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Abstract. In this paper we present a four objectives automatic design space exploration methodology 
for the Sniper multi-core simulator using our multi-objective optimization tool called FADSE. Our 
target was to search for the quasi-optimal Pareto CPU microarchitectures which simultaneously 
optimize the following four objectives: integration area, processing performance, energy consumption 
and thermal behavior. The temperature metric represents the 4th objective added by us in the 
automatic optimization process, which provides for sure a more realistic design space exploration. 
With the proposed improvements we have found, for each of the objectives, better configurations than 
the original Gainestown 4 cores microarchitecture configuration used by Sniper. Also, the experimental 
results showed that the automatic optimization in the 4-objectives space provides better Pareto 
configurations than our previous methodology, working in a 3-objectives space. 
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1. INTRODUCTION 

Multi-core and many-core systems represent the de facto standard for today’s processor architectures. 
However, the actual standard is that the high majority of software programs are still written in sequential 
programming languages [1]. In other words, the living paradigm is that today’s software is built for past 
hardware, involving thus a semantic gap. The performance achieved by writing concurrent programs is disregarded, 
mainly because of the complexity and low productivity imposed by the parallel programming models. All 
work presented in this paper focuses exclusively on evaluating concurrent software applications. 

An open problem for complex computing systems is to find the best micro-architectural configurations 
or Pareto individuals, which simultaneously fill the needs of different application-specific objectives. Designers 
are using different simulation based heuristic techniques to tune micro-architectural parameters (cache sizes, 
number of cores, interconnection networks types, internal core components) to find the best configurations. 
The time required to find it must be as small as possible. Providing high-end processors, consuming less 
energy represents a hard constraint also from market competition viewpoint. 

The main contribution of this article is to develop an automatic 4-objectives (called 4D) design space 
exploration (DSE) methodology performing a realistic optimization of the Central Processing Unit (CPU) 
and finding the best multi-core micro-architectural configurations which simultaneously optimize the four 
CPU objectives. The targeted objectives are the followings: 

– Integration area of the chip must be as small as possible; 
– Energy consumption must be as low as possible; 
– Processing performance must be as high as possible; 
– Temperature of the chip must be as low as possible. 
We ran an automatic heuristic search for the best configurations using our previously developed 

FADSE (Framework for Automatic Design Space Exploration) tool [2] and the resulted micro-architectural 
configurations were evaluated using state of the art simulators. The Sniper Multi-core (including McPAT 
[14]), which is de facto standard for next generation processors, developed as a joint project by Intel and 
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academic researchers [3] was used to compute the following objectives: area of integration, energy 
consumption and the processing performance. The thermal behavior of the chip is estimated using HotSpot 
[9], a state of the art thermal modelling simulator that was integrated by us into the Sniper framework. 

One of the main scientific gains of this paper consists in exploiting the synergism between Computer 
Architecture and CPU multi-objective optimization techniques, on one side, and CPU Design Domain 
Knowledge expressed through some deterministic feasibility rules, on another side, integrated in an 
automatic 4D DSE tool. This new approach generates better more realistic Pareto CPU configurations 
compared with all other optimization methods, very useful for commercial implementations. 

The rest of this paper is structured as follows. Section 2 describes the related work in the design space 
exploration field, whereas Section 3 explains our multi-objective optimization methodology. Section 4 
illustrates the simulation results while Section 5 concludes the paper suggesting some future work directions. 

2. RELATED WORK 

The research presented in this paper further enlarges and improves our works published in [4] and [8]. 
Paper [4] presents a multi-objective hardware-software co-optimization for the Sniper multi-core simulator. 
The targeted objectives were Sniper’s intrinsic outputs: area of integration, energy consumption and 
processing performance. The automatic design space exploration was developed using our previously 
developed FADSE optimization framework. The authors have varied both hardware (number of cores, cache 
sizes, cache associativity) and software (GCC optimizations, number of threads and scheduler’s strategies) 
parameters in order to find the quasi-optimal Pareto configurations which simultaneously optimize all the 
three objectives. This paper proved that optimizing only the hardware related parameters narrows the design 
space. Better configurations were obtained by simultaneously tuning both hardware and software parameters. 

