
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 16, Special Issue 2015, pp. 375-384

 HOMOMORPHIC EVALUATION OF SPECK CIPHER

 Mihai TOGAN1, Cristian LUPASCU2, Cezar PLESCA3

1,3certSIGN, RD Department, Bucharest, Romania
2Military Technical Academy, Bucharest, Romania

E-mail: mihai.togan@certsign.ro

In this paper we make some considerations regarding the homomorphic evaluation of the SPECK

lightweight cipher. Firstly, we show a reduced form (in terms of the homomorphic circuit-depth) for

the corresponding boolean circuit of the 32-bits integers adder. This result leads to the possibility of

performing more efficient homomorphic implementations for other applications which are based on

the 32-bits integers addition. Secondly, we present a bit-sliced implementation for the homomorphic

evaluation of the SPECK cipher encryption round. The proposed implementation offers good results

in terms of time costs and memory required to process the algorithm’s rounds. With our

implementation we completed 11 of 22 rounds of the SPECK32/64. From our knowledge, this is the

first research of its kind for this cipher.

 Key words: fully-homomorphic encryption, lightweight cipher, SPECK evaluation.

1. INTRODUCTION

Outsourcing data processing in the cloud in good security conditions offers the use of cloud services a

major advantage. Homomorphic encryption could be a solution in this regard, especially if it can be

combined with more efficient protection methods, such as symmetric encryption algorithms. The

homomorphic cryptography was first introduced by R. Rivest et al. [1] in the early 1978s. The first fully-

homomorphic encryption scheme was first demonstrated to be possible (at least in theory), much later in

2009, by C. Gentry [2]. Using fully-homomorphic encryption schemes allows data to be processed by

untrusted parties in encrypted format. Since 2009, a lot of research effort was focused on finding better

solutions that meet resonable requirements in terms of efficiency. In the last years, there were many

continuations to Gentry’s work, either new schemes or new optimizations to the existing ones [3 – 10].

It is well known that type FHE encryption schemes (even SWHE) are heavy consumers of computing

resources (CPU time, required memory, output data size). Their applicability, at least the theoretical one, is

undeniable in the context of securing data in the cloud. But the immense consumption of resources limits

their effectiveness on all levels: a) when encrypting the data to the client before they are uploaded in the

cloud; b) when transmitting the data on the communications channel between the client and the server; c)

when processing the data, in encrypted format, on the server (in cloud). In terms of memory size, the

requirements are of the GBs order even for small input data set (with a reasonable security of 80/100 bits). In

this regard, the model based on the afore mentioned flow could be modified. The aim is to reduce the effort

both for the client and during the communication. A solution could be based on the following alternative

model [11]:

On the client:

a) The data are encrypted in a traditional manner (using a symmetric block cipher, e.g. AES),

),(dataKSymEnc ;

b) The symmetric encryption key is FHE encrypted,)(KFHEEnc ;

c) The client sends to the server the symmetrically encrypted data and the FHE encrypted key,

)](),,([KFHEEncdataKSymEnc .

On the server:

376 Mihai Togan, Cristian Lupascu and Cezar Plesca 2

d) The server performs a FHE encryption of the),(dataKSymEnc , using the FHE public key, and

gets)),((dataKSymEncFHEEnc ;

e) The server performs the symmetrical decryption of data using a homomorphic evaluation of the

symmetric decryption function. The server gets symmetrically decrypted, but FHE encrypted data,

))()),,(((KFHEEncdataKSymEncFHEEncDecHomEvalSym )(dataFHEEnc ;

f) The server can now apply processing functions (homomorphic evaluations) on the FHE encrypted

data getting results that are then sent to the client.

The main benefit of the model described above is that it reduces the size of the data transferred in the

cloud (we are talking about GBs of data). Furthermore, it reduces the amount of resources required on the

client side. The symmetric encryption (e.g. AES) ensures a very good efficiency in terms of speed (CPU

processing time), required memory and the output size. The size of),(dataKSymEnc is the same with the

input data size. The described model replaces (at the client) the FHE data encryption with the FHE

encryption of the symmetric key (its size is much reduced, compared to the data size). This model’s

drawback is the additional effort for the server prior to the actual data processing. The server needs to go

through the additional FHEEnc and DecHomEvalSym homomorphic functions. This effort could be

compensated by the much bigger processing power of servers in the cloud, as compared to the one available

