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Assessing the randomness of a (true) random number generator is not an easy task. Statistical testing 

is the most frequently used method, with several software tools being freely available. However, 

randomness assessment rises significant challenges that need to be overcome and pitfalls that need to 

be avoided. Unfortunately, a clearly defined and generally accepted methodology for randomness 

assessment based on statistical testing is not yet available. However, other methods also exist for 

randomness assessment which may efficiently complement statistical testing. The present paper aims 

at bringing a contribution to the elaboration of a general methodology for randomness assessment that 

takes advantage of all the methods available up to date. 

 Key words:  random number generator, randomness assessment, methodology, statistical testing, visual 

testing.     

1. INTRODUCTION 

Random numbers are becoming more and more present in our daily lives, although they generally 

fulfil their essential roles in subtle ways, sometimes without even being noticed. For instance, every time we 

connect to a secure server on the Web we transparently generate random numbers, without necessarily being 

aware of that. A more explicit role of random numbers is played by transaction authentication numbers in 

financial transaction authorizations through online banking. The application domains of random numbers are 

numerous, and each domain states slightly different requirements on the quality of randomness, with 

information security and especially the domain of cryptography asserting the most exacting quality 

requirements. 

Therefore the quality of random number generators is of crucial importance, thus it should be analyzed 

and assessed thoroughly and with great care, or as famously stated by Robert R. Coveyou: "The generation 

of random numbers is too important to be left to chance". In the last decades several famous applications 

faced spectacular failures, such as described in [1, 2] and more recently in [3, 4, 5], due to weaknesses in the 

design of the employed random number generators and hence became public lessons to consider in future 

designs. 

Random number generators can be classified in two main categories: psudo-random number 

generators – PRNG (some authors call these deterministic or software generators) and true random number 

generators – TRNG (sometimes called physical or hardware generators). Table 1 presents a brief comparison 

between PRNGs and TRNGs. Furthermore, there are also intermediateclasses between these two extremes, 

such as the unpredictable random number generators which rely on the nondeterminism of user-computer 

interaction or on the complexity of the underlying phenomenon while executing a set of deterministic 

instructions, or the hybrid generators which combine both TRNGs and PRNGs. 

PRNGs are clearly mathematical artefacts and their analysis and assessment is left to the mathematical 

methods that underlie those generators. For instance, the famous Mersenne Twister PRNG [6] is 

mathematically proven to be uniform in 623 dimensions and to have a period of 1219937  . 

Here we will focus on the assessment of generators from the second category, namely TRNGs, which 

extract randomness by sampling and digitizing natural physical phenomena (like thermal noise, jitter, 
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radiation decay timings, photon polarization, etc.) and provide the purest form of true entropy, where the 

unpredictability of the generated values is guaranteed by physical laws. These generators have strange and 

counterintuitive properties. For instance they do not have a period (which would imply repetition of their 

output after some time) like PRNGs do. Yet, while TRNGs offer the highest level of nondeterminism and 

irreproducibility they do not necessarily present perfectly uniform distribution and independence, hence their 

output needs to be filtered (post processed) in order to reduce possible bias (tendency towards a particular 

value) or correlation, and make the output more similar to a statistically perfect random sequence. 

 

Table 1  

Comparative characteristics of pseudo- and true random number generators 

 PRNG TRNG 

Principle of operation 
Mathematical formulas,  
algorithms, no entropy 

Physical devices,  
quantum based entropy 

Deterministic Yes No 

Predictable Yes No 

Periodic Yes No 

Main field of usage 
Simulation, Cryptography  
(CSPRNGs) 

Security/Cryptography,  
Gambling 

Output type 
Stream of numbers  
(int, float) 

Stream of bits  
(boolean) 

Speed (output bit rate) 
Very fast  
(aprox. GB/sec) 

Slow (KB/sec) /  
Fast (several MB/sec) 

    

There are currently many vendors and designers of TRNG devices, based on various physical 

phenomena, from digital clock jitter to quantum particles (photons) and even digital cameras. All these 

producers make very strong claims about their generators, such as truly quantum, pass any statistical tests, 

pass any properly designed test for randomness, etc. However, when it comes to providing evidence to 

support those claims, most producers complain about the lack of certification bodies in the field of true 

random number generator assessment, and usually perform some in-house testing procedure by applying 

some statistical tests on very few input sequences, showing the good results - all test passed. However, being 

physical (hardware) devices subject to fluctuations and aging of the components, these generators may suffer 

technical problems due to their practical implementation, and may present vulnerabilities which may allow 

external sources (such as environmental conditions like extreme temperatures) to interfere or alter the 

generated numbers therefore a constant monitoring is required. Some suppliers have already implemented 

this feature and are constantly monitoring the output with simple startup and online statistical tests [7]. 

