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Abstract. Symmetry breaking of solitons in optical waveguides with competing cubic-quintic 
nonlinearity and parity-time (PT)-symmetric complex-valued external potentials is investigated. This 
symmetry breaking can only exist in a special class of PT-symmetric potentials. It is shown that the 
branches corresponding to asymmetric soliton solutions bifurcate from the base branches of PT-symmetric 
fundamental soliton and the excited state soliton solutions with the increasing of input power. The 
effect of the modulation strength of PT-symmetric potential on the structure of eigenvalue spectra 
diagrams of the symmetric and asymmetric soliton solutions is investigated. The stability of the symmetric 
and asymmetric soliton solutions are comprehensively analyzed by employing linear stability analysis 
and the different instability scenarios of solitons have also been revealed by using directly numerical 
simulations.  
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1. INTRODUCTION 

Parity-time (PT)-symmetric systems have attracted a growing interest in the past several years. These 
systems are non-Hermitian due to the presence of gain and loss, which are delicately balanced due to the 
complex potential satisfies ( ) ( )*U Uξ ξ= − , where asterisk denotes the complex conjugation. Thus the PT-

symmetry requires that the real part of the complex-valued potential ( )U ξ  must be an even function of the 

position ξ , whereas the imaginary part must be an odd function. One of the key properties for PT-symmetric 
systems is that there can exist all real eigenvalue spectra, as demonstrated twenty years ago in a seminal 
work by Bender and Boettcher in the quantum mechanics framework [1–3]. 

The concept of PT-symmetry has gone far beyond the quantum physics, such as optics and photonics 
[4, 5], Bose-Einstein condensates [6], plasmonic waveguides and metamaterials [7–9], superconductivity 
[10], etc. In the optics context, the real part of the complex-valued potential stands for the spatial distribution 
of the refractive index and the imaginary part stands for the balanced gain and loss of optical waveguides. 
Thus one can construct an optical analog of PT-symmetric quantum mechanics, which was firstly 
investigated theoretically [4, 11] and later realized in the paraxial regime [12–14]. Furthermore, PT-
symmetric soliton solutions and light transmission have been widely explored in nonlinear regimes with 
linear complex-valued PT-symmetric potentials. A variety of optical solitons have been studied, including 
bright solitons, gap solitons, Bragg solitons, and dark solitons [15–28]. 

Recently, the symmetry breaking of solitons in PT-symmetric potentials has aroused great attention. It 
has been shown that this symmetry breaking cannot occur in generic PT-symmetric potentials. But for a 
special class of PT-symmetric potentials ( ) ( ) ( ) ( )2 id / dU g g gξ ξ α ξ ξ ξ= + +  with a real constant α  

and an arbitrary real even function ( )g ξ , a family of stable PT-symmetry-breaking solitons with real 
eigenvalue spectra have been found [29]. For this type of potentials, a precondition of the existence of non-
PT-symmetric (asymmetric) solitons is miraculously satisfied [30]. These asymmetric solitons bifurcate out 
from the base branch of PT-symmetric solitons when the soliton power exceeds a certain threshold [31]. 
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In this paper, we will carry out a detailed investigation of symmetry breaking of solitons in PT-symmetric 
potentials with competing cubic-quintic (CQ) nonlinearity and study the key features of both symmetric and 
asymmetric solitons. The paper is organized as follows. In Sec. 2, the governing model is introduced. In Sec. 3, 
we show the symmetry breaking bifurcation of eigenvalue spectrum and present asymmetric and symmetric 
soliton solutions. The dependence of the nonlinear propagation constants on the input power and the 
modulation strength of the complex-valued potential are also discussed. In Sec. 4, we analyze systematically 
the stability of asymmetric and symmetric solutions, and their nonlinear evolution dynamics is studied by 
performing direct numerical simulations. Finally, we conclude the paper in Sec. 5.  