at the client. Furthermore, these additional computations can be performed once and then multiple

processings can be performed on the data. The greatest benefit occurs at the level of data transmission

between client and server. Sending data of the order of GBs (or TBs) through network environments is

totally inefficient and it leads to very high costs. Considering these facts, the implementation of

homomorphic evaluations for symmetric algorithms becomes very attractive. These evaluations can be full

or partial (decryption, or encryption only). One option (may be more optimally) is to expand the symmetric

key K to the client (before being FHE encrypted). The client expands the round keys
iK and then encrypts

them using FHE. A trade-off can be made in this case between speed gains which could occur on the server –

the evaluation step for the round keys expansion algorithm is avoided – and the additional data volume that

needs to be sent from the client to the server.

Our contribution. In this paper we make a first attempt to perform a homomorphic evaluation of the

SPECK [12] cipher. To the best of our knowledge, no such work exists yet. In the terms of homomorphic

computation effort, the costliest operation of the SPECK is the integers addition (modulo
n2). In this regard,

we propose a reduced form of the boolean circuit required by the 32-bit integers adder. This allows

homomorphic evaluation of the 32-bit addition in 5 levels at most. The most optimal depth that we found in

similar approaches for this operation is 10 levels [13]. This leads to the possibility of performing more

efficient implementations for other applications (e.g. homomorphic evaluations) which are based on the 32-

bits integer additions.

Using this, we propose a homomorphic implementation of the SPECK cipher round. To get a good

level of efficiency, we chose to use the BGV [3] leveled-FHE scheme. We applied and tested our

implementation on a reduced form of the SPECK32/64 cipher. More precisely, we homomorphically

computed 11 of the full 22 rounds, keeping a reasonable level of security and efficiency (in terms of

processing time and memory costs).

This paper is organized as follows. In Sections 2 and 3 we briefly present the SPECK lightweight

cipher and the BGV leveled–FHE scheme, respectively. Section 4 contains the considerations on the 32-bits

integers addition and our homomorphic implementation details along with the experimental results. A few

similar works are shortly described in Section 5. Finally, Section 6 outlines our conclusions.

2. SPECK BLOCK CIPHER

In 2013, the U.S. National Security Agency (NSA) released the SPECK and SIMON encryption

algorithms [12]. These were proposed as two families of lightweight block ciphers. The ciphers were

designed to provide optimal software and hardware performances in the context of limited computing

environments (specially on microcontrollers, ASICs, etc.). The SPECK cipher is based on a Feistel structure

3 Homomorphic evaluation of Speck cipher 377

and allows few variants of data block and key sizes. Each variant supports data words of n-bit which implies

data block sizes of n2 -bits and m -word keys leading to mn -bits key sizes. In general, a variant of the

cipher is referred to as SPECK mnn/2 and can be instantiated with values of 8/6416/24/32/4=n and

2/3/4=m .

Algorithm 1. SPECK Encryption

Input: yx, - Plaintext

Input: [0][1],,1],[kkTk  - Round–keys sequence

Output: yx, - Ciphertext

for 10= Ti  do

][)(ikyxSx  

 xySy  

end for

Algorithm 2. SPECK round–keys expanding

Input: [0][0],,2],[klml  - Initial key sequence

Output: [0][1],,1],[kkTk  - Expanded keys sequence (round–keys)

for 20= Ti  do

 iilSikmil  ])[][(1][

 1][][1][ milikSik 

end for

The encryption, decryption and key–expanding functions of SPECK are based on the following

operations:

 • bitwise XORs

 • additions modulo
n2 bits

 • left and right rotations by  bits (denoted as
S and S


, respectively)

For a
nGFk (2) , the k –th encryption round of a SPECK n2 instance is defined by the map:

nnnn

k GFGFGFGFR (2)(2)(2)(2):  and is implemented by the relations:

 .))(,)((=),(kyxSySkyxSyxRk   
 (1)

The Algorithm 1 presents the pseudo-code of the SPECK encryption routine. The key–scheduling

function inputs the chipher key
0112 ,,,,= klllK mm 

 and generates the T –rounds keys sequence

110 ,,, Tkkk  using the steps presented by the Algorithm 2.