The assessment of these true random number generators is not a trivial task, and this is the reason why 

TRNGs are the only cryptographic primitives for which standardization is still missing. In this context, our 

main goal in this paper is to present the main challenges that we face and the pitfalls that we should avoid in 

the process of TRNG testing. While we do not have a definitive answer to some of these challenges, we will 

try to give recommendations and hints based both on theoretical and empirical observations coming from our 

and others' experience in this field. 

2. RANDOMNESS ASSESSMENT 

The biggest challenge in assessing the randomness is being able to answer a series of very difficult 

questions, such as: 

    • How good is a certain RNG? Bad/ Good/ Very good/ Excellent/Perfect  

    • Does it have flaws (that compromise the randomness of its output sequences)?  

Ideally we should have a metric for randomness, and a methodology for assessing the quality of a 

RNG, which could lead to answering the above questions. Unfortunately there is no practical method able to 

determine or prove whether a bit sequence IS random. 
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However, there are theoretically an infinite number of methods which can identify flaws in a certain 

random bit sequence. For instance, the sequence should contain approximately the same number of zeroes 

and ones. If it doesn't (consistently) then we have found a flaw in the generator. 

Thus, since we cannot (yet) get a definitive answer, the only way to go is to try finding flaws in the 

generated sequences using as many relevant methods as we can. If after a certain amount of testing no flaws 

are found, then our confidence in that generator increases. The more thorough the testing the better. Testing 

should never end, hence the generators should be constantly or systematically tested for there is always a 

chance that one of their physical components will fail at some point and then the generator can become 

considerably or completely biased. 

Of course the central means we have to assess a TRNG is by analyzing its output sequences, but we 

must keep in mind where they come from, we cannot just make abstraction of the generator, the entropy 

source also needs to be carefully analyzed. 

Pitfall: Loosing focus on what we are assessing. A common pitfall here is to lose focus, and to get 

distracted by a particular sequence being analyzed. One must constantly keep in mind that we are not 

assessing particular bit sequences, but rather we are assessing generators. Otherwise, the decimals of PI 

would be quite an attractive sequence to analyze and will pass the majority of statistical tests, yet PI is not a 

random number generator. 

Pitfall: Analyzing too few sequences. Another common pitfall is to stop testing too soon, after 

analyzing just a few random number sequences produced by the generator. How many sequences should be 

analyzed is a complex decision and clearly depends on the generator that is subject to analysis, but there are 

general recommendations as well. NIST recommends the analysis of a number of sequences which are at 

least on the order of the inverse of the significance level. Hence, if the significance level ? is set to 0.01, than 

at least 100 distinct bit sequences generated by a certain generator have to be analyzed in order to be able to 

reliably capture the quality of that generator. The analysis should be repeated at least several times for a 

different set of 100 sequences, having a different length (same length per set of sequences, though). 

Pitfall: Analyzing too short or too long sequences. Most statistical tests impose a minimal size for the 

input bit sequence being analyzed and constraints are set on a test-by-test basis. For instance several tests 

from the NIST STS [8] (such as the Frequency test, Cumulative sum test, Runs test) require at least 100 bits, 

and other test impose a much higher minimal input size for producing reliable results (eg. the Matrix rank 

test requires at least 38912 bits, the Random excursion, Serial and Linear complexity test require at least 

1.000.000 bits), furthermore test can be parameterized by additional values (eg. Block size, template) which 

also have to be set to meaningful values. 

