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Abstract. A stochastic diffusion-based image restoration technique is proposed in this paper. The 
stochastic differential model is described first. Then, the SDE-based denoising scheme is transformed 
into a parabolic PDE model. Next, a rigorous mathematical investigation is performed on it. A 
numerical approximation scheme is then developed for this PDE-based restoration approach. Our 
successfully restoration experiments and the performed method comparison are discussed next. 

Key words: image denoising and restoration, stochastic differential equation, Kolmogorov equation, 
parabolic PDE model, well-posedness, numerical approximation scheme. 

1. INTRODUCTION 

The mathematical models have been increasingly and successfully used in several traditionally 
engineering domains like signal processing, image analysis and computer vision, during the past three 
decades. Although most of these models have been based on nonlinear partial differential equations (PDEs) 
[12, 24], the stochastic differential models (SDEs) are also increasingly used in the image processing field. 

The SDE-based schemes represent probability models that could provide an effective image denoising 
and restoration, while preserving the boundaries and other image features. The SDE-based denoising models 
are more realistic than PDE-based smoothing methods because of the presence of stochastic perturbations in 
images. 

Thus, numerous restoration techniques based on stochastic differential equations have been proposed in 
the last years [3, 4]. Some important SDE image denoising approaches are those based on modified diffusion 
[9], reflected stochastic equations [11], and stochastic relaxation and annealing [17]. 

A novel stochastic differential equation-based image restoration technique is proposed in this paper. 
Our stochastic diffusion model for image denoising is described in the next section. We developed numerous 
linear [1] and nonlinear PDE-based restoration models [2–5] in our past papers. They use second-order [1, 3–
5] and fourth-order diffusions [2] and outperform some influential PDE filtering schemes, such as the 
anisotropic diffusion-based Perona-Malik models [22], the variational TV Denoising [23] and the You-
Kaveh denoising scheme [25]. Now, we aim to obtain an effective second-order diffusion model for image 
denoising from a proper stochastic equation.  

Thus, a parabolic PDE-based model is obtained from our SDE by using the associated Kolmogorov 
equation [8, 16]. Also, a rigorous mathematical treatment of this SDE-based restoration approach is provided 
in the third section, its well-posedness being treated. 

A robust numerical approximation scheme is then developed for the discretization of the continuous 
denoising model. This finite-difference method-based discretization algorithm is described in the fourth 
section. We have performed numerical experiments that are described in the fifth section. Method, 
comparison are also discussed in that section. This article ends with a section of conclusions, 
acknowledgements and a list of references. 
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2. STOCHASTIC DIFFUSION-BASED FILTERING MODEL 

Therefore, we propose the following stochastic differential equation-based model for image noise 
reduction: 
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where the diffusion process { })(),()( 21 tXtXtX =  and { } ( )1,0,)(),()( 21 ∈= µββµ tttW  represents a 
2D Brownian motion in a probability space {Ω , Ғ, P} with the natural filtration (Ғt), 0≥t . We assume 
that the function 22: RRF →  is Lipschitzian and set ( ) ( ) ( ){ })(),(,)(),()( 212211 tXtXFtXtXFtXF = . 
While X (t) represents a random variable, ),(0 yxX  is a function on 2R , being related to the initial image.  

The solution to the SDE provided by (1) will be a stochastic process ),( 0XtXX = , adapted to the 
natural filtration (Ғt) 0≥t , on the probability space, which satisfies the following equation: 
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  Such a solution exists and we refer to [16, 21] for demonstrating the existence of a unique solution 

to equation (2).  Now, let the function RRu →2
0 :  represent the degraded image to be filtered of noise. 

Then, the restored image u (t) will be determined as following: 

[ ] 0,)),(),(()),(,( 000 ≥= tyxXtXuEyxXtu . (3)

where E represents the expectation operator. 
             Then we consider the Kolmogorov equation [8, 13, 16, 21] associated with the SDE model (1). 
According to [13] (see section 4.4 at page 55, for more), the restored image represents the solution 

),( ξtuu = of this equation, which is a parabolic PDE model having the next form: 
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where ( ){ } 2
,1,,10 ,),( RjiyxX NjMi ∈== ==ξ  and ( ]1,0∈µ . 

