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Abstract. In this paper we consider the spaces ( )p
wB , 1 p  , of infinite matrices A  defined by 

the norm  
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  . We consider the Schur product of matrices 

and prove that  ( )p
wB  is not closed under this product. Moreover, we prove that linear and bounded 

operators on 
p  are Schur multipliers on ( )p

wB , a result which is not obvious, since ( )p
wB  is not 

a Schur algebra. Most of the results are sharp in the sense that they are given via necessary and 

sufficient conditions. 
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1. INTRODUCTION 

For )(= jkaA  and )(= jkbB , two matrices of complex numbers having the same size (finite or 

infinite) their Schur product (or Hadamard product) is defined to be the matrix of elementwise products  

).(:=* jkjkbaBA   

This matrix product was first studied by Schur in his paper [17] and since then has appeared in several 

different areas of analysis for example in complex function theory [18], Banach spaces [5, 10, 22], operator 

theory [2, 13, 21, 20], matriceal harmonic analysis [3, 14, 11] and multivariate analysis [23]. 

The space of Schur multipliers from X  to Y  is defined as 

},every for  *:{:=),( XAYAMMYX    

where X  and Y  are two linear spaces of infinite matrices. If X  and Y  are Banach spaces, then we 

consider on the space ),( YX  the natural norm  

.sup:=
1

),( Y

X
A

YX
AMM 



 
 

In particular, in [5], G. Bennett studied the ),( qp -multipliers i.e. matrices M such that  

),,(* qpBAM    
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for every ),( qpBA  , where ),( qpB   denotes the set of bounded linear operators from 
p  to 

q  and 

 qp,1 . 

Recently F. Sukochev and A. Tomskova in [22] studied ),( FE -multipliers, where E  and F  are two 

given symmetric sequence spaces. 

Popa in [15] studied some special classes of infinite matrices. Among other results, the author 

constructed some subspaces of all Schur multipliers on 
2 . Moreover, many authors studied Schur 

multipliers between some classes of infinite matrices. 

In this paper we continue the study of the spaces )( p

wB   (introduced in [12]) defined by the norms 

)(
p

w
B 
 ,  p1 , where  
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It is natural to consider and to study the spaces )( p

wB   for  p1  and to compare with classical Banach 

spaces of infinite matrices )( pB  . These spaces can be viewed as bounded operators between some classical 

spaces of sequences. We also consider some problems in connection with some particular classes of Schur 

multipliers. We denote by )( pd ,  p1  the space of all sequences nnxx )(=  for which 

p

knkkpd
xx |)|sup(=

1=)( 



  [7]. 

In the following we recall a notation which will be useful in the sequel. Let 


ZjiijaA ,)(=  be an 

infinite matrix. We denote by 0A  the matrix having on the main diagonal elements of A  and zero otherwise. 

More generally, we denote by )(= ijk aA   the matrix with elements  



 


.otherwise0

,= if
=

kija
a

ij

ij   

This notion of “diagonals” has previously been used in the matricial analogue of Fejer theory and 

approximation problems [3, 4, 14]. A similarity between functions and matrices was first observed by Arazy 

in [1] and exploited further by Shields [19]. The historical development and a number of results concerning 

this area of “matricial harmonic analysis” was recently presented in the book [14] by L.E. Persson and N. 

Popa. 

In this paper we derive some new results in this area more exactly: in Section 2 we state and prove 

some results in the case of diagonal matrices. In particular, we give a characterization for diagonal matrices 

to belong to )( p

wB  . In Section 3 we study mainly Schur multipliers and Toeplitz matrices. Considering the 

Schur product of matrices we prove that )( p

wB   is not closed under this product. The main result is that 

linear and bounded operators on 
p  are Schur multipliers on )( p

wB  , a result which is not obvious, since 

)( p

wB   is not a Schur algebra. Most of our results are sharp in the sense that they are given via necessary 

and sufficient conditions. 

2. DIAGONAL MATRICES 

In our first result we give a characterization for a diagonal matrix to be in the class )( p

wB   for 

 <1 p . 
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THEOREM 2.1.  Let 1)(= kkaa  be a sequence of real numbers. We denote by 0= AA , the matrix 

with the sequence a  on the main diagonal. Then )( p

wBA   if and only if  
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Moreover, 
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for  <1 p .  

Proof. For the necessity let us take 1)(= nnaa  such that the matrix 0= AA  given by this sequence 

belongs to )( p

wB  . Thus, 
pAx   for all 

p

nkxx 1)(=  with 0|| kx . We choose now the sequence 

1

)()( )(= k

n

k
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It follows that  
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For the sufficiency we use that  

ppgpd  )()(  (2.1) 

(see e.g. [7, p. 9]), where 
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The product (2.1) is performed coordinatewise: kkk zyx = , 1,2,=k  and p<0 . 

Let us take an arbitrary 
p

nnxx 1)(=  with 0|| kx , which implies that )( pdx . Since 
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               
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we have that )()(= 1 pgaa nn   and it follows that 
pAx  . The proof is complete.  