 

Table 2  

Characteristics of the most popular statistical test suites 

 NIST STS TestU01/Rabbit Diehard ENT 

Author A. Rukhin et al. P. LEcuyer and R. Simard G. Marsaglia J. Walker 

Last update 2014 2009 1996 2008 

No. of tests   15   38   15   5  

Suggestion of a methodology   yes   no   yes   no  

Library/Application   Application   Library   Application   Application  

User interface   Text based   none   Text based   Text based  

Input sequences   many   one   one (10 MB)   one  

P-value based   yes   yes   yes   no  

Alpha   0.01   0.001   0.01   -  

Proportion of tests passed   yes   no   no   no  

Uniformity of p-values per test  yes no no no 

Uniformity of p-values overall  no no no no 
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Clearly there could be a tendency to analyze short sequences to save time, which would be an 

inadvisable practice, that could lead to misguided results. We suggest that input sequences should be in the 

interval of 1 MB – 1 GB, and should include sequences of various sizes. The opposite tendency of focusing 

only on large and very large sequence could lead to loosing focus on smaller sequences that show real 

defects in the generator. The large sequence could pass the tests but may have subsequences that 

systematically fail the tests and indicate problems in the generator. 

3. METHODS FOR RANDOMNESS ASSESSMENT 

The most frequently used method for assessing the randomness of a generator is statistical testing. 

Conforming to this method the output of the generator, a bit sequence, is subjected to statistical analysis, 

according to a certain statistical test, in order to verify that the sequence is sound statistically. As a result, the 

sequence will PASS or FAIL the test. 

Obviously one test is not enough so batteries of tests were developed, the most well known being 

NIST STS [8], Diehard1 [9], TestU01 [10] and ENT [11].  

Table 2 summarizes the main characteristics of the four most popular statistical test suites for 

randomness assessment. 

It is interesting to notice that in theory there could be an infinite number of ways that a sequence may 

fail statistical testing so there could be an infinite number of statistical tests to apply. 

A huge challenge here is to define a battery of statistical tests, because each test takes time to execute 

and time is a precious commodity. Therefore the selection of tests is critical and has to focus both on 

assessing independent probabilistic randomness properties in order to provide multiple view points and a 

large span on the domain, and at the same time on thoroughly evaluating each tested property in order to 

create a more comprehensive testing process. 

For example the authors of TestU01 [10] chose to define a number of parameterized tests and leave it 

to the users to define their own battery based on these tests (several predefined batteries are provided as well. 

Challenge: Defining your own battery of statistical tests. 

Pitfall: The user in general does not have the knowledge required to define such a battery. Unless the 

user is very knowledgeable in the field, we recommend the use of already defined batteries. 

Challenge: Selecting among available batteries of tests. Each available battery has its advantages and 

disadvantages, as shown in Table 2. However, out of the four available batteries we would discard ENT (in 

its present form) because the integrated five tests although very straightforward, provide just a small 

coverage on the domain, and furthermore the tests are not based on computing p-values, which make the 

results difficult to interpret. Also due to the lack of maintenance, poor implementation (translated from 

Fortran to C), limitation of the input stream, we would not recommend the use of the Diehard test suite 

either, which is geared towards testing uniform numbers rather than bit sequences. 

The selected test suite has to be widely recognized and used in the research community and industry in 

order to benefit from the research results on the independency and span of the included statistical tests, and at 

the same time facilitate the comparison between generators. 

In our opinion NIST STS is the clear winner here, firstly because of its widespread use which makes 

the suite a "de facto" standard in the process of randomness assessment, and secondly due to its highly 

rigorous requirements, large number of independent tests providing a large span on the domain, flexibility of 

user input and most importantly, because it is the only battery that gives good integration of the results. 

TestU01 could also be used, as it is increasingly popular, but this involves developing an application for it, 

with a reasonable user interface, flexibility of input and integration of the results. 

Challenge: The limits of statistical testing. The main limit of statistical testing is its intrinsic 

PASS/FAIL nature. No additional information is provided. In particular it should be very interesting to find 

out WHY did the analyzed sequence FAIL, in order perhaps to correct the design of the generator.

                                                           
1 An updated version called Dieharder was developed in recent years by R.G. Brown at Duke University, but still needs more 

scrutiny by the scientific community until final acceptance. All tests from the original Diehard were reimplemented, but the author 

admits some are still unreliable or give suspect results. 
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Even the simplest statistical test, the frequency (monobit) test, will only tell us that the ratio between 

the zeroes and ones is statistically wrong. But why? Did we get too many zeroes, or too many ones? Where 

is the generator biased, towards zero or towards one? 

An interesting example from our experience was analyzing the output of a quantum based TRNG that 

consistently failed statistical tests, but no one knew why. So we resorted to visual inspection of the analyzed 

sequences, see Fig. 1 depicting the colour image representation of a sequence, and we discovered that it was 

a defect in the generator that was periodically introducing bias toward zeroes (water ripple-like darker 

patterns). Based on these simple observations derived from visual inspection of the sequences the authors of 

the generator were able to correct this behaviour. 