2. THE GOVERNING MODEL 

Optical wave propagation in a planar graded-index waveguide with CQ nonlinearity is governed by the 
following (1+1)-dimensional paraxial wave equation 

( )2
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2 42
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where ( ),A z x  is the optical field envelope function, 0 02 /k nπ λ=  is the wavenumber with λ  and 0n  
being the wavelength of the optical source and the background refractive index, respectively. Here, 
( ) ( ) ( )R IF x F x iF x= +  is a complex-valued function, in which the real part represents the linear refractive 

index distribution and the imaginary part stands for gain and loss; 2n  and 4n  are the cubic and quintic 

nonlinear parameters, respectively. Introducing the transformations ( ) ( )4 2, / ,n n A z xψ ζ ξ = , 

( )0 2 0 42 /k n n n xξ = , and ( )2
0 2 0 4/k n n n zζ = , Eq. (1) can be rewritten in a dimensionless form 
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Here 1 2 2/ 1n nσ = = ±  and 2 4 4/ 1n nσ = = ± , where 1±  corresponds to self-focusing (+ ) or self-

defocusing ( − ) situations, respectively. The normalized potential is ( ) ( ) ( )U V iWξ ξ ξ≡ +  with 

( ) ( ) 2
4 0 2/RV n F x n nξ = −⎡ ⎤⎣ ⎦  and ( ) ( ) 2

4 2/IW n F x nξ = , which are required to be even and odd functions, 

respectively, for PT-symmetric nonlinear optical waveguides. In this model, we consider a special class of 
PT-symmetric potentials ( ) ( ) ( )2V g gξ ξ α ξ= +  and ( ) ( )d / dW gξ ξ ξ=  with ( )g ξ  being an arbitrary 

real and even function and α being an arbitrary real constant. The functions ( )g ξ  can be taken as localized 

double-hump functions or as periodic functions. If 2 0σ = , it has been shown that the eigenvalue spectrum 
of asymmetric soliton can bifurcate from the base branch of symmetric solitons with the increasing of soliton 
power, and the existence of stable PT-symmetry-breaking solitons was proved [29]. These results were 
extended to two-dimensional potentials [31, 32]. Subsequently, the effects of the soliton power, the 
separation between the two humps of the potential, the width and the modulation strength of the potential on 
the structure of the linear stability eigenvalue spectrum was studied [33]. To analyze the symmetry breaking 
of solitons in PT-symmetric potentials of Eq. (2), we need to assume the stationary solutions in the form 
( ) ( ) ie βζψ ξ φ ξ= , where ( )φ ξ  is a complex-valued function and β  is the corresponding nonlinear 

propagation constant. Substitution into Eq. (2) yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Here, we take ( )g ξ  in the form 
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where 0χ  and 0ξ  are related to the width and the separation between the two humps of the potential, 
respectively, and 0W  represents the modulation strength of the complex potential. 

3. STATIONARY SOLITON SOLUTIONS 
AND SYMMETRIY-BREAKING BIFURCATIONS 

In this Section, we will explore symmetry-breaking bifurcations and the existence of stationary soliton 
solutions including the symmetric and asymmetric waveforms. Here, we consider the competing CQ 
nonlinearity, i.e., 1 1σ = +  and 2 1σ = −  in Eq. (3). The complex PT-symmetric potential ( )U ξ  is shown in 

Fig. 1a with 0 2ξ = , 0 1χ = , and 0 2W = . The numerical results show that there exist fundamental symmetric 
soliton solutions as well as the excited state soliton solutions. The eigenvalue spectra of two kinds of 
asymmetric soliton solutions bifurcate from the corresponding two types of the base branches of the 

symmetric soliton solutions, by varying the soliton power
2

dP ψ ξ
+∞

−∞
= ∫ . 

 
Fig. 1 – Bifurcation of eigenvalue spectrum and the corresponding symmetric and asymmetric soliton 

solutions: a) real (blue solid curve) and imaginary (red dotted curve) components of the potential; b) the 
propagation constant versus the soliton power for symmetric fundamental soliton solutions (black solid 

curve) and asymmetric (red curve) solutions; c) and d) distributions of fundamental symmetric and 
asymmetric solutions with the soliton power 1.1, where the blue solid and red dash-dotted curves represent 

the real and imaginary components, respectively; e) 
and f) Fundamental symmetric and asymmetric soliton solutions for different soliton powers. 