3. BGV SCHEME

The simplest and one of the most efficient fully homomorphic encryption scheme which is known to

date was constructed in [5] and it was refined in [3]. The whole construction is based on the so called

"learning with errors" (LWE) problem, first presented by Regev in [14] (see also [15]). The LWE assumption

states that if
n

qZs is an n dimensional (secret) vector, then any polynomial number of "noisy" random

linear combinations of the coefficients of s are computationally indistinguishable from uniformly random

elements in qZ . More precisely:

378 Mihai Togan, Cristian Lupascu and Cezar Plesca 4

 ,},{},,{)(poly

1=

)(poly

1=

n

ii

c
n

ii ue iii asaa  (2)

where
n

qZia and qiu Z are uniformly random, and the "noise"
ie is sampled from a noise distribution

that outputs numbers much smaller than q (for example, a discrete Gaussian distribution over qZ with small

standard deviation). The LWE problem is at least as hard as finding short vectors in any lattice (see [14] and

[16]). To encrypt a bit m , a random
n

qa Z and a "noise" qe Z are chosen. It is computed

 sa,2emb with s representing the public/secret key. The cipher-text is
1),( n

qbc Za . For the

decryption process, there has to be done the computation  sa,b . The result is represented by me 2

(mod q). Since e is chosen to be much smaller than q , it is obtained that me 2 (mod q) me 2= .

Finally, it is computated me 2 (mod 2) to obtain m . This scheme is homomorphic in respect to addition,

until too much noise accumulates. To make it homomorphic in respect to multiplication it is needed the re-

linearization, introduced in [3, 5]. This method allows the multiplication by encrypting the resulted product

under a new secret key. By posting a "chain" of L secret keys, it may be performed up to L levels of

multiplications. This new construction produces a leveled fully homomorphic encryption scheme without

using Gentry’s bootstrapping procedure (see [2]).

4. HOMOMORPHIC EVALUATION OF SPECK

4.1. FHE addition over
322

Z

 The integers addition modulo
n2 is required by the SPECK functions. This operation involves high

costs in the context of the homomorphic evaluations. This is because of the large number of multiplications

required by the carry bits computations. Considering two 32-bit integers 0131= xxxx  and

0131= yyyy  , to compute yxs = modulo
322 we need to design a boolean circuit for the adder that

computes the sum and carry bits. The circuit will be homomorphic evaluated and that requires to propose its

smallest form in terms of depth-levels. Using a trivial approach, the sum and carry bits can be expressed as

follows:

))(()(=)()()(=where,=

))(()(=)()()(=where,=

=where,=

=

30303030303030303030303131313131

1111111111122222

0011111

000

cyxyxcycxyxccyxs

cyxyxcycxyxccyxs

yxccyxs

yxs











(3)

We can apply the De Morgan law to evaluate the OR operator by using of 2Z additions and

multiplications operations (XORs, ANDs):

 .11))1)(((==  iiiiii yxyxyx (4)

Working with this design, in the case of the first carry bit 1c we consume one level, while for the rest

of the carry bits we need 2 more additional levels for each of 2c to 31c . That means a total number of 61

levels that should be consumed in order to implement the homomorphic evaluation of the adder, in this

manner.

A much better approach can be found in [13]. It has been proposed in the context of the homomorphic

evaluation for the SHA256 algorithm, which involves also 32-bit addition operations. The authors presented

in [13] a solution for the 32-bit adder and use within their design the look-ahead technique. Finally, they

5 Homomorphic evaluation of Speck cipher 379

estimated that the 32-bit adder can be homomorphic evaluated using 10 levels. These are needed to compute

the most significant carry
31c .

In the following, we propose an optimized version for the addition over
322

Z , which aims to reduce

the corresponding boolean circuit of homomorphic multiplications to a maximum depth-5 circuit. In this

regard, we use also a carry look-ahead adder approach. We start the design for our circuit defining the sum

and carry bits of the adder respectively as follows:

iiii cyxs = (5)

 .)()(=1 iiiiii cycxcc 
 (6)

If we make the notations
iii yxG = and

iii yxP = , then we can rewrite the relation (6):

 .=)(=1 iiiiiiiii PcGyxcyxc 
 (7)

The expression (7) can be decomposed as follows:

.)()()(==

)()(==

)(==

=

3021030292830293030303031

2102122223

1011112

01

PPPGPPGPGGPcGc

PPGPGGPcGc

PGGPcGc

Gc











 (8)

In terms of consumed levels (consecutive multiplications) and total operations, the carry 31c is the

most expansive element of the 32-bit adder. We see that the last term of 31c contains a total number of 30

multiplications but all of these are based on independent factors and thus can be implemented using a tree

approach. In this way, the last term can be computed using a 5-depth circuit of homomorphic multiplications.

