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Abstract. Let G  a graph, and let ( )g x  and ( )f x  be two nonnegative integer-valuedfunctions defined 
on ( )V G  with ( ) ( )g x f x≤  for every ( )x V G∈ . We say that G  has all fractional ( , )g f -factors if G  
has a fractional r -factor for any : ( )r V G N +→  with ( ) ( ) ( )g x r x f x≤ ≤  for every ( )x V G∈ . If 

( )g x a=  and ( )f x b=  for each ( )x V G∈ , then all fractional ( , )g f -factors are called all fractional 
[ , ]a b -factors. In this paper, we verify that G I−  admits all fractional [ , ]a b -factors for any 
independent set I  of G  if 

2

4 ( ( ) 1)( )
( 1) 4

a G bG
b a
δα − +

≤
+ +

. 

Furthermore, it is shown that the result is sharp. 
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1. INTRODUCTION 

All graphs considered in this paper will be finite undirected simple graphs. For a graph G , we denote 
the vertex set of G  by ( )V G  and the edge set of G  by ( )E G . For every ( )x V G∈ , we use ( )Gd x  to 
denote the degree of x  in G , and write ( ) min{ ( ) : ( )}GG d x x V Gδ = ∈ . For every ( )x V G∈ , we denote 
by ( )GN x  the set of vertices of G  adjacent to x , and write [ ] ( ) { }G GN x N x x= ∪ . For any vertex subset 
S  of G , [ ]G S  denotes the subgraph of G  induced by S , and we write [ ( ) \ ]G S G V G S− =  and 

( ) ( )G G
x S

N S N x
∈

= ∪ . For two disjoint vertex subsets S  and T  of G , we use ( , )Ge S T  to denote the 

number of edges that join a vertex in S  and a vertex in T . We denote by ( )Gα  the independence number 
of G . Let r  be a real number. Recall that r⎢ ⎥⎣ ⎦  is the greatest integer with r r≤⎢ ⎥⎣ ⎦ . 

Let ( )g x  and ( )f x  be two nonnegative integer-valued functions defined on ( )V G  with 
( ) ( )g x f x≤  for every ( )x V G∈ . A spanning subgraph F  of G  is called a ( , )g f -factor of G  if F  

satisfies ( ) ( ) ( )Fg x d x f x≤ ≤  for every ( )x V F∈ . If ( )g x a=  and ( )f x b=  for any ( )x V F∈ , then a 
( , )g f -factor is called an [ , ]a b -factor. A [ , ]k k -factor is simply called a k -factor. 

If ( ) ( ) ( )
e x

g x h e f x
∋

≤ ≤∑  holds for every ( )x V G∈ , then we call graph F  with vertex set ( )V G  and 

edge set hE  a fractional ( , )g f -factor of G  with indicator function h , where : ( ) [0,1]h E G →  be a 
function and { : ( ), ( ) 0}hE e e E G h e= ∈ > . If ( )g x a=  and ( )f x b=  for every ( )x V G∈ , then a 
fractional ( , )g f -factor is said to be a fractional [ , ]a b -factor. A fractional [ , ]a b -factor is called a fractional 
k -factor if a b k= = . If G  has a fractional r -factor for any : ( )r V G N +→  with ( ) ( ) ( )g x r x f x≤ ≤  for 
every ( )x V G∈ , then we say that G  has all fractional ( , )g f -factors. If ( )g x a=  and ( )f x b=  for each 

( )x V G∈ , then all fractional ( , )g f -factors are called all fractional [ , ]a b -factors. 
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Many authors studied factors [1–6], fractional factors [7–11] and all fractional factors [12, 13] of 
graphs. Cai and Liu [10] showed a minimum degree and independence number condition for a graph to have 
a fractional k -factor. 

