $g(x) \leq r(x) \leq f(x)$ for every $x \in V(G)$, then we say that G has all fractional (g, f)-factors. If g(x) = a and f(x) = b for each $x \in V(G)$, then all fractional (g, f)-factors are called all fractional [a,b]-factors. Jiashang Jiang

Many authors studied factors [1–6], fractional factors [7–11] and all fractional factors [12, 13] of graphs. Cai and Liu [10] showed a minimum degree and independence number condition for a graph to have a fractional k-factor.

THEOREM 1 [10]. Let k be an integer with $k \ge 1$, and let G be a graph. If

$$\alpha(G) \leq \frac{4k(\delta(G)-k)}{(k+1)^2},$$

then G admits a fractional k-factor.

Zhou, Xu and Sun [11] improved Theorem 1, and obtained the following result. THEOREM 2 [11]. Let k be an integer with $k \ge 1$, and let G be a graph. If

$$\alpha(G) \leq \frac{4k(\delta(G) - k + 1)}{k^2 + 6k + 1},$$

then G-I admits a fractional k-factor for any independent set I of G.

Lu [12] gave a necessary and sufficient condition for graphs to have all fractional [a,b]-factors, and obtained a neighborhood union condition for graphs to have all fractional [a,b]-factors.

THEOREM 3 [12]. Let G be a graph and $a \le b$ be two positive integers. Then G has all fractional [a,b]-factors if and only if

$$\theta_G(S,T) = a \left| S \right| + \sum_{x \in T} d_{G-S}(x) - b \left| T \right| \ge 0$$

for any subset $S \subseteq V(G)$, where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \le b-1\}$.

THEOREM 4 [12]. Let a and b be two positive integers with $a \leq b$, and let G be a graph of order

n with
$$n \ge \frac{2(a+b)(a+b-1)}{a}$$
, $\delta(G) \ge \frac{(a+b-1)^2 + 4b}{4a}$. If

$$N_G(x) \bigcup N_G(y) \ge \frac{bn}{a+b}$$

for any two nonadjacent vertices x and y in G, then G admits all fractional [a,b]-factors.

Zhou and Sun [13] posed a new neighborhood union condition for the existence of all fractional [a,b]-factors in graphs.

THEOREM 5 [13]. Let a, b, r be three integers with $1 \le a \le b$ and $r \ge 2$. Let G be a graph of order n with $n > \frac{(a+b)(r(a+b)-2)}{2}$. If

$$n \text{ with } n > ------a$$
. If

$$\delta(G) \ge \frac{(r-1)b^2}{a}$$

and

$$\left|N_{G}(x_{1})\bigcup N_{G}(x_{2})\bigcup \cdots \bigcup N_{G}(x_{r})\right| \geq \frac{bn}{a+b}$$

for any independent subset $\{x_1, x_2, \dots, x_r\}$ in G, then G admits all fractional [a,b]-factors.

In this paper, we proceed to study the existence of all fractional [a,b]-factors in graphs. Motivated by Theorems 1 and 2, we obtain a sufficient condition for the existence of all fractional [a,b]-factors in vertices deleted graphs, which is shown in the following.

THEOREM 6. Let a and b be two integers with $1 \le a \le b$, and let G be a graph. If

$$\alpha(G) \le \frac{4a(\delta(G) - b + 1)}{(b+1)^2 + 4a}$$

then G-I has all fractional [a,b]-factors for any independent set I of G.

2. THE PROOF OF THEOREM 6

Proof of Theorem 6. We write H = G - I. Suppose that the result does not hold. By Theorem 3, there exists a vertex subset S of H satisfying

$$\theta_{H}(S,T) = a \left| S \right| + \sum_{x \in T} d_{H-S}(x) - b \left| T \right| < 0,$$
(1)

where $T = \{x : x \in V(H) \setminus S, d_{H-S}(x) \le b-1\}.$

Obviously, $T \neq \phi$ by (1). Let $h = \min\{d_{H-S}(x) : x \in T\}$. It follows from the definition of T that $0 \le h \le b-1$. We choose $x_1 \in T$ with $d_{H-S}(x_1) = h$. Thus, we have

