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In this paper we make some considerations regarding the homomorphic evaluation of the SPECK 

lightweight cipher. Firstly, we show a reduced form (in terms of the homomorphic circuit-depth) for 

the corresponding boolean circuit of the 32-bits integers adder. This result leads to the possibility of 

performing more efficient homomorphic implementations for other applications which are based on 

the 32-bits integers addition. Secondly, we present a bit-sliced implementation for the homomorphic 

evaluation of the SPECK cipher encryption round. The proposed implementation offers good results 

in terms of time costs and memory required to process the algorithm’s rounds. With our 

implementation we completed 11 of 22 rounds of the SPECK32/64. From our knowledge, this is the 

first research of its kind for this cipher.  
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1. INTRODUCTION 

Outsourcing data processing in the cloud in good security conditions offers the use of cloud services a 

major advantage. Homomorphic encryption could be a solution in this regard, especially if it can be 

combined with more efficient protection methods, such as symmetric encryption algorithms. The 

homomorphic cryptography was first introduced by R. Rivest et al. [1] in the early 1978s. The first fully-

homomorphic encryption scheme was first demonstrated to be possible (at least in theory), much later in 

2009, by C. Gentry [2]. Using fully-homomorphic encryption schemes allows data to be processed by 

untrusted parties in encrypted format. Since 2009, a lot of research effort was focused on finding better 

solutions that meet resonable requirements in terms of efficiency. In the last years, there were many 

continuations to Gentry’s work, either new schemes or new optimizations to the existing ones [3 – 10]. 

It is well known that type FHE encryption schemes (even SWHE) are heavy consumers of computing 

resources (CPU time, required memory, output data size). Their applicability, at least the theoretical one, is 

undeniable in the context of securing data in the cloud. But the immense consumption of resources limits 

their effectiveness on all levels: a) when encrypting the data to the client before they are uploaded in the 

cloud; b) when transmitting the data on the communications channel between the client and the server; c) 

when processing the data, in encrypted format, on the server (in cloud). In terms of memory size, the 

requirements are of the GBs order even for small input data set (with a reasonable security of 80/100 bits). In 

this regard, the model based on the afore mentioned flow could be modified. The aim is to reduce the effort 

both for the client and during the communication. A solution could be based on the following alternative 

model [11]: 

On the client: 

a) The data are encrypted in a traditional manner (using a symmetric block cipher, e.g. AES), 

),( dataKSymEnc ; 

b) The symmetric encryption key is FHE encrypted, )(KFHEEnc ; 

c) The client sends to the server the symmetrically encrypted data and the FHE encrypted key, 

)](),,([ KFHEEncdataKSymEnc . 

On the server: 
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d) The server performs a FHE encryption of the ),( dataKSymEnc , using the FHE public key, and 

gets )),(( dataKSymEncFHEEnc ; 

e) The server performs the symmetrical decryption of data using a homomorphic evaluation of the 

symmetric decryption function. The server gets symmetrically decrypted, but FHE encrypted data, 

))()),,((( KFHEEncdataKSymEncFHEEncDecHomEvalSym  )(dataFHEEnc ; 

f) The server can now apply processing functions (homomorphic evaluations) on the FHE encrypted 

data getting results that are then sent to the client. 

The main benefit of the model described above is that it reduces the size of the data transferred in the 

cloud (we are talking about GBs of data). Furthermore, it reduces the amount of resources required on the 

client side. The symmetric encryption (e.g. AES) ensures a very good efficiency in terms of speed (CPU 

processing time), required memory and the output size. The size of ),( dataKSymEnc  is the same with the 

input data  size. The described model replaces (at the client) the FHE data encryption with the FHE 

encryption of the symmetric key (its size is much reduced, compared to the data size). This model’s 

drawback is the additional effort for the server prior to the actual data processing. The server needs to go 

through the additional FHEEnc and DecHomEvalSym homomorphic functions. This effort could be 

compensated by the much bigger processing power of servers in the cloud, as compared to the one available 

at the client. Furthermore, these additional computations can be performed once and then multiple 

processings can be performed on the data. The greatest benefit occurs at the level of data transmission 