THEOREM 1 [10]. Let k  be an integer with 1k ≥ , and let G  be a graph. If 

2

4 ( ( ) )( )
( 1)

k G kG
k
δα −

≤
+

, 

then G  admits a fractional k -factor. 
Zhou, Xu and Sun [11] improved Theorem 1, and obtained the following result. 
THEOREM 2 [11]. Let k  be an integer with 1k ≥ , and let G  be a graph. If 

2

4 ( ( ) 1)( )
6 1

k G kG
k k
δα − +

≤
+ +

, 

then G–I admits a fractional k -factor for any independent set I  of G . 
Lu [12] gave a necessary and sufficient condition for graphs to have all fractional [ , ]a b -factors,and 

obtained a neighborhood union condition for graphs to have all fractional [ , ]a b -factors. 
THEOREM 3 [12]. Let G  be a graph and a b≤  be two positive integers. Then G  has all fractional 

[ , ]a b -factors if and only if 

( , ) ( ) 0G G S
x T

S T a S d x b Tθ −
∈

= + − ≥∑  

for any subset ( )S V G⊆ , where { : ( ) \ , ( ) 1}G ST x x V G S d x b−= ∈ ≤ − . 
THEOREM 4 [12]. Let a  and b  be two positive integers with a b≤ , and let G  be a graph of order 

n  with 
2( )( 1)a b a bn

a
+ + −

≥ , 
2( 1) 4( )

4
a b bG

a
δ + − +

≥ . If 

( ) ( )G G
bnN x N y

a b
≥

+
∪  

for any two nonadjacent vertices x  and y  in G , then G  admits all fractional [ , ]a b -factors. 
Zhou and Sun [13] posed a new neighborhood union condition for the existence of all fractional [ , ]a b -

factors in graphs. 
THEOREM 5 [13]. Let , ,a b r  be three integers with 1 a b≤ ≤  and 2r ≥ . Let G  be a graph of order 

n  with 
( )( ( ) 2)a b r a bn

a
+ + −

> . If 

2( 1)( ) r bG
a

δ −
≥  

and 

1 2( ) ( ) ( )G G G r
bnN x N x N x

a b
≥

+
∪ ∪"∪  

for any independent subset 1 2{ , , , }rx x x"  in G , then G  admits all fractional [ , ]a b -factors. 
In this paper, we proceed to study the existence of all fractional [ , ]a b -factors in graphs. Motivated by 

Theorems 1 and 2, we obtain a sufficient condition for the existence of all fractional [ , ]a b -factors in vertices 
deleted graphs, which is shown in the following. 

THEOREM 6. Let a  and b  be two integers with 1 a b≤ ≤ , and let G  be a graph. If 
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2

4 ( ( ) 1)( )
( 1) 4

a G bG
b a
δα − +

≤
+ +

, 

then G I−  has all fractional [ , ]a b -factors for any independent set I  of G . 

2. THE PROOF OF THEOREM 6 

Proof of Theorem 6. We write H G I= − . Suppose that the result does not hold. By Theorem 3, there 
exists a vertex subset S  of H  satisfying 

( , ) ( ) 0H H S
x T

S T a S d x b Tθ −
∈

= + − <∑ , (1)

where { : ( ) \ , ( ) 1}H ST x x V H S d x b−= ∈ ≤ − . 

Obviously, T φ≠  by (1). Let min{ ( ) : }H Sh d x x T−= ∈ . It follows from the definition of T  that 

0 1h b≤ ≤ − . We choose 1x T∈  with 1( )H Sd x h− = . Thus, we have 

1 1( ) ( ) ( )H H SH d x d x S h Sδ −≤ ≤ + = + . (2)

Note that H G I= − . Hence, we obtain ( ) ( )H G Iδ δ≥ − . Combining this with (2), we get 

( )S G h Iδ≥ − − . (3)

Now we choose 1y T∈  such that 1y  is the vertex with the least degree in [ ]G T . We write 

1 1[ ]GN N y T= ∩  and 1T T= . For 2i ≥ , we write 
1

i j
j i

T T N
≤ <

= − ∪  if 
1

j
j i

T N φ
≤ <

− ≠∪ . Then choose 

i iy T∈  such that iy  is the vertex with the least degree in [ ]iG T , and write [ ]i G i iN N y T= ∩ . We continue 

these procedures until we reach the situation in which iT φ=  for some i , say for 1i r= + . Then it follows 

from the above definition that 1 2{ , , , }ry y y"  is an independent set of G . Note that T φ≠ . Therefore, we 
have 1r ≥ . 

We write i iN n= . According to the definition of iN , the following properties hold. 