The other terms are less expansive and can be computed using smaller circuits (depths of 1 to 5 levels).

Finally, we can implement the entire homomorphic evaluation for
31c using circuits which consume

maximum 5 levels. For other carries of the adder, the computation is analogue and does not exceed 5 levels.

In conclusion, in terms of consumed levels, the homomorphic evaluation for the 32-bit adder can be

implemented with our design in the limit of 5 levels.

Our solution eliminates the OR functions used by [13] for the initial expressions that define the ic

values. This is the reason which has led to a reduction of the homomorphic circuit for 31c from 10 levels (in

their case) to 5 levels (in our case).

Using this approach, the total number of multiplications required to be computed in order to complete

the homomorphic evaluation for 31c is 496=3121   multiplications, but these are not cumulative in

terms of ciphertext noise. Relations described by (8) allow further optimization in terms of computation time.

The values calculated for intermediate terms (shorter terms) of each ic could be cached and reused for the

computation of the longer terms of ic or for the terms of the next carry 1ic . In this way, the terms of ic can

be computed using programming techniques based on tree structures and having a set of the involved sub-

trees already pre-computed in the previous steps. There is a penalty which regards the required memory with

this approach, but the total number of multiplications will be lower and the computation time required by the

homomorphic evaluation of the adder will be shorter.

380 Mihai Togan, Cristian Lupascu and Cezar Plesca 6

4.2. FHE implementation of SPECK

For performance reasons, in what follows we focus on SPECK32/64. This variant has a block size of

32=2n bits, a 64-bit secret key and a complete encryption flow needs 22 rounds. In this case, each round

requires additions modulo
162 bits. In the case of 16–bit adder and using the design of the corresponding

circuit, described above, that means we need 4 levels for each round. In our representation, the other

operations required by the SPECK rounds (bitwise XORs and bitwise rotations) are free in terms of levels

consumption.

During the implementation we used a bit-sliced encoding of the plaintext/ciphertext. In this way, the

state of a SPECK n2 instance (we see it as a n2 -bits length array) is encrypted using a set of n2

ciphertexts. More exactly, the bits-array state),,,,,,,(=),(110110  nn yyyxxxyx  is represented (in

FHE encrypted space) by n2 ciphertexts),,,,,,(12110  nnn ccccc  , where each
ic encrypts the

ix bit

and each
nic 
 encrypts the

iy bit, for each ni <0  .

This type of representation allows us to implement in a easy way the operations involved during the

SPECK rounds. The specific Feistel swapping can be achieved easily and with no costs. It consists in

modifying the indexes of the ciphertext in encrypted state array,
nii cc  . The left and right rotations also

consist in modifying the positions of ciphertexts in the working state array. All these permutations of the

encrypted elements are free and not implies costly AND operations. The XORs operations with round keys

or between the state halves are also free in terms of AND operations or consumed levels. The only operation

that involves costs remains the n-bit addition. In terms of levels, it requires)(2 nlog levels. Thus, per total,

in the case of SPECK32/64 (16-bit additions) we need 4 levels to complete an encryption round.

For our experimental part we used the last release of the HElib [17] library. This is a NTL-based C++

library that implements the BGV [3] leveled-FHE scheme. The HElib provides the basic FHE functionalities

to perform our needed computations. We worked with 2Z base and used XOR and AND implemented

operations on FHE–ciphertexts. Based on these functionalities, we implemented the homomorphic evaluation

of the 16-bit adder circuit using the form described above. In our implementation, we used also the proposed

optimization based on the partial terms caching technique during the carries computations. This reduced the

total number of multiplications from 605 (without caching) to 169 (with caching).

In our experiments the round keys were expanded also before, and then were FHE encrypted. We

conducted tests using two configurations for BGV parameters. To keep a reasonable level of efficiency and

security, for both configurations, we made a setup for the BGV scheme configured with a modulus chain

allowing a maximum of 45 levels-depth computations (45=L). With this setup in place, we have

completed 11 from 22 rounds of the SPECK32/64. We presented the results in terms of timing and memory

costs. The results (in terms of timing and memory costs) are presented in the Table 1.