Previously we have enhanced – using a manual approach – the Sniper state of the art multi-core 
simulator with thermal measurement possibilities using the HotSpot simulator. Paper [8] systematically 
presents the integration of HotSpot into Sniper simulator. It was implemented a plugin that interacts with 
Sniper and McPAT in order to generate a power sampling trace and the integration areas for each functional 
unit of Pareto 3D (three objectives: performance, energy and integration area) optimal microarchitectures 
found by FADSE. The developed plugin automatically builds the spatial configuration (floorplan) of the 
simulated microarchitecture. At the end of the simulation the HotSpot thermal estimator is called and the 
temperature trace over time is generated. Obviously, this Hill Climbing approach does not provide the true 
optimal Pareto individuals in a 4D objective space. However, as far as we know, through this cited work we 
were the first researchers that extend Sniper multicore simulator from 3 to 4 objectives, achieved by adding 
automatic intrinsic temperature measurements and developing an automatic 4D optimization in Computer 
Architecture field. In contrast with [8], through this paper, by developing automatic 4-objectives DSE we 
provide an adequate method to obtain a good approximation of the true Pareto individuals. 

In [15] the authors are focusing on speeding up the automatic DSE process. The proposed novel 
solution is named DESPERATE++ and it combines two concepts: a simulation time predictor and an 
analytical model which provide the quality of a microarchitecture configuration. The simulation time 
predictor is used to inform if there is enough time to run additional simulations in the reserved time. The 
selection of the remaining configurations is enforced by the configuration quality predictor. The authors 
achieved a 4x speedup compared to some state of the art DSE approaches (MOA, NSGA-II and others). 

Another useful framework for automatic DSE is Multicube Explorer [16]. It combines the traditional 
Design of Experiments (DoE) and Response Surface Modelling (RSM) techniques. DoE helps in selecting 
relevant design points from the whole design space. The RSM tries to find relations between the micro-
architectural parameters and the response variables. In this work the targeted objectives are the number of 
cycles needed by the application to run on the target configuration and the energy consumption (2D). 

M3Explorer [16] represents a DSE framework that includes many design space exploration algorithms 
and can accelerate the DSE process through RSM. Archexplorer [7] is another useful DSE tool where the 
users can upload their microarchitecture components on a website to be integrated into a computer system 
simulator. A certain design can be compared against other similar designs introduced by other users. NASA 
[12] is another effective optimization tool, similar to FADSE because it allows the user to connect their DSE 
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designs to any simulator. In contrast with our developed multi-objective Pareto optimization methodology, it 
performs an optimization using single objective genetic algorithms for each objective (1D). Magellan [13] 
implements a DSE tool which is bounded to a certain simulator (SMTSIM) and can perform only single 
objective optimizations, too. 

In [11] the FADSE tool was used to explore the vast design space of the Grid ALU Processor (GAP) 
and its post-link optimizer (GAPtimize). FADSE proved able to find an approximation of the Pareto [2] 
frontier consisting of near-optimal individuals in a feasible time. To our knowledge, the only multi-objective 
optimization tool that accelerates and improves the DSE process through a domain-knowledge, represented 
by fuzzy logic rules written in a human-readable form and deterministic constraints, is FADSE. 

In [17] the authors are focusing on developing a DSE method for mapping of concurrent application 
tasks onto architectural resources of an MPSoC. Domain knowledge is used to guide the genetic algorithm 
towards better results by removing the symmetry from the design space and by using a new effective 
crossover operator. In contrast to our work, their domain knowledge is not focused on finding the best 
parameters values for multi-core hardware architecture from a multi-objective point of view. 

In this work the main aim is to optimize our extended multi-core Sniper simulator having 4 intrinsic 
objectives (integration area, energy consumption, performance and thermal behavior) through automatic 
design space exploration using our previously developed FADSE tool. 