( [ ])G T rα ≥  (4)

and 

1
i

i r

T n
≤ ≤

= ∑ . (5)

It follows from the choice of iy  that all vertices in iN  have degree at least 1in −  in [ ]iG T . Thus, we 
have 

[ ]
1 1

( ) ( 1)
i

i

G T i i
i r x N i r

d x n n
≤ ≤ ∈ ≤ ≤

⎛ ⎞
≥ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . (6)

Using (6), we obtain 

1 1 1
( ) ( ) ( 1) ( , ) ( 1)H S G I S i i G i j i i

x T x T i r i j r i r
d x d x n n e N N n n− − −

∈ ∈ ≤ ≤ ≤ < ≤ ≤ ≤

= ≥ − + ≥ −∑ ∑ ∑ ∑ ∑ . (7)

Note that ( [ ]) ( )G T Gα α≤ . Combining this with (4), we get 
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( ) ( [ ])G G T rα α≥ ≥ . (8)

In terms of (1), (3), (5) and (7), we have 

0 ( , ) ( )H H S
x T

S T a S d x b Tθ −
∈

> = + −∑  

             
1 1

( ( ) ) ( 1)i i i
i r i r

a G h I n n b nδ
≤ ≤ ≤ ≤

≥ − − + − −∑ ∑  

  
1

( ( ) ) ( 1)i i
i r

a G h I n n bδ
≤ ≤

= − − + − −∑ , 

that is 

1
0 ( ( ) ) ( 1)i i

i r
a G h I n n bδ

≤ ≤

> − − + − −∑ . (9)

It is obvious that 
2( 1)( 1)

4i i
bn n b +

− − ≥ − . Combining this with (8), (9), 0 1h b≤ ≤ −  and 

( )I Gα≤ , we have 

1

0 ( ( ) ) ( 1)i i
i r

a G h I n n b
≤ ≤

> − − + − − ≥∑δ  

2( 1)( ( ) ( ))
4

ba G h G r+
≥ − − − ≥δ α  

2( 1)( ( ) ( )) ( )
4

ba G h G G+
≥ − − − =δ α α  

2( 1) 4( ( ) ) ( )
4

b aa G h G+ +
= − − ≥δ α  

2( 1) 4( ( ) 1) ( )
4

b aa G b Gδ α+ +
≥ − + − , 

which implies 

2

4 ( ( ) 1)( )
( 1) 4

a G bG
b a
δα − +

>
+ +

, 

which contradicts that 2

4 ( ( ) 1)( )
( 1) 4

a G bG
b a
δα − +

≤
+ +

. Theorem 6 is proved. 

3. REMARK 

In Theorem 6, the bound in the hypothesis 

2

4 ( ( ) 1)( )
( 1) 4

a G bG
b a
δα − +

≤
+ +

 

is best possible, which cannot be replaced by 
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2

4 ( ( ) 1)( ) 1
( 1) 4

a G bG
b a
δα − +

≤ +
+ +

. 

We can show this by constructing a graph 1( 1)m aG K m K += ∨ + , where ∨  means “join” and 

2

4 ( ( ) 1)
( 1) 4

a G bm
b a
δ⎢ ⎥− +

= ⎢ ⎥+ +⎣ ⎦
. It is obvious that 

2 2 2

4 ( ( ) 1) 4 ( ( ) 1) 4 ( ( ) 1)( ) 1 1 1
( 1) 4 ( 1) 4 ( 1) 4

a G b a G b a G bG m
b a b a b a
δ δ δα

⎢ ⎥− + − + − +
< = + = + ≤ +⎢ ⎥+ + + + + +⎣ ⎦

. 

We choose a vertex in every 1aK + , say for iy , 1 1i m≤ ≤ + . Write 1 2 1{ , , , }mI y y y += " . It is easy to see 
that I  is an independent set of G . Let ( 1)m aH G I K m K= − = ∨ + , ( )mS V K=  and (( 1) )aT V m K= + . 

Clearly, S m= , ( 1)T m a= + , ( ) ( 1) ( 1)H S
x T

d x m a a−
∈

= + −∑ , and so 

( , ) ( )H H S
x T

S T a S d x b Tθ −
∈

= + −∑  

                                ( 1) ( 1) ( 1)am m a a m ab= + + − − +  

                          ( 1) ( ) 0m a a b a a= + − − ≤ − < . 

In terms of Theorem 3, H G I= −  does not admit all fractional [ , ]a b -factor. 
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