Table 1

The SPECK evaluation costs

 BGV params Sec(k) l slots Enc Time Time/block RAM

 27303=m , 21168=)(m , 45=L 80< bits 756 1772 sec 2.34 sec ≈ 5.8 GB

 46063=m , 45360=)(m , 45=L 110 bits 1008 3624 sec 3.60 sec ≈ 15.6 GB

In conclusion, the half of the SPECK encryption took us 3624 sec for 46063=m , 45360=)(m

and 45=L (these lead to a security level of 110 bits). In this setting, we have 1008 slots. Using the SIMD

[7] capabilities of HElib we get an amortized time of 3.6 sec per SPECK block.

7 Homomorphic evaluation of Speck cipher 381

5. RELATED WORK

 In the literature it was recently proposed a series of homomorphic evaluations [13, 18-22] over

different primitives and cryptographic algorithms. Part of them focus on AES algorithm or other symmetric

algorithms like lightweight ciphers.

In [18] is presented a homomorphic evaluation of AES–128 cipher. First version of this research was

published in 2012 and updated then in 2015. The implementation is based on the BGV [3] scheme (leveled–

FHE scheme) and was built up on HElib FHE–library [17]. During their work, the authors proposed multiple

optimizations for the BGV scheme. The aim was to adjust the scheme and its related techniques (key-

switching, modulus-switching) to the specific needs of the AES circuit. These optimizations are now

included in the baseline version of the HElib, being considered as useful to evaluate other circuits too. The

authors used both variants of the BGV scheme (with and without boostrapping) for evaluation. There were

proposed three approaches for encoding the plaintext/ciphertext : a) packed, where a single ciphertext is used

to encrypt the entire AES state matrix; b) byte-sliced, in this case 16 ciphertexts are used, each one

corresponding to encryption of one byte)(82
F from the AES state matrix; and c) bit-sliced, which operates

with 128 ciphertexts, each corresponding to a bit from the plaintext. In terms of circuit depth, each AES

round is evaluated at a cost of 4 levels (the S-box lookup requires approximately 3.5 levels; other 0.5 levels

being required by the Mix-Column transformation). In terms of time consumption, the complexity comes

from key-switching operations (20 operations/round) which are required after each multiplication and

automorphism (the automorphisms are free in terms of level consumption). The all 10 rounds of AES-128

are evaluated for a total cost of 40 levels. Packed implementation without boostrapping was tested using the

parameters 53261=m , 46080=)(m (a equivalent security level of 150 bits). The homomorphic

evaluation of the AES encryption function was completed in 252 seconds using an usual laptop and 3GB of

RAM. Using the SIMD [7] processing technique they have been processing 120 AES blocks in parallel

yielding an amortized rate of 2 seconds per block. Using the boostrapping and 28679=m , 23040=)(m

(the security is roughly equivalent to 120 bits), the encryption of 180 AES blocks was accomplished in 18

minutes, which means about 6 seconds per block.

In [19] is presented also a bit-sliced homomorphic evaluation of the AES-128 circuit. The evaluation

is based on a custom and optimized implementation of the ATV leveled-FHE encryption scheme [23] (based

on the NTRU cryptosystem [24]). The authors evaluated homomorphically the full 10 rounds of the AES

circuit (40 levels) in 31 hours working with 2048 message slots. This means an amortized evaluation time of

55 seconds per AES block.

In [20] is presented an evaluation of the PRINCE [25] lightweight block cipher. The leveled

implementation is based on the NTRU cryptosystem. The work shows that the PRINCE encryption can be

implemented using only 2 levels per round. Thus, to complete the 12 rounds of the algorithm, has been used

a 24–level deep circuit. The batched implementation evaluated 1024 blocks in 57 minutes, with 3.3 seconds

per block amortization. The authors make also a analysis regarding the depth of the circuits for other few

lightweight ciphers (Present, HIGHT, SEA, KATAN-64, SIMON64/128, requiring circuits of 62, 96, 372,

254, 44 levels, respectively).

In [21, 22] there are homomorphic evaluations for different variants of SIMON [12] lightweight

algorithm. In [21] is realized a bit-sliced implementation based on some FV and YASHE schemes. Using

parameters that assure a security of 80 bits, a SIMON32/64 instance has been completed in 3062 seconds

(FY) and 1029 seconds (YASHE) and having amortized times of 1.7 and 0.57 seconds per block,

respectively. In [22] has been used the BGV leveled-FHE scheme and the HElib library. The resulted

implementation evaluated all the 44 rounds of the SIMON64/128 (requires 1 level per round) in 112 minutes.