between client and server. Sending data of the order of GBs (or TBs) through network environments is 

totally inefficient and it leads to very high costs. Considering these facts, the implementation of 

homomorphic evaluations for symmetric algorithms becomes very attractive. These evaluations can be full 

or partial (decryption, or encryption only). One option (may be more optimally) is to expand the symmetric 

key K  to the client (before being FHE encrypted). The client expands the round keys 
iK  and then encrypts 

them using FHE. A trade-off can be made in this case between speed gains which could occur on the server – 

the evaluation step for the round keys expansion algorithm is avoided – and the additional data volume that 

needs to be sent from the client to the server. 

Our contribution. In this paper we make a first attempt to perform a homomorphic evaluation of the 

SPECK [12] cipher. To the best of our knowledge, no such work exists yet. In the terms of homomorphic 

computation effort, the costliest operation of the SPECK is the integers addition (modulo 
n2 ). In this regard, 

we propose a reduced form of the boolean circuit required by the 32-bit integers adder. This allows 

homomorphic evaluation of the 32-bit addition in 5 levels at most. The most optimal depth that we found in 

similar approaches for this operation is 10 levels [13]. This leads to the possibility of performing more 

efficient implementations for other applications (e.g. homomorphic evaluations) which are based on the 32-

bits integer additions. 

Using this, we propose a homomorphic implementation of the SPECK cipher round. To get a good 

level of efficiency, we chose to use the BGV [3] leveled-FHE scheme. We applied and tested our 

implementation on a reduced form of the SPECK32/64 cipher. More precisely, we homomorphically 

computed 11 of the full 22 rounds, keeping a reasonable level of security and efficiency (in terms of 

processing time and memory costs). 

This paper is organized as follows. In Sections 2 and 3 we briefly present the SPECK lightweight 

cipher and the BGV leveled–FHE scheme, respectively. Section 4 contains the considerations on the 32-bits 

integers addition and our homomorphic implementation details along with the experimental results. A few 

similar works are shortly described in Section 5. Finally, Section 6 outlines our conclusions. 

2. SPECK BLOCK CIPHER 

In 2013, the U.S. National Security Agency (NSA) released the SPECK and SIMON encryption 

algorithms [12]. These were proposed as two families of lightweight block ciphers. The ciphers were 

designed to provide optimal software and hardware performances in the context of limited computing 

environments (specially on microcontrollers, ASICs, etc.). The SPECK cipher is based on a Feistel structure 
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and allows few variants of data block and key sizes. Each variant supports data words of n-bit which implies 

data block sizes of n2 -bits and m -word keys leading to mn -bits key sizes. In general, a variant of the 

cipher is referred to as SPECK mnn/2  and can be instantiated with values of 8/6416/24/32/4=n  and 

2/3/4=m . 

 

Algorithm 1. SPECK Encryption 

Input:  yx,  - Plaintext 

Input:  [0][1],,1],[ kkTk  - Round–keys sequence 

Output: yx,  - Ciphertext  

for 10= Ti   do   

      ][)( ikyxSx  
    

      xySy  
 

end for 

     

Algorithm 2. SPECK round–keys expanding  

Input:  [0][0],,2],[ klml  - Initial key sequence 

Output: [0][1],,1],[ kkTk  - Expanded keys sequence (round–keys)  

for 20= Ti  do 

      iilSikmil   ])[][(1][ 
    

      1][][1][  milikSik 
    

end for 

 

The encryption, decryption and key–expanding functions of SPECK are based on the following 

operations:   

    • bitwise XORs  

    • additions modulo 
n2  bits  

    • left and right rotations by   bits (denoted as 
S  and S


, respectively)  

 

For a 
nGFk (2) , the k –th encryption round of a SPECK n2  instance is defined by the map: 

nnnn

k GFGFGFGFR (2)(2)(2)(2):   and is implemented by the relations: 

 .))(,)((=),( kyxSySkyxSyxRk   
 (1) 

 

The Algorithm 1 presents the pseudo-code of the SPECK encryption routine. The key–scheduling 

function inputs the chipher key 
0112 ,,,,= klllK mm 

 and generates the T –rounds keys sequence 

110 ,,, Tkkk   using the steps presented by the Algorithm 2. 