Another limit of statistical testing comes from its intrinsic nondeterminism. In other words, even 

perfect random generators will sometimes generate sequences which contain subsequences that look 

deterministic and hence may fail some of the tests. If the significance level α is chosen as 0.01 (as in NIST 

STS) then approximately one sequence in 100  sequences generated by a perfect random number generator 

will fail the tests. 

At the same time nonrandom sequences may contain subsequences which look random and 

consequently pass the majority of tests, yet the sequence as a whole shows repeating patterns or other traces 

of lack of randomness. Therefore the sequence to be tested has to be long enough to allow the evaluation 

process to arrive to the correct conclusion. 

 

 

Fig. 1 – Color image representation of a sequence produced by a biased quantum random number generator.  

Hence the need to perform many tests on many sequences in order to make sure that detected failures 

are not simply due to chance in the sense mentioned above, and we should expect a certain number of 

failures. There is no generator that will pass all statistical tests, although some TRNG producers state this 

claim, for the very reason mentioned above. 

The authors of [12] propose an adaptive testing method in order to identify failures that appear merely 

by chance. They adaptively modify existing statistical tests so that each time a suspicious p-value (that is 

very close but under the significance level) is detected, the sample size is automatically increased and the test 

rerun. The procedure stops when the p-value stabilizes in the acceptable range or in a clearly rejectable 

range. 

Another limit of statistical testing comes from parameterization. As we have already mentioned above, 

certain tests are very sensitive to input parameters like the sample length, block length or the considered 

template. But there are other fundamental parameters such as the significance level  , that need to be 

chosen wisely. If too much freedom is given to users, they may find themselves in danger of wasting 

valuable computing resources and perform the assessment with irrelevant or perhaps even incorrect tests.
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Another limit of statistical testing is ignoring the uniform distribution of p-values requirement. Most 

users are content to perform several statistical tests and to see that their sequence(s) pass most of those tests. 

However, the obtained p-values must also be uniformly distributed. The only battery that gives insight into 

this problem is the NIST STS. 

Given the serious limitations of statistical testing mentioned above, it becomes obvious that different 

methods should also be used when assessing the randomness of a generator. 

One of these alternate methods that we already mentioned here, and proved to be very valuable, is 

visual inspection. 

The human visual system is highly trained to extract features of the surrounding world and summarize 

these with statistical descriptors. Yet, the perceptual evaluation of random number sequences using the 

human visual system, in a way similar with every other statistical randomness tests, does not provide a 

method for proving randomness. Instead it takes advantage of our perceptual system to quickly spot tracks of 

predictability or non-randomness in the sequence and facilitates the understanding of randomness and lack of 

randomness. 

Nevertheless, by representing a sequence of numbers graphically, the human visual system is only 

capable of determining the degree to which the representation satisfies visual randomness but is unable to tell 

the difference between real randomness and visual paternlessness. In this context, visual analysis is not to be 

used exclusively, but rather as an efficient component of a larger randomness testing system which also 

includes powerful statistical test suites and other approaches to randomness evaluation. 

Another alternative method could derive from the work of Kolmogorov, Martin Loef and Chaitin in 

the field of Algorithmic Information Theory (AIT) [13], and boils down to the property of incompressibility 

of random sequences regardless of the lossless compression algorithm used. In theory a truly random 

sequence should be incompressible, and an empirical study that we conducted using several lossless 

compression algorithms including commercially available tools show promising results. Still, unfortunately 

we are still a long way ahead from having a ready to use tool based on these theoretical and empirical results. 

Pitfall: Using only one method is not enough. We believe that one should use all the available methods 

for a correct assessment of a random number generator, and we have seen in practice how these methods can 

complement each other. Therefore we recommend the combined use of as many methods as possible, with 

the statistical testing being the backbone of the testing methodology. 

4. TOOLS FOR RANDOMNESS ASSESSMENT 

Challenge: choosing the right tools. Software tools are used in general to assess the randomness of a 

generator, although we are aware of attempts to implement statistical tests in hardware (FPGA) [14]. Most of 

these software tools are based on statistical testing using batteries of statistical tests. However, here we are 

faced with a new and significant challenge regarding the choice of these tools. 

Some of these tools may be extremely simple and use non-standard evaluation techniques (lack of p-

values computation ENT). Others may be obsolescent, due to the lack of further development, like Diehard. 