3. SIMULATION METHODOLOGY 

This section presents the simulation methodology used to find the quasi-optimal Sniper multi-core 
configurations, from the huge design space (352.800 configurations) that exists. The problem solved in this 
paper is a 4-objective minimization using FADSE for the enhanced Sniper simulator that automatically 
generates the following outputs: temperature, integration area, energy consumption and number of cycles per 
instructions (for performance; CPI) and it is called by us “4D optimization”. 

An overview of the simulation 
methodology is presented in Fig. 1. On the 
left side a global overview of the FADSE 
tool can be observed. The Framework for 
ADSE (Automatic Design Space 
Exploration) is configurable via three input 
files (framework, clients and meta-heuristic 
configuration) and it is composed of a server 
and multiple clients. Briefly, the server has 
the role of distributing simulations among 
clients, centralizing the results and 
conducting the design space exploration 
process. The clients perform the actual 
simulations of the individuals in parallel and 
send the results back to the server. 

Fig. 1 – FADSE in 4D simulation methodology overview. 

For the actual simulations the FADSE clients call the Sniper simulator through a special connector 
which was introduced in [4]. The connector does the bidirectional translation of the configuration parameters 
used by the heuristic algorithm in FADSE and the actual parameters which are used by the Sniper command 
line. Furthermore, the connector computes the objectives using the results provided by Sniper. For the 
temperature objective the maximum value founded inside the temperature trace is taken. The temperature 
trace is estimated by the thermal simulator HotSpot. The integration area and the performance values are 
returned exactly as McPAT and Sniper computes them. The energy consumption is calculated with Eq. (1): 

total [W][Joules] ,
_ [Hz]
PE

f CPU
=  (1)

where: Ptotal [W]: represents the total power consumption (provided by McPAT); fCPU [Hz]: represents the 
frequency of the simulated microprocessor. 
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The microprocessor optimized in this work and simulated by the Sniper multi-core simulator is 
produced by the Intel company and it is named “5500-series - Gainestown” or “Nehalem-EP” [10]. 

Table 1 

Gainestown CPU characteristics [10] 

Production date Since 2008 to present 
CPU frequency range From 1.86 GHz up to 3.33 GHz 
Integration technology scale 45nm 
Instruction set x86 
Microarchitecture Nehalem 
Cores 4 
L2 cache 4×256 kB 
L3 cache 8 MB 
Package(s) LGA 1366 
Brand name(s) Xeon 55xx 

Towards finding the quasi-optimal configuration “hidden” among the 352.800 configurations of the 
full search space, the hardware related parameters from Table 2 were varied. All parameters are represented 
as two’s exponent inside FADSE. For example, the number of cores can range from 1 to 16 according to 
Table 2. The actual range will be 20, 21, 22, 23 and 24, in total there are 5 distinct values. Although the design 
space seems quite small, evaluating one configuration on the small input size of the shortest benchmark 
(radix) from the SPLASH-2 [18] suite takes 1 minute using an Intel Quad Core I7, 4.4 GHz, 16 GB DRAM 
host machine. Computing all these configurations on such a machine would take more than 250 days. 

Table 2 

Hardware related parameters 

Values Parameter 
Min Max Distinct 

Number of cores 1 16 5 
DRAM interleaving controllers 1 64 7 
L1 Data Cache Associativity 8 16 2 
L1 Data Cache Size [KB] 32 256 4 
L2 Cache Associativity 8 16 2 
L2 Cache Size [KB] 32 2048 7 
L3 Cache Associativity 8 16 2 
L3 Cache Size [KB] 128 32768 9 
L3 Cache Shared Cores 1 16 5 

To get more accurate results, simulation on the large input size with all SPLASH-2 benchmarks are 
needed, which would take at least two orders of magnitude longer to simulate. Our results should be regarded 
as a proof-of-concept, that the run-time floorplan generation and temperature estimations can be 
automatically computed using the FADSE tool and the Sniper multi-core simulator. The selected state of the 
art meta-heuristic for the multi-objective DSE is NSGA-II [6] (Non-dominated Sorting Genetic Algorithm). 
The configuration parameters for the search algorithm are presented in Table 3. 