In Fig. 1, we show the dependence of the propagation constant β  on the soliton power P , i.e., the 
nonlinear eigenvalue spectrum curves ( )Pβ β=  of symmetric and asymmetric soliton solutions. In Fig. 1b, 
the black thick solid curve and thin red curve with stars show the nonlinear eigenvalue spectra of the 
fundamental symmetric soliton solutions (SS1) and the corresponding fundamental asymmetric soliton 
solutions (AS1). For AS1, the eigenvalue spectrum begins to separate out when soliton power 0.3P >  and 
bifurcates upward, then it crosses the base branch of SS1 at the point of  1.1P =  and bifurcates downward. 
The eigenvalue spectrum of AS1 ceases at 1.7P = . It is worth noting that SS1 and AS1 possess the same 
propagation constant and soliton power at the crossing point ( 1.1P = ), so they constitute a pair of 
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degenerate nonlinear modes. This result is different from the case of PT-symmetric cubic nonlinearity model 
[29, 31–33]. We present these two degenerate soliton solutions at the point of 1.1P =  in Fig. 1c and Fig. 1d, 
respectively. It is a natural result for the fundamental symmetric soliton solution that the complex-valued 
function satisfies ( ) ( )*φ ξ φ ξ= −  and possesses symmetric real profiles and antisymmetric imaginary ones, 
as shown in Fig. 1c. But for AS1 shown in Fig. 1d, the real and imaginary profiles are all asymmetric. 
Furthermore, the symmetric and asymmetric soliton solutions for the different powers are presented in Fig. 1e and 
Fig. 1f; one can see that the fundamental asymmetric soliton solutions can exist in the region 0.3 1.7P< < , 
as shown in Fig. 1f. 

 
Fig. 2 – Bifurcation of eigenvalue spectrum for the excited states of symmetric soliton solutions and 
asymmetric soliton solutions: a) real (blue solid curve) and imaginary (red dotted curve) components of the 
potential with the same parameters as in Fig. 1; b) the propagation constant versus the soliton power for the 
fundamental symmetric soliton solutions (black thick solid curve), the excited state of symmetric soliton 
solution (blue thin solid curve) and the excited state of asymmetric (red circles curve) solution; c) and d) 
Distributions of the excited state for symmetric and asymmetric solutions with the soliton power 2.1, where 
the blue solid and red dash-dotted curves represent the real and imaginary components, respectively; e) and f) 
The excited state of symmetric and asymmetric soliton solutions for different soliton powers. 

The results of numerical calculations show that there also exists another type of symmetric soliton 
solutions in Eq. (3), i.e., the excited state of symmetric soliton (SS2). By varying soliton power, the other 
eigenvalue spectrum of asymmetric soliton solutions (AS2) bifurcates from the SS2 branch. Here, the 
parameters of potential in Fig. 2a are the same as the Fig. 1. To present the second bifurcation phenomenon, 
the eigenvalue spectra of these two types of symmetric solitons (SS1 and SS2) are plotted in Fig. 2b with 
black thick solid curve and blue thin solid curve, respectively. One can see that the eigenvalue spectrum of 
AS2 bifurcates from the second branch of symmetric solutions. So the soliton’s symmetry can be broken not 
only for the fundamental symmetric solitons but also for the excited state solitons. As an example, we show 
the distributions of the excited states for symmetric and asymmetric solitons at the power 2.1P = . As 
shown in Fig. 2c and Fig. 2d, the blue solid and red dash-dotted curves represent the real and imaginary 
components of soliton solutions. Note that the SS2 solutions have the opposite symmetry, i.e.,  antisymmetric real 
profiles and symmetric imaginary ones. The excited state of symmetric soliton and the corresponding 
asymmetric soliton branch for different soliton powers are presented in Figs. 2e and 2f, respectively. The 
results show that the AS2 branch can exist in the region 2.0 3.0P< < . 