Pitfall: Using only one tool is not enough. A common pitfall here would be to choose a single tool and 

ignore all the others. As we already mentioned there are an infinite number of possible statistical tests, so the 

larger the number of tests the better. This clearly invites to the use of several software tools, instead of 

focusing excessively on a single one. There isnt any highly superior tool that would justify such an exclusive 

focus. 

We recommend the use of the two prominent statistical testing batteries NIST STS and 

TestU01/Rabbit, plus a visualization tool like FileSeer [15, 16]. Unfortunately, as far as we know, no tools 

are available for Kolmogorov complexity (incompressibility) based testing. 

Challenge: Implement the tools efficiently. As we mentioned above, the recommended tool for 

statistical analysis is NIST STS. One major problem with this however, is the lack of efficiency of the 

original NIST STS implementation. It looks like the authors did not give enough importance to this aspect, as 

shown in [17, 18, 19] and more recently in [20]. TestU01 on the other hand, does not seem to suffer from this 

point of view. 
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Another major problem here is the lack of parallel implementations for these tests, although we now 

have the hardware resources at hand to run them in parallel. Moreover, as shown in [18][19] both NIST STS 

tests and TestU01 tests are largely parallelizable, so we believe that more efforts should be done in this 

direction. Because it is a well known fact that statistical tests are compute-intensive, and therefore it matters 

if one can completely test a 1GB sequence in one week or just a few hours. 

Challenge: Find tools with user friendly GUI. Ideally, one would like to use tools that give easy to 

understand results, tools that help the user to interpret the results, which is best done with a GUI. For 

instance, it is a huge difference between reading several pages of p-values (and detecting the ones indicating 

failure) or taking a look at a picture that represents all these p-values in the unit interval, as in Fig. 2 below. 

  

Fig. 2 – Graphical representation of the p-values obtained with the GUI developed for NIST STS [17]. 

Unfortunately, as Table 2 indicates, none of the available statistical testing batteries offer an easy to 

use GUI, so we are left with the burden of building one ourselves. As shown by previous work in [17, 18] 

this looks like a promising direction to follow, which greatly enhances our understanding and interpretation 

of the results. 

5. THE METHODOLOGY 

Challenge: Establishing a clearly defined and generally accepted methodology for randomness 

assessment. While there are efforts to establish such a methodology, like the german standard AIS31 [21] 

(based on statistical testing), we believe there is still much work to do until a generally accepted 

methodology, combining several methods, not just statistical testing, will be established. Some methods are 

very difficult if not impossible to formalize like visual inspection for example, which make this task even 

harder. 

Challenge: Integrating the results. Even for a single method, the statistical testing, this is still an open 

question. The only tool that gives reasonable integration of results is the NIST STS, but only per each test, 

and not globally. Two metrics are used for this integration. 

The first one is the proportion of passing a specific test, where given a certain number of input 

sequences tested (m), the threshold values for the proportion of tests passed are given by Eq. (1). 

 ,
)(1
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m
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  (1) 

where the significance level is α=0.01. For example if 1000 bit sequences were tested the T–value is 

0.98056072, which means that 981 of these sequences must PASS the test, otherwise the generator is 

considered flawed. 
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The second one is the distribution pattern of p-values, where we must also make sure that the p-values 

obtained after testing several input sequences are uniformly distributed over the interval [0,1] . NIST STS 

implements a simplified version of this metric, where the p-values are distributed in 10  equal ranges 

[0.9,1])..,([0,0.1),.  and an overall p-value (POP  p-value of p-values) is computed to verify the uniformity 

of this distribution of individual p-values using Eq. (2), where 
iF  is the number of p-values in sub interval i  

and s  is the sample size. 
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Both these metrics are used for integrating the results for each of the 15 tests of the NIST STS; 

however, no attempt is made to integrate results from different tests, as this would rise the difficult question: 

are all tests equally significant (or powerful)? 

The statistical tests integrated in NIST STS may be grouped together according to their focus. In [22] 

the authors consider four test categories, namely Frequency Tests (NIST tests 1-4), Tests for Repetitive 

Patterns (NIST tests 5-6), Tests for Pattern Matching (NIST tests 7-12) and Tests based on Random Walk 

(NIST tests 13-15). Perhaps an integration of the tests from the same category would be the next step, but 

this still leaves the open question of how to integrate tests globally. 