Table 3 

NSGA-II characteristics 

Crossover operator Single point 
Crossover probability 90% 
Mutation operator  Bit-flip 
Mutation probability  16% 
Selection operator  Binary tournament 
Population size 50 individuals 
Stop condition  Stops after 50 generations 
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We ran the DSE process over two runs, with 3 and 4 objectives respectively, for 50 generations, each 
generation consisting of 50 individuals. Each individual was simulated over 4 distinct benchmarks belonging 
to the SPLASH-2 suite. The used benchmarks are the followings: fft, radix, lu.cont, ocean.cont and they 
were run with the input size small. To eliminate some of the unfeasible configurations which may result 
during the automatic design space process the following deterministic feasibility rules were introduced: 

– L2 cache size > L1 data cache size; 
– L3 cache size > L2 cache size. 
The individuals which violate at least one of the above rules are marked as unfeasible and a new 

individual is automatically generated to replace the problematic individual. This situation can happen during 
the ADSE process at some points after offsprings development or after the initial population generation. 

For thermal estimations the power consumption sampling is done at 500 ms, the simulation model used 
is block and the heat sink was adjusted exactly as presented in [8]. The selected cooling package consists of a 
simple heat sink which sits on top of the chip, without forced air convection (no air fan). 

Three FADSE clients were used in parallel in order to accelerate the automatic DSE process. The used 
version of the Sniper simulators was 6.1 and for the HotSpot simulator version 5.02. The total simulation 
time was around 2 weeks and about 1% of the total individuals were evaluated. FADSE is a reliable tool able 
to cope with failing clients, failing networks or even power loss of the entire system. Using the 
checkpointing mechanism, FADSE is able to recover from these situations by detecting the problems and 
resubmitting the simulations to other clients. For accelerating the DSE process and reduce the simulation 
time, our DSE tool stores and reuses, through a dedicated database, the already simulated individuals [2]. 

4. QUALITATIVE AND QUANTITATIVE RESULTS. INTERPRETATIONS 

First, we compared the two runs, 4 objectives (including temperatures) vs. 3 objectives and corresponding 
temperatures computed afterwards, using the coverage metric, which com-pares the fraction [%] of individuals 
from one run that are non-dominated by the individuals from the other run. Our results show that each of the 
runs has around 20% of the individuals non-dominated by individuals from the other run. Because the 
coverage takes into consideration just the number of the individuals that are dominated, it can give us some 
false impressions. 

Exclusively looking at Fig. 2, we could interpret the results saying that the two runs are almost equally 
powerful, being better and worse on different segments of the generations. From the 10th to the 35th 
generation, the run with 4 objectives has more non-dominated individuals, meaning that for up to 45% of the 
total or 22 individuals in the 20th generation, there are no configurations from the 3 objectives run that are 
better in respect to any objective. 

Fig. 2 – Coverage comparison. Fig. 3 – Hypervolumes comparison. 

Looking now at Fig. 3, it can be seen that the coverage could have misled us and that the number of 
individuals that are dominated/non-dominated are less relevant in the quality of the runs. It can be seen that 
the hypervolume of the 4 objectives run converges faster and also yields better results, which is remarkable. 
Both runs seem to improve the quality of the results for the 50 simulated generations, meaning that, in 
theory, we could find better results if we were to simulate further. 
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The hypervolume metric has shown us that the 4 objectives run is better than running with just 3 
objectives and making the temperature computations after, but Fig. 3 cannot show if the hypervolumes 
coincide or dominate different parts of the objectives space. This is where the Two Set Hypervolume 
Difference (TSHD) metric is very useful. 

Looking at the TSHD in Fig. 4, it can be seen that about 95% of the hypervolume is common and that 
the two different runs contribute quite differently to the overall solutions quality. 