Other implementations (along with interesting considerations) on the homomorphic computations of

cryptographic algorithms and primitives can be found in [13]. The authors take into discussion several

algorithms (AES, SHA256, Salsa20, KECCAK). For each of them are presented various encoding

techniques. For AES and KECCAK are presented implementations (these are based also on HElib) and

382 Mihai Togan, Cristian Lupascu and Cezar Plesca 8

experimental results in terms of timing costs and ciphertext sizes. This is probably the first implementation

of this type for the KECCAK algorithm (SHA-3 winner). The SHA256 and Salsa20 algorithms involve 32-

bits additions operations. The homomorphic circuit proposed in [13] for the addition has a depth of 10 levels.

In these conditions, the total number of required levels is very high and leads to very inefficient

implementations.

6. CONCLUSIONS

 In this paper we presented a homomorphic evaluation of the SPECK lightweight encryption

algorithm. From our best knowledge, this is the first such attempt for this algorithm. In the context of the

homomorphic computations, the costliest operation of the SPECK’s algorithm is the n-bits integer addition.

In this regard, we proposed a reduced circuit (in terms of circuit depth) for this operation. In the case of 32-

bits addition, we reduced a 10-depth circuit (proposed in [13]) to a 5-depth circuit. This result leads to the

possibility of performing better homomorphic implementations for other applications which are based on the

32-bits integer additions. In the general case of n-bits integer additions and applying the design described in

this paper, the n-bits additions can be homomorphically evaluated using)(2 nlog -depth circuits. We

proposed also some optimizations techniques that could be applied during the homomorphic computation

processing for the adder circuit. These aim was to reduce the total number of multiplications which are

expansive in terms of processing time. We made an implementation for the SPECK cipher rounds. For our

implementation, we used the BGV [3] leveled–FHE scheme and HElib [17] library. The usage of leveled–

FHE schemes removes the need of the recrypt operation specific to the bootstrapping techniques and could

provide an acceptable degree of efficiency in the case of real applications. For performance reasons, we have

chosen to implement the SPECK32/64 variant. This uses 16-bit integer additions, involving thus a

consumption of 4 levels per round. To keep a reasonable level of efficiency and security, we made a setup in

our work, for the BGV scheme configured with a modulus chain allowing a maximum of 45 levels-depth

computations. With this setup in place, we have completed 11 from 22 rounds of the SPECK32/64. We

presented the results in terms of timing and memory costs.

ACKNOWLEDGMENTS

This research was partially supported by the Romanian National Authority for Scientific Research

(CNCS-UEFISCDI) under the project PN-II-IN-DPST-2012-1-0086 (ctr. 9DPST/2013). All the authors

contributed equally to this work.

REFERENCES

1. R. RIVEST, L. ADLEMAN, M. DERTOUZOS, On Data Banks And Privacy Homomorphisms, Foundations of Secure

Computation, 4, 11, pp. 169–180, 1978.

2. C. GENTRY, A Fully Homomorphic Encryption Scheme, PhD Thesis, Stanford University, http://crypto

.stanford.edu/craig, 2009.

3. Z. BRAKERSKI, C. GENTRY, V. VAIKUNTANATHAN, Fully Homomorphic Encryption without Bootstrapping,

Innovations in Theoretical Computer Science Conference, pp. 309–325, 2012.

4. M. VDIJK, C. GENTRY, S. HALEVI, V. Vaıkuntanathan, Fully Homomorphic Encryption Over The Integers, Advances

in Cryptology – Eurocrypt 2010, Lecture Notes in Computer Science, 6110, pp. 24–43, 2010.

5. Z. BRAKERSKI, V. VAIKUNTANATHAN, Efficient Fully Homomorphic Encryption From (Standard) LWE, IEEE 52nd

Annual Symposium on Foundations of Computer Science, pp. 97–106, 2011.

6. Z. BRAKERSKI, V. VAIKUNTANATHAN, Fully homomorphic encryption from ring-LWE and security for key

dependent messages, Advances in Cryptology – Crypto 2011, Lecture Notes in Computer Science, 6841, pp. 505–524,

2011.