$$\delta(H) \le d_H(x_1) \le d_{H-S}(x_1) + |S| = h + |S|.$$
⁽²⁾

Note that H = G - I. Hence, we obtain $\delta(H) \ge \delta(G) - |I|$. Combining this with (2), we get

$$\left|S\right| \ge \delta(G) - h - \left|I\right|. \tag{3}$$

Now we choose $y_1 \in T$ such that y_1 is the vertex with the least degree in G[T]. We write $N_1 = N_G[y_1] \cap T$ and $T_1 = T$. For $i \ge 2$, we write $T_i = T - \bigcup_{1 \le j < i} N_j$ if $T - \bigcup_{1 \le j < i} N_j \ne \phi$. Then choose $y_i \in T_i$ such that y_i is the vertex with the least degree in $G[T_i]$, and write $N_i = N_G[y_i] \cap T_i$. We continue these procedures until we reach the situation in which $T_i = \phi$ for some i, say for i = r + 1. Then it follows from the above definition that $\{y_1, y_2, \dots, y_r\}$ is an independent set of G. Note that $T \ne \phi$. Therefore, we have $r \ge 1$.

We write $|N_i| = n_i$. According to the definition of N_i , the following properties hold.

$$\alpha(G[T]) \ge r \tag{4}$$

and

$$\left|T\right| = \sum_{1 \le i \le r} n_i \,. \tag{5}$$

It follows from the choice of y_i that all vertices in N_i have degree at least $n_i - 1$ in $G[T_i]$. Thus, we have

$$\sum_{\leq i \leq r} \left(\sum_{x \in N_i} d_{G[T_i]}(x) \right) \geq \sum_{1 \leq i \leq r} n_i (n_i - 1).$$
(6)

Using (6), we obtain

$$\sum_{x \in T} d_{H-S}(x) = \sum_{x \in T} d_{G-I-S}(x) \ge \sum_{1 \le i \le r} n_i(n_i - 1) + \sum_{1 \le i < j \le r} e_G(N_i, N_j) \ge \sum_{1 \le i \le r} n_i(n_i - 1).$$
(7)

Note that $\alpha(G[T]) \leq \alpha(G)$. Combining this with (4), we get

1

$$\alpha(G) \ge \alpha(G[T]) \ge r. \tag{8}$$

In terms of (1), (3), (5) and (7), we have

$$\begin{split} 0 &> \theta_{H}(S,T) = a \left| S \right| + \sum_{x \in T} d_{H-S}(x) - b \left| T \right| \\ &\geq a(\delta(G) - h - \left| I \right|) + \sum_{1 \leq i \leq r} n_{i}(n_{i} - 1) - b \sum_{1 \leq i \leq r} n_{i} \\ &= a(\delta(G) - h - \left| I \right|) + \sum_{1 \leq i \leq r} n_{i}(n_{i} - b - 1) \,, \end{split}$$

that is

$$0 > a(\delta(G) - h - |I|) + \sum_{1 \le i \le r} n_i(n_i - b - 1).$$
(9)

It is obvious that $n_i(n_i - b - 1) \ge -\frac{(b+1)^2}{4}$. Combining this with (8), (9), $0 \le h \le b - 1$ and $|I| \le \alpha(G)$, we have

$$\begin{split} 0 &> a(\delta(G) - h - \left|I\right|) + \sum_{1 \leq i \leq r} n_i(n_i - b - 1) \geq \\ &\geq a(\delta(G) - h - \alpha(G)) - \frac{(b + 1)^2}{4}r \geq \\ &\geq a(\delta(G) - h - \alpha(G)) - \frac{(b + 1)^2}{4}\alpha(G) = \\ &= a(\delta(G) - h) - \frac{(b + 1)^2 + 4a}{4}\alpha(G) \geq \\ &\geq a(\delta(G) - b + 1) - \frac{(b + 1)^2 + 4a}{4}\alpha(G), \end{split}$$

which implies

$$\alpha(G) > \frac{4a(\delta(G) - b + 1)}{(b + 1)^2 + 4a},$$

which contradicts that $\alpha(G) \leq \frac{4a(\delta(G) - b + 1)}{(b+1)^2 + 4a}$. Theorem 6 is proved.