To comprehensively analyze the features of the symmetry-breaking bifurcations, we also investigate 
the influence of the modulation strength of the complex potential on the eigenvalue spectra of the symmetric 
and asymmetric solutions. The range of the power P  is chosen to vary from 0.1 to 3 for given 0χ  and 0ξ , 
the eigenvalue spectra of the symmetric and asymmetric solutions for both the fundamental and the excited 
state solitons are obtained by varying the parameter 0W . The results are summarized in Fig. 3. We find that 
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the propagation constant β is an increasing function of 0W , the values of the eigenvalue spectra of the 
fundamental symmetric and asymmetric soliton solutions are very close to each other, as shown in Fig. 3a. In 
Fig. 3b, the existence region of the fundamental asymmetric solitons is shown in the plane 0P W− ; it is 
found that this region is enlarging with increasing of the modulation strength 0W . The eigenvalue spectra of 
the excited states for SS2 and AS2 are presented in Fig. 3c for different modulation strengths 0W ; one can 
see the typical fork-type eigenvalue spectra structure due to the symmetry-breaking of SS2. This type of 
bifurcating structure is similar to the case of cubic nonlinearity [30]. The existence region of the excited 
states for AS2 is also plotted in Fig. 3d in plane of 0P W− . The results show that the existence region for 
AS2 is significantly reduced when the strength 0W  is decreased and vanishes at 0 1.4W = , which is closely 
related to the stability of the symmetric soliton solutions, as to be discussed in the next Section. 

 
Fig. 3 – The eigenvalue spectra as a function of the power P for the symmetric and asymmetric solutions: 
a) the eigenvalue spectra of fundamental symmetric solitons (black solid curves) and asymmetric solitons  

(red squares) for different modulation strengths of the complex potential; b) the existence region of the fundamental 
asymmetric solitons (black stars); c) the eigenvalue spectra of the excited state of symmetric solitons (blue solid curves) and 

asymmetric solitons (black circles) solutions for different modulation strengths of the complex potential; d) the existence 
region of the excited state for asymmetric soliton solutions (black circles). Here, the soliton power ranges from 0.1 to 3, the 

modulation strength ranges from 1.4 to 2.3 and the other potential’s parameters are the same as in Fig. 1. 

4. LINEAR STABILITY ANALYSIS 

In order to understand the stability features of these symmetric and asymmetric soliton solutions, we 
will address the linear stability analysis on these solutions. The corresponding evolution dynamics are 
investigated by direct numerical simulations. The linear stability analysis can be performed by adding a 
small perturbation to a known solution ( )φ ξ  

( ) ( ) ( ) ( ) *i δ * δ, e e e ,u vβζ ζ ζψ ζ ξ φ ξ ξ ξ⎡ ⎤= + +⎣ ⎦  (5) 

where ( )φ ξ  is the stationary solution with real propagation constant β , ( )u ξ  and ( )v ξ  are small 

perturbations with u , v φ<< . Substituting Eq. (5) into Eq. (2) and keeping only the linear terms, we 

obtain the following linear eigenvalue problem 
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where 2 42 2
11 1 2d / d 2 3L Uξ β σ φ σ φ= + − + + , 2 22

12 1 22L σ φ σ φ φ= + , *
21 12L L= − , *

22 11L L= − , and 
δ  is a complex eigenvalue of the linear problem (6). The positive real part of complex eigenvalue can be 
used to measure the instability growth rate of the perturbation. If δ  contains a real part, it is indicated that 
the solution ( )φ ξ  is linearly unstable, otherwise, ( )φ ξ  is linearly stable. In the following, we solve the 
linear eigenvalue problem (6).  

Fig. 4 – Eigenvalues of linear stability analysis: a) the largest real part of δ for SS1 (black solid curves) and 
AS1 (red rhombuses curves); b) the largest real part of δ for SS2 (blue solid curves) and AS2 (black squares 

curves). Here, the parameters are the same as in Fig. 3. 