Fig. 4 – Two set hypervolume difference. 

 

Figure 4 shows that the hypervolume 
dominated only by the 4 objectives run represents 
~ 4% of the total hypervolume and seems to 
increase over the 50 generations, while the 
hypervolume dominated only by the 3 objectives 
run stagnates at ~ 1%. 

Table 4 shows some of the best found 
individuals with regards to the 4 objectives and the 
results are according to the designer’s intuition. It 
can be seen that the best Area, Energy and 
Temperature correspond to only one core having 
small cache sizes, while the best found in terms of 
the CPI corresponds to 16 cores and the highest 
possible cache sizes. 

The difference between the maximums of the best and worst temperature is about 15–16 Celsius 
degrees on our simulated benchmarks. The Pareto individuals generated by our developed 4 objectives 
automatic methodology are better than the individuals generated through our previous developed 3 objectives 
automatic methodology followed by temperature calculation (see Fig. 4). 

Table 4 

Best found Pareto individuals 

 Best Area Best Energy Best CPI Best Temp 
Number of cores 1 1 16 1 
DRAM interleaving controllers 2 2 2 16 
L1 Data Cache Associativity 8 8 8 8 
L1 Data Cache Size [KB] 32 32 256 64 
L2 Cache Associativity 16 16 16 8 
L2 Cache Size [KB] 256 256 2048 256 
L3 Cache Associativity 16 16 16 16 
L3 Cache Size [KB] 1024 1024 32768 32768 
L3 Cache Shared Cores 1 1 2 1 
Area 35.67 35.67 2957.61 280.21 
Energy 6.01E-09 6.01E-09 1.08E-07 1.06E-08 
CPI 1.22 1.22 0.18 1.04 
Temperature 54.41 54.41 67.39 51.66 

Table 5 

3 obj. + T vs. 4 obj. same number of cores comparison 

 3 obj. + T 4 obj. Gain [%] 3 obj. + T 4 obj. Gain [%] 
Number of cores 2 2  8 8  
DRAM interleaving controllers 16 2  8 2  
L1 Data Cache Associativity 32 128  32 32  
L1 Data Cache Size [KB] 8 8  8 8  
L2 Cache Associativity 128 256  128 256  
L2 Cache Size [KB] 16 16  16 16  
L3 Cache Associativity 8192 8192  8192 1024  
L3 Cache Size [KB] 16 16  16 16  
L3 Cache Shared Cores 1 1  4 1  
Area 186.01 189.17 -1.70 376.54 264.82 29.67 
Energy 1.28E-08 1.18E-08 8.42 2.77E-08 2.75E-08 0.78 
CPI 0.577 0.571 1.02 0.243 0.235 3.37 
Temperature 57.66 55.46 3.82 63.59 57.24 9.99 
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Also looking at some specific Pareto individuals in Table 5, we can see that for the same number of 
cores, e.g. 2 and 8, the 4 objective run finds even non-dominated individuals that are much better than the 3 
objective run + temperature. They are feasible individuals for commercial hardware implementations having 
equilibrated effective values for all the 4 objectives. In these cases, some subtle non-intuitive inter-related 
DRAM and cache design characteristics made the difference. It would be quite impossible for the designer to 
discover such optimal multicore systems based on intuition. More than this, even the 3 objectives automatic 
methodology followed by temperature calculation missed such very effective multicore systems. 

Table 6 

Average simulation time results collected from Splash-2 benchmarks suite 
small input size for 1 individual 

# cores T4D = T3D + TH TH T3D 
1 980 s 97 s 883 s 
2 754 s 99 s 655 s 
4 652 s 111 s 541 s 
8 607 s 147 s 460 s 
16 799 s 268 s 531 s 
Average time  758 s 144 s 614 s 

Below we present some considerations related to the time overhead of finding the best configurations 
in our 4D approach comparing with the previous developed 3D approach. For proper understanding we make 
the following notations: 

T3D – average time (measured on 1, 2, 4, 8 and 16 cores) required for evaluation of an individual from 
3 objectives point of view (Energy, CPI, Area). In our case, T3D = 614s ≅ 10.23 minutes (see Table 6). 