Remark 2.2. One important consequence of previous result is that we can easily obtain examples of 

matrices from )( p

wB   which are not in )( pB  . This shows us that the inclusion between these two spaces is 

proper. For example let us take the matrix 0= AA  given by the sequence 1)(= kkaa , where 

               
2 if =2 ,

=
0 if 2 .

p n n

k n

k
a

k






 (2.2) 

From Theorem 2.1 it is clear that )( p

wBA  . Since 1)(= kkaa  is an unbounded sequence it follows that 

)( pBA  .  

The next result gives us the behavior of a "diagonal" matrix. We omit the proof since we can use 

exactly the same arguments as in the proof of Theorem 2.1.  

PROPOSITION 2.3. (a) Let 0>k  and kAA =  be given by the sequence 1)(= nnaa . Then 
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(b) Let 0<k  and kAA =  be given by the sequence 1)(= nnaa . Then )( p
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It is well known (see e.g. [6]) that )( pB   is closed under Schur multiplication:  

                    ).()( ppB  M  (2.3) 

Our next remark shows that (2.3) is not true for )( p

wB  . 

Remark 2.4.   

    1.  )( p

wB  ,  <1 p , is not closed under Schur multiplication. Indeed, for 0= AA  given by 

the sequence 1)(= kkaa , with ka  defined as in (2.2) we have that )( p

wBA   but )(* p

wBAA  . 

    2.  )( p

wB   is not contained in )( pM . We can take any matrix of the form 0= AA  given by 

1)( kka  such that 


 1)( kka  and )( p

wBA   so that, in particular, ).( pA M  Thus )()( pp

wB  M . 

    3.  )( p

wB   does not contain )( pM . If <<1 p  let us consider the matrix  

                

1 1 1

0 0 0

= .0 0 0

0 0 0

A

 
 
 
 
 
 
 
 

  

It is easy to see that )( pA M  but )( p

wBA   and, hence, 
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    ).()( p

w

p B  M  (2.4) 

In the case 1=p  we can take the matrix  

1 1 1 1

1 1 1 1

= .1 1 1 1

1 1 1 1
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 
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In this case it is clear that )( 1MB  but )( 1wBB  so that (2.4) holds also in this case. 

In our next result we characterize the Schur multipliers for "diagonal" matrices: 

THEOREM 2.5. Let 1)(= kkmm  be a sequence of complex numbers. If 0= MM  is a matrix given 

by the sequence m  then we have that 

              <1 )),(),(( pBBMM p
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w    

if and only if 
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wBA   and 0A  be the diagonal matrix defined in the introduction. We claim that 
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where 0>C  is a constant. Indeed, 
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Now integrating and applying Khinchin inequality (see e.g. [9], p. 224) we obtain 
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where kr , 1k , are the Rademacher functions (see e.g. [9], p. 221). Since )( p

wBA   then for any 

sequence )( kx  with 0|| kx  we have  
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Thus  
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p
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p
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and taking the supremum over all sequences )( kx  in 
p  with 0|| kx  one gets (2.5). 

Let us assume that 


 1)(= kkmm . For )( p

wBA   and 
p

kkxx 1)(= , with 0|| kx  we have that 
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It follows that ))(),(( p

w

p

w BBMM  . Conversely, if ))(),(( p

w

p

w BBMM  , then 
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AM *  we have that  

).()( 1 pgam kkk    

Since )()(= 1 pgaa kk   it follows that 


 1)(= kkmm  (see [7], p. 69). The proof is complete.  

3. TOEPLITZ MATRICES AND SCHUR MULTIPLIERS 

Our most important result of this section is that bounded and linear operators on 
p  are Schur 

multipliers on )( p

wB  , 1p .  
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where 1 ( 1)* 1p p   . Using the same arguments as in the proof of Theorem 2.5 we have that  
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where 1)(= nnxx  are sequences of complex numbers from 
p  with the property that 0|| nx , 1>p  and. 

1 ( 1)* 1p p   . 

Our last theorem characterize positive Toeplitz upper triangular matrices from the class )( p

wB   in 

terms of a special operator AT  described as an average of some convolution of sequences. 

THEOREM 3.3. Let 1,)(=  kjkjaA , with 0=kja   for kj <  be a positive upper triangular 
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From Lemma 3.2  we have that  
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The proof is complete.  

Finally we give a necessary condition for an upper triangular Toeplitz matrix to belong to )( pB  .  

Remark 3.4. Let A  be a upper triangular Toeplitz matrix having as entries the sequence 
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j

m

j

m aa 
0=

=~ .  

Indeed, if )( pBA   is a Toeplitz matrix, upper triangular given by the sequence 0)( nna , then  

1

=0 =0

< ,  for every ( ) .

p

p

j j k j j

k j

a x x
 

     

Let ),1,0,(0,0,= ne  so that Neee
p

pN =21   . Then  
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,0,...),~,~,...,~,~(
1

=)(
1

01121 aaaa
N

eee
N

A NNpNp 







   (3.1) 

which implies that 



<

|~|

sup 0=
1

N

a p

m

N

m
N

 and, by Theorem 2.1 , it follows that )(
~ p

wBA  .  
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