Figure 4 presents the dependence of the largest real part max( Rδ ) of the symmetric and asymmetric 
solutions on the soliton power P  and the modulation strength 0W . The solution is linearly stable for 0δ = , 
otherwise, it is linearly unstable. In Fig. 4a, the largest real part of δ  for SS1 and AS1 are plotted with black 
solid curves and red curves with rhombuses, respectively. The values of max( Rδ ) for SS1 are larger than the 
ones for AS1 in their existence region, which indicates that the fundamental asymmetric soliton solutions are 
more stable than fundamental symmetric ones. The largest real part of max( Rδ ) for SS2 and AS2 are 
displayed with blue solid curves and black squares curves in Fig. 4b. Obviously, the excited states of 
symmetric and asymmetric soliton solutions are all unstable in the existence region of AS2. It is interesting 
to compare Fig. 4 and Fig. 3; one can find that the fundamental and excited states of asymmetric soliton 
solutions always exist in that regions where the symmetric soliton solutions turn into unstable region, which 
indicates that the above mentioned special class of PT-symmetric potential is only a necessary condition for 
the symmetry-breaking bifurcations. Furthermore, the asymmetric soliton solutions could be induced by the 
unstable symmetric solitons. 

The results of linear stability analysis for soliton solutions are further confirmed by employing direct 
numerical simulations of Eq. (2). The results are summarized in Fig. 5, in which the eigenvalue spectra of Eq. 
(6) for fundamental symmetric and asymmetric solutions are shown in panels (a1) and (b1), whereas the 
eigenvalue spectra of linear stability analysis of the excited states for the symmetric and asymmetric 
solutions are displayed in panels (c1) and (d1). The profiles of these soliton solutions can be seen in Fig. 1c 
and Fig. 1d, and Fig. 2c and Fig. 2d, respectively. We notice that both fundamental and excited state soliton 
solutions are linearly unstable. The eigenvalue spectra of the symmetric solitons appear in quartets, as shown 
in Fig. 5a1 and Fig. 5c1; however, this contrasts the asymmetric soliton solutions, see Fig. 5b1 and Fig. 5d1. 
Although the results of linear stability analysis show that these solutions must be unstable, these instabilities 
are relatively weak due to the small growth rates, which means that the corresponding oscillatory instabilities 
will be developed during a certain propagation distance ζ ; the corresponding evolutions are displayed in 5a2, 
5b2, 5c2, and 5d2.  
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Fig. 5 – The eigenvalue spectra of linear stability analysis for the soliton solutions and the corresponding evolution 
plots: a1), b1), c1) and d1) the eigenvalue spectra of linear stability analysis for SS1 and AS1 with the soliton power 
1.1, and for SS2 and AS2 with the soliton power 2.1, respectively; a2), b2), c2), and d2) the corresponding evolution 

plots of the field intensity. Here the other parameters are the same as in Fig. 1. 

4. CONCLUSIONS 

We have performed a systematic study of the symmetry breaking of solitons in PT-symmetric optical 
waveguides with competing cubic-quintic nonlinearity. The results have shown that the branches of 
asymmetric soliton solutions bifurcate from the base branches of PT-symmetric fundamental soliton and the 
excited state soliton solutions when increasing the input power. For the fundamental asymmetric soliton 
solutions, the eigenvalue spectrum begins to separate out and crosses the base branch of SS1, then ceases to 
exist and coalesces into the base branch again. However, for the excited state of asymmetric soliton 
solutions, the symmetry breaking bifurcations form the typical fork-type eigenvalue spectra structure. The 
effect of the modulation strength of PT-symmetric potential on the structure of eigenvalue spectra diagrams 
of the symmetric and asymmetric soliton solutions are investigated. We found that the region of the existence 
for asymmetric soliton solutions is intimately related to the stability of the symmetric soliton solutions. The 
stability of the symmetric and asymmetric soliton solutions is comprehensively analyzed by employing linear 
stability analysis and the different instability scenarios of solitons have also been revealed by using direct 
numerical simulations. The evolution plots indicate that the amplitudes of soliton solutions oscillate during a 
certain propagation distance due to the presence of weak instabilities. 
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