TH – average time (measured on 1, 2, 4, 8 and 16 cores) required for running Hotspot simulator for an 
individual. In our case, TH = 144s ≅ 2.4 minutes (see Table 6). 

T4D – average time (measured on 1, 2, 4, 8 and 16 cores) required for evaluation of an individual from 
4 objectives point of view (Energy, CPI, Area, Temperature). In our case, T4D = 758s ≅ 12.63 minutes. 

G – number of generations. In our case, G = 50 (see Table 3). 
I – number of individuals evaluated. In our case, using the NSGA-II, it is twice the population size 

(I = 2 × 50 = 100, combining parent and children solutions – see Table 3). 
We denoted TS as time to set the dominance of individuals from NSGA-II selection process. It depends 

by the number of objectives but its value is rather small. We take an average measured value of 10 minutes. 
Total4D = total simulation time for all G generation from 4D objective evaluation. It roughly consists in 

the fitness evaluation of each individual (T4D) and after that setting the dominance (TS). 
Total3D = total simulation time for all G generation from 3D objective evaluation (T3D), setting the 

dominance (Ts) and followed by temperature evaluation only of configurations situated on Pareto Front (TH). 

4 4 4
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3 3D 3
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2D S Hobjectives

IG I T T T= ⋅ ⋅ + + ⋅  (3)

4
4

up
3

3

4

3

( )TotalSpeed   .
Total ( )  

2

D S
D

D
D S H

objectives

objectives

G I T T

IG I T T T

⋅ ⋅ +
= =

⋅ ⋅ + + ⋅
 (4)

Replacing variables with their values in Eq. 4, the time overhead of finding the best configurations 
using an automatic 4-objectives design space exploration methodology is about 23%. However, it provides 
significantly better Pareto configurations than the previous methodology (3D optimization, followed by 
manual computation of the 4th objective afterwards). However, this overhead might decrease if the number 
of cores of the host architecture increases, favoring the parallel evaluation of individuals from population. 
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5. CONCLUSIONS AND FURTHER WORK 

It has been showed that the new extension of the Sniper multi-core simulator used by FADSE can yield 
better realistic results for 4 objectives than before. More precisely, the experimental results showed that the 
automatic 4D optimization DSE process provides significantly better Pareto configurations than the previous 
DSE methodology (run with only 3 objectives and the computation of the 4-th objective afterwards), 
considering the proposed multi-objective approach. According to our knowledge, we are the first researchers 
developing an automatic 4D optimization for a complex multicore system. Thus, we contribute to a more 
realistic CPU optimization process. The biggest advantage is the run-time generation of the floorplan, 
temperature computation and the possibility to run a DSE process automatically. The TSHD metric 
convincingly shows the power of our new approach. The hypervolume non-dominated by the new run is 4 
times greater than the hypervolume non-dominated by the 3 objectives run. The differences in temperature 
between the best and worst maximum are about ~15–16 °C. Due to the implementation’s nature of the Sniper 
extension, our approach can be reused by other researchers using other DSE tools, which wish to 
automatically compute floorplans and temperatures. All the previous configurations for Sniper and Hotspot 
still work and our extension can be switched on or off through a command line parameter. 

A first straightforward further work idea is to extend this research by developing an optimization 
method for both hardware and software parameters. Also, we plan to accelerate the DSE process by creating 
a RSM for Sniper and HotSpot simulators to reduce the evaluation time. In order to do this, we will not use 
the classical equations (polynomial, etc.) tuning approach. Instead, we will use a knowledge discovery 
approach using genetic programming [5] to find the best fitting equations. We also plan to restrain the size of 
the search space by creating a domain-ontology for Sniper multicore expressed using fuzzy logic rules and 
other knowledge representation methods. 
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