3. REMARK

In Theorem 6, the bound in the hypothesis

$$\alpha(G) \le \frac{4a(\delta(G) - b + 1)}{(b+1)^2 + 4a}$$

is best possible, which cannot be replaced by

4

$$\alpha(G) \le \frac{4a(\delta(G) - b + 1)}{(b + 1)^2 + 4a} + 1.$$

We can show this by constructing a graph $G = K_m \vee (m+1)K_{a+1}$, where \vee means "join" and $m = \left| \frac{4a(\delta(G) - b + 1)}{(b+1)^2 + 4a} \right|$. It is obvious that

$$\frac{4a(\delta(G) - b + 1)}{(b + 1)^2 + 4a} < \alpha(G) = m + 1 = \left\lfloor \frac{4a(\delta(G) - b + 1)}{(b + 1)^2 + 4a} \right\rfloor + 1 \le \frac{4a(\delta(G) - b + 1)}{(b + 1)^2 + 4a} + 1$$

We choose a vertex in every K_{a+1} , say for y_i , $1 \le i \le m+1$. Write $I = \{y_1, y_2, \dots, y_{m+1}\}$. It is easy to see that I is an independent set of G. Let $H = G - I = K_m \lor (m+1)K_a$, $S = V(K_m)$ and $T = V((m+1)K_a)$. Clearly, |S| = m, |T| = (m+1)a, $\sum_{x \in T} d_{H-S}(x) = (m+1)a(a-1)$, and so

$$\theta_{H}(S,T) = a \left| S \right| + \sum_{x \in T} d_{H-S}(x) - b \left| T \right|$$

= $am + (m+1)a(a-1) - (m+1)ab$
= $(m+1)a(a-b) - a \le -a < 0$.

In terms of Theorem 3, H = G - I does not admit all fractional [a,b]-factor.

REFERENCES

1. L. XIONG, *Characterization of forbidden subgraphs for the existence of even factors in a graph*, Discrete Applied Mathematics, **223**, pp. 135–139, 2017.

2. O. FAVARON, M. KOUIDER, Even factors of large size, Journal of Graph Theory, 77, pp. 58–67, 2014.

3. H. LIU, G. LIU, Neighbor set for the existence of (g, f, n)-critical graphs, Bulletin of the Malaysian Mathematical Sciences Society, **34**, pp. 39–49, 2011.

4. W. SHIU, G. LIU, k-factors of regular graphs, Acta Mathematica Sinica, English Series, 24, pp. 1213–1226, 2008.

5. S. ZHOU, Some results about component factors in graphs, doi: 10.1051/ro/2017045.

6. S. ZHOU, *Remarks on orthogonal factorizations of digraphs*, International Journal of Computer Mathematics, **91**, pp. 2109–2117, 2014.

7. S. ZHOU, Q. BIAN, An existence theorem on fractional deleted graphs, Periodica Mathematica Hungarica, **71**, pp. 125–133, 2015.

8. W. GAO, W. WANG, New isolated toughness condition for fractional (g, f, n)-critical graphs, Colloquium Mathematicum, 147, pp. 55–66, 2017.

9. S. ZHOU, F. YANG, Z. SUN, A neighborhood condition for fractional ID-[a, b]-factor-critical graphsh, Discussiones Mathematicae Graph Theory, **36**, pp. 409–418, 2016.

10. J. CAI, G. LIU, Stability number and fractional f-factors in graphs, Ars Combinatoria, 80, pp. 141–146, 2006.

11. S. ZHOU, L. XU, Z. SUN, Independence number and minimum degree for fractional ID-k-factor-critical graphs, Aequationes Mathematicae, 84, pp. 71–76, 2012.

12. H. LU, Simplifed existence theorems on all fractional [a, b]-factors, Discrete Applied Mathematics, 161, pp. 2075–2078, 2013.

13. S. ZHOU, Z. SUN, On all fractional (a, b, k)-critical graphs, Acta Mathematica Sinica, English Series, 30, pp. 696–702, 2014.

Received June 20, 2017