 The parabolic equation (4) is defined on all of 2R , but an image is defined on a given domain 
2RK ⊂ . Therefore, to address this problem, one replaces (1) by the next reflection stochastic problem [11] 

( )( )( ) ( ( )) ( )

(0 )
KdX t F X t d t N X t d t dW t

X ξ

 + + =


=
 (5)

where K is a convex subset of 2R and KN  is the normal cone to K∂ . Thus, u given by (3) satisfies the 
equation (4) with Neumann boundary value conditions, which has the following form: 
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Consider now that RRKu →⊆ 2
0 :  is the initial noisy image. Then the restoration of ),( ξtu  is 

provided by the solution to (6).  
We have performed several investigations on modelling the function F of this scheme, trying to 

determine that version of it that provides optimal image restoration results when used in (6). Thus, we have 
identified the optimal form for this function, which is expressed as following: 
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where 0, 21 ≥αα . 
We note that in the special case where the drift term F is missing, it follows by (3) that 
( ) 2

000 ,)()( RXtWXutu ∈∀+= . 

3. A ROBUST MATHEMATICAL INVESTIGATION OF THE MODEL 

In this section we investigate the continuous mathematical model derived from the stochastic 
differential equation, analyzing its well-posedness. To properly investigate the existence and unicity of a 
weak solution, we consider a more general form of the parabolic equation provided by (4), namely: 
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where RRu d →:0  and [ ] 1,,0: ≥→× dRRTf d , RRg →:  represent two functions that are important 
for the denoising process if they are suitable chosen. As regards the function dd RRF →: , we assume 
that ( ) ( ) d

dd
RLFF ∈∀−≤− ξξξξξξ ,, . Also g is monotonically nondecreasing, continuous 

and it satisfies 
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We recall (see [6], page 150) that under assumption ( ) ( )
dd

F F Lξ − ξ ≤ ξ − ξ  there is a 

unique solution ( )dRL1∈ρ  to the elliptic equation  
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which satisfies the following: 
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We consider the measure ( ) ( ) ξξρξν dd =  and the space 2
νL  of all Lebesgue measurable 

functions RRu d →:  such that ( ) ( ) ∞<∫
dR

du ξξρξ2 . If ( )0, XtXX =  represents the solution to 

the stochastic equation (1), then we set ( )( ) ( )( ) d
t RtXEuu ∈= ξξξρ ,,00 (see [6], page 55). 

This is the transition semigroup associated with equation (1) [7]. It is well-known that ν is the invariant 
measure of tρ , that is ( ) ( ) ( ) ( ) 2

000 , νξνξξνξρ Lududu
dd RR

t ∈∀= ∫∫ (see [13]). Moreover, 

tρ  is a 0C -semigroup of contractions on the space 2
νL  and its infinitesimal generator 
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continuous bounded functions on dR . Now, the equation (8) can be re-written as following: 
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accretive in the space 2
νL . Then, by existence theory for the Cauchy problem in Banach spaces (see [6], 

page 127, for more), we get the following existence result for equation (8) or equivalently (12): there is a 
unique solution u to (8), which satisfies: 
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 It should be said also that by Crandall-Liggett exponential formula we have, for 0≡f , the 
following: 
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The function g provides an effective image restoration process if we consider the next form for it: 
( ) 0,)( 0 ≥−= puuug pλ . We may take p = 0 and obtain the following PDE-based model that is 

discretized in the next section: 
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4. FINITE-DIFFERENCE BASED NUMERICAL APPROXIMATION SCHEME 

A consistent and fast-converging numerical approximation scheme is developed for the discretization 
of the parabolic model (15). The PDE-based restoration scheme is discretized by applying a finite-difference 
based method [19]. 

Thus, we consider a space grid size of h and a time step t∆ . The space and time coordinates are 
quantized as: { } { } { }NnJjIitntjhyihx ,..,0,,.,0,,..,0 ,,, ∈∈∈∀∆=== , where N is the optimal 
number of iterations. 