7. N.P. SMART, F. VERCAUTEREN, Fully Homomorphic SIMD Operations, IACR Cryptology ePrint Archive: Report

2011/133, http://eprint.iacr.org/2011/133.pdf, 2011.

http://crypto/

9 Homomorphic evaluation of Speck cipher 383

8. Z. BRAKERSKI, Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP, Advances in

Cryptology – CRYPTO 2012, Lecture Notes in Computer Science, 7417, pp. 868-886, 2012.

9. D. BONEH, C. GENTRY, S. HALEVI, F. WANG, D.J. WU, Private database queries using somewhat homomorphic

encryption, ACNS 2013, Lecture Notes in Computer Science, 7954, pp. 102-118, 2013.

10. J.-S. CORON, T. LEPOINT, M. TIBOUCHI, Batch fully homomorphic encryption over the integers, IACR Cryptology

ePrint Archive: Report 2013/036, https://eprint.iacr.org/2013/036.pdf, 2013.

11. M. NAEHRIG, K. LAUTER, V. VAIKUNTANATHAN, Can homomorphic encryption be practical?, CCSW ’11

Proceedings of the 3rd ACM workshop on Cloud computing security workshop, pp. 113–124, ACM, 2011.

12. R. BEAULIEU, D. SHORS, J. SMITH, B. WEEKS, L. WINGERS, The Simon and Speck Families of Lightweight Block

Ciphers, IACR Cryptology ePrint Archive: Report 2013/404, https://eprint.iacr.org/2013/404.pdf, 2013.

13. S. MELLA, R. SUSSELA, On the Homomorphic Computation of Symmetric Cryptographic Primitives, Cryptography and

Coding, Lecture Notes in Computer Science, 8308, pp. 28–44, 2013.

14. O. REGEV, On Lattices, Learning With Errors, Random Linear Codes And Cryptography, ACM Symposium On Theory of

Computing, pp. 84–93, 2005.

15. V. LYUBASHEVSKY, C. PEIKERT, O. REGEV, On Ideal Lattices And Learning With Errors Over Rings, Advances in

Cryptology – Eurocrypt 2010, Lecture Notes in Computer Science, 6110, pp. 1–23, 2010.

16. C. PEIKERT, Public-key Cryptosystems From The Worst-Case Shortest Vector Problem: Extended Abstract, ACM

Symposium on Theory of Computing, pp. 333–342, 2009.

17. S. HALEVI, V. SHOUP, The HElib library, https://github.com/shaih/HElib, 2015.

18. C. GENTRY, S.HALEVI, N.P. SMART, Homomorphic Evaluation of the AES Circuit (Updated Implementation), IACR

Cryptology ePrint Archive: Report 2012/099, https://eprint.iacr.org/2012/099.pdf, 2015.

19. Y. DOROZ, Y. HU, B. SUNAR, Homomorphic AES Evaluation Using NTRU, IACR Cryptology ePrint Archive: Report

2014/039.

20. Y. DOROZ, A. SHAHVERDI, T. EISENBARTH, B. SUNAR, Toward Practical Homomorphic Evaluation of Block

Ciphers Using Prince, IACR Cryptology ePrint Archive: Report 2014/233, https://eprint.iacr.org/2014/233.pdf, 2014.

21. T. LEPOINT, M. NAEHRIG, A Comparison of the Homomorphic Encryption Schemes FV and YASHE, Progress in

Cryptology – AFRICACRYPT 2014, Lecture Notes in Computer Science, 8469, pp. 318–335, 2014.

22. B. CARMER, D.W. ARCHER, Block Ciphers, Homomorphically, Galois, Inc., 2014.

23. A. LOPEZ-ALT, E. TROMER, V. VAIKUNTANATHAN, On-the-y multiparty computation on the cloud via multikey

fully homomorphic encryption, Proceedings of the 44th symposium on Theory of Computing, pp. 1219-1234, ACM, 2012.

24. J. HOFFSTEIN, J. PIPHER, J. SILVERMAN, NTRU: A ring-based public key cryptosystem, Algorithmic number theory,

pp. 267–288, 1998.

25. J. BORGHOFF, A. CANTEAUT, T. GUNEYSU, E.B. KAVUN, M. KNEZEVIC, L.R. KNUDSEN, G. LEANDER,

V. NIKOV, C. PAAR, C. RECHBERGER, P. ROMBOUTS, S.S. THOMSEN, T. YALCIN, Prince – a low–latency block

cipher for pervasive computing applications, Progress in Cryptology – ASIACRYPT 2012, pp. 208–225, 2012.