3. BGV SCHEME 

The simplest and one of the most efficient fully homomorphic encryption scheme which is known to 

date was constructed in [5] and it was refined in [3]. The whole construction is based on the so called 

"learning with errors" (LWE) problem, first presented by Regev in [14] (see also [15]). The LWE assumption 

states that if 
n

qZs  is an n  dimensional (secret) vector, then any polynomial number of "noisy" random 

linear combinations of the coefficients of s  are computationally indistinguishable from uniformly random 

elements in qZ . More precisely: 
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where 
n

qZia  and qiu Z  are uniformly random, and the "noise" 
ie  is sampled from a noise distribution 

that outputs numbers much smaller than q  (for example, a discrete Gaussian distribution over qZ  with small 

standard deviation). The LWE problem is at least as hard as finding short vectors in any lattice (see [14] and 

[16]). To encrypt a bit m , a random 
n

qa Z  and a "noise" qe Z  are chosen. It is computed 

 sa,2emb  with s  representing the public/secret key. The cipher-text is 
1),(  n

qbc Za . For the 

decryption process, there has to be done the computation  sa,b . The result is represented by me 2  

(mod q ). Since e  is chosen to be much smaller than q , it is obtained that me 2  (mod q ) me 2= . 

Finally, it is computated me 2  (mod 2) to obtain m . This scheme is homomorphic in respect to addition, 

until too much noise accumulates. To make it homomorphic in respect to multiplication it is needed the re-

linearization, introduced in [3, 5]. This method allows the multiplication by encrypting the resulted product 

under a new secret key. By posting a "chain" of L  secret keys, it may be performed up to L  levels of 

multiplications. This new construction produces a leveled fully homomorphic encryption scheme without 

using Gentry’s bootstrapping procedure (see [2]). 

4. HOMOMORPHIC EVALUATION OF SPECK 

4.1. FHE addition over 
322

Z  

 The integers addition modulo 
n2  is required by the SPECK functions. This operation involves high 

costs in the context of the homomorphic evaluations. This is because of the large number of multiplications 

required by the carry bits computations. Considering two 32-bit integers 0131= xxxx   and 

0131= yyyy  , to compute yxs =  modulo 
322  we need to design a boolean circuit for the adder that 

computes the sum and carry bits. The circuit will be homomorphic evaluated and that requires to propose its 

smallest form in terms of depth-levels. Using a trivial approach, the sum and carry bits can be expressed as 

follows: 

))(()(=)()()(=where,=

))(()(=)()()(=where,=

=where,=

=

30303030303030303030303131313131

1111111111122222

0011111

000

cyxyxcycxyxccyxs

cyxyxcycxyxccyxs

yxccyxs

yxs











(3) 

We can apply the De Morgan law to evaluate the OR operator by using of 2Z  additions and 

multiplications operations (XORs, ANDs): 

 

 .11))1)(((==  iiiiii yxyxyx  (4) 

Working with this design, in the case of the first carry bit 1c  we consume one level, while for the rest 

of the carry bits we need 2 more additional levels for each of 2c  to 31c . That means a total number of 61 

levels that should be consumed in order to implement the homomorphic evaluation of the adder, in this 

manner. 

A much better approach can be found in [13]. It has been proposed in the context of the homomorphic 

evaluation for the SHA256 algorithm, which involves also 32-bit addition operations. The authors presented 

in [13] a solution for the 32-bit adder and use within their design the look-ahead technique. Finally, they 
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estimated that the 32-bit adder can be homomorphic evaluated using 10 levels. These are needed to compute 

the most significant carry 
31c . 