Therefore, the main equation of the continuous differential model provided by (15), 
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, is discretized by 

using the finite differences [19]. The following discretization is obtained for the PDE-based model: 
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We may consider the parameter values 1=∆ t  and h = 1. Then, the relation (16) leads to the 
following explicit numerical approximation scheme: 
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The iterative algorithm given by (17) receives the initial [ ]JI ×  noisy image as an input, then 

applies on the evolving [ ]JI ×  image nu , for each n = 0, …, N. The N value is quite low, since this 

iterative scheme is converging very fast to the optimal image restoration, which is .1+Nu  
The developed numerical scheme is stable and consistent to the SDE-derived differential model (15), 

since it converges to its unique weak solution. The denoising results produced by this scheme are discussed 
in the next section. 

5. EXPERIMENTS AND METHOD COMPARISON 

We tested the proposed stochastic diffusion-based restoration framework on hundreds of images 
corrupted with various amounts of Gaussian noise. It provided satisfactory denoising results: a low execution 
time, of less than 1s, an effective noise removal and preservation of edges and other image features. The 
Volume 3 of the USC-SIPI database, which contains [ ]256256 × , [ ]512251 ×  and [ ]10242410 ×  images, 
was the main image collection used in our experiments.  

We identified the next set of parameters of this differential model that provide optimal restoration 
results: 12. 0.05,  4,  ,2  ,7.0 21 ===== Nλααµ  The low number of iterations, N, means also 
a low running time, the proposed restoration scheme executing very fast.   

The performance of our image denoising technique was assessed by using the Peak Signal-to-Noise 
Ratio (PSNR) measure. From the performed method comparisons we found that our SDE-derived technique 
outperforms not only the conventional two-dimension image filters, but also some well-known PDE-based 
restoration approaches, getting higher PSNR values.  

Thus, it provides better smoothing results than classic filters, such as 2D Gaussian, Average, 2D 
Wiener and Median [18]. Unlike these filters, our method overcomes the blurring effect and preserves the 
image details. Also, it provides a better denoising than some influential PDE-based schemes. Thus, it 
outperforms nonlinear second-order diffusion-based techniques, like both versions of the Perona-Malik 
scheme [22] and TV Denoising [23], removing a higher amount of Gaussian noise, converging much faster 
and overcoming the undesired staircasing effect [10].  

The PSNR values obtained by our technique and other denoising models (2D Gaussian, Average, 
Wiener 2D, Perona-Malik 1, Perona-Malik 2, TV Denoising) are registered in Table 1. The denoising results 
provided by our approach and those filtering schemes on the [ ]512251 ×  Lena image affected by Gaussian 
noise with parameters average = 0.21 and var = 0.02 are displayed in Fig. 1. These restoration results prove 
that our model provides a better image smoothing. 
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Table 1 

 PSNR values for several noise removal techniques 

This model Gaussian Average Wiener P-M 1 P-M 2 TV 
26.94(dB) 22.43(dB) 23.29(dB) 24.23(dB) 25.6(dB) 25.83(dB) 24.96(dB) 

 

 
Fig. 1. Lena image restored by using several techniques. 

6. CONCLUSIONS 

An effective SDE-based image restoration technique has been proposed here. While we have an 
important experience in the PDE-based image denoising domain [1–5], this is the first time we derive an 
effective restoration model from a stochastic differential equation. 

The proposed SDE-based model and the parabolic diffusion scheme obtained from it represent the 
main contributions of this paper. The mathematical investigation of our denoising model that have been 
provided here constitutes also a major contribution. We demonstrated that the derived parabolic PDE model 
could be well-posed, admitting a unique weak solution under some certain conditions. 
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The fast-converging explicit numerical approximation scheme described here is another important 
result of this work. It is based on the finite-difference method and is consistent to the developed PDE 
scheme. 

Our successfully image denoising tests and the performed method comparison prove the effectiveness 
of our restoration approach. We intend to further improve this SDE-based filtering model, by considering 
other versions of the drift term, as part of our future research. Also, we will focus on constructing more 
sophisticated SDE models, for example based on reflection stochastic problems [11], which produce more 
effective nonlinear diffusion-based denoising schemes.  
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