Another important aspect here (in NIST STS) relates to the number of p-values generated by each test; 

most tests generate one single p-value, but others generate 2, 8, 18 or even more p-values. 

So how do we integrate a test that generates one p-value with a test that generates 18 p-values? 

The interpretation given by NIST (and we agree with that) is that one test equals one p-value; therefore 

if one test generates 8 p-values this actually means that we have 8 (sub)tests, and each of them has its own 

line in the final report (see Fig. 3). 

 

 

Fig. 3 – Except of a NIST STS final report.  
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 Furthermore, the non-overlapping template matching test is performed for each aperiodical template 

of m  bits (recommended values for m  are 9 or 10), hence for 9=m  the test results in 148 p-values, more 

p-values than all the other tests put together. Is this test more significant than the others? Is it fair to give this 

test such a large proportion of the final results? These questions need careful investigation. 

It is clear that many sequences obtained from a certain generator should be tested statistically to obtain 

a significant result about the generator. It is less clear how long should each sequence be, although each 

statistical test specifies a minimal length for its input. However, it is also clear that integrating the results in 

the NIST STS manner should only be done for sequences of the same length. So there is still an open 

question regarding the integration of results (p-values) for sequences of different lengths. 

Challenge: Are some tests more relevant than others? There is good indication that the answer to this 

question is "yes", as it transpires from the NIST STS implementation. For example the Frequency (monobit) 

test is considered more relevant in the sense that it is carried out as a prerequisite for Runs test. 

However, establishing a hierarchy among tests is a very difficult task, all approaches in this direction 

should be thoroughly analyzed. The authors of [7] propose a prioritisation of the NIST tests, defining three 

tiers of tests. They claim that the tests included in the first tier capture the most relevant types of 

nonrandomness, tier 2 includes three additional, more computational intensive tests and finally tier three 

includes all the NIST tests. 

6. CONCLUSIONS 

In this paper we have shown some major challenges faced during the evaluation of TRNGs and we 

also presented some common pitfalls to be avoided along this difficult process. 

While we do not offer a final answer regarding a definitive methodology for randomness assessment, 

we believe we answered several crucial questions that we hope will ultimately lead to a generally accepted 

evaluation methodology for randomness assessment. 

We know that we do not have a method to obtain a definitive answer regarding the randomness of a 

specific (true) random number generator, but we also know that there are methods that might help us in 

assessing the randomness of a generator, most notably the statistical testing method, which should be 

accompanied by other methods like visual inspection and Kolmogorov complexity based methods. 

We also reviewed the available tools for statistical testing and as a result we recommend the use of 

NIST STS as the main tool, with TestU01/Rabbit as the secondary tool (needs additional implementation 

effort). It is also clear that some statistical tests are more important/relevant than others but a concrete 

hierarchy is difficult to establish yet. However we can say some tests are prerequisites to other tests, such as 

the Frequency test, which should be performed first, because if a generator consistently fails this test, no 

further testing is necessary, and the generator should be rejected. 

Beyond the multitude of statistical tests to be performed on a wide range of input sequences, an 

essential problem is that of finding metrics to integrate the results of these statistical tests (p-values). So far 

two such metrics were implemented in a single statistical testing suite, namely NIST STS. However, other 

metrics were recently proposed [23] that need to be implemented and combined with the existing ones. 

For significant testing results, one should apply statistical tests to many input sequences obtained from 

the generator under evaluation, that is at least 100 sequences for NIST STS. In general the number of 

sequences should be at least the inverse of the significance level alpha, which means that for TestU01/Rabbit 

battery one should test al least 1000 sequences. We recommend the testing of at least 1TB of continuous 

output of the generator, split into nonoverlapping sequences of the selected size. The selected size for one 

sequence could vary but it should be at least 1.000.000 bits for NIST STS, as some tests impose this 

minimum length for their input. However, we recommend the testing of larger sequences as well, in the 10 

MB - 100 MB range. 

Finally it should be said that while statistical testing benefits from several well designed batteries of 

tests, the other approaches are still very deficitary; the only tools for visual inspection that we know are 

FileSeer [15] and FileSeer+[16], and we do not know of any tools based on the Kolmogorov complexity 

method. 
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Based on the analysis of various challenges and pitfalls mentioned in the present paper, we aim at 

developing a general methodology for randomness assessment of true random number generators, as the 

essential further development of this research. 
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