In the following, we propose an optimized version for the addition over 
322

Z , which aims to reduce 

the corresponding boolean circuit of homomorphic multiplications to a maximum depth-5 circuit. In this 

regard, we use also a carry look-ahead adder approach. We start the design for our circuit defining the sum 

and carry bits of the adder respectively as follows: 

 

 
iiii cyxs =  (5) 

 

 .)()(=1 iiiiii cycxcc 
 (6) 

 

If we make the notations 
iii yxG =  and 

iii yxP = , then we can rewrite the relation (6):  

 

 .=)(=1 iiiiiiiii PcGyxcyxc 
 (7) 

 

The expression (7) can be decomposed as follows: 

 

 

.)()()(==

)()(==

)(==

=

3021030292830293030303031

2102122223

1011112

01

PPPGPPGPGGPcGc

PPGPGGPcGc

PGGPcGc

Gc











 (8) 

 

In terms of consumed levels (consecutive multiplications) and total operations, the carry 31c  is the 

most expansive element of the 32-bit adder. We see that the last term of 31c  contains a total number of 30 

multiplications but all of these are based on independent factors and thus can be implemented using a tree 

approach. In this way, the last term can be computed using a 5-depth circuit of homomorphic multiplications. 

The other terms are less expansive and can be computed using smaller circuits (depths of 1 to 5 levels). 

Finally, we can implement the entire homomorphic evaluation for 
31c  using circuits which consume 

maximum 5 levels. For other carries of the adder, the computation is analogue and does not exceed 5 levels. 

In conclusion, in terms of consumed levels, the homomorphic evaluation for the 32-bit adder can be 

implemented with our design in the limit of 5 levels. 

Our solution eliminates the OR functions used by [13] for the initial expressions that define the ic  

values. This is the reason which has led to a reduction of the homomorphic circuit for 31c  from 10 levels (in 

their case) to 5 levels (in our case). 

Using this approach, the total number of multiplications required to be computed in order to complete 

the homomorphic evaluation for 31c  is 496=3121    multiplications, but these are not cumulative in 

terms of ciphertext noise. Relations described by (8) allow further optimization in terms of computation time. 

The values calculated for intermediate terms (shorter terms) of each ic  could be cached and reused for the 

computation of the longer terms of ic  or for the terms of the next carry 1ic . In this way, the terms of ic  can 

be computed using programming techniques based on tree structures and having a set of the involved sub-

trees already pre-computed in the previous steps. There is a penalty which regards the required memory with 

this approach, but the total number of multiplications will be lower and the computation time required by the 

homomorphic evaluation of the adder will be shorter. 
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4.2. FHE implementation of SPECK 

For performance reasons, in what follows we focus on SPECK32/64. This variant has a block size of 

32=2n  bits, a 64-bit secret key and a complete encryption flow needs 22 rounds. In this case, each round 

requires additions modulo 
162  bits. In the case of 16–bit adder and using the design of the corresponding 

circuit, described above, that means we need 4 levels for each round. In our representation, the other 

operations required by the SPECK rounds (bitwise XORs and bitwise rotations) are free in terms of levels 

consumption. 

During the implementation we used a bit-sliced encoding of the plaintext/ciphertext. In this way, the 

state of a SPECK n2  instance (we see it as a n2 -bits length array) is encrypted using a set of n2  

ciphertexts. More exactly, the bits-array state ),,,,,,,(=),( 110110  nn yyyxxxyx   is represented (in 

FHE encrypted space) by n2  ciphertexts ),,,,,,( 12110  nnn ccccc  , where each 
ic  encrypts the 

ix  bit 

and each 
nic 
 encrypts the 

iy  bit, for each ni <0  . 

This type of representation allows us to implement in a easy way the operations involved during the 

SPECK rounds. The specific Feistel swapping can be achieved easily and with no costs. It consists in 

modifying the indexes of the ciphertext in encrypted state array, 
nii cc  . The left and right rotations also 

consist in modifying the positions of ciphertexts in the working state array. All these permutations of the 

encrypted elements are free and not implies costly AND operations. The XORs operations with round keys 

or between the state halves are also free in terms of AND operations or consumed levels. The only operation 

that involves costs remains the n-bit addition. In terms of levels, it requires )(2 nlog  levels. Thus, per total, 

in the case of SPECK32/64 (16-bit additions) we need 4 levels to complete an encryption round. 

For our experimental part we used the last release of the HElib [17] library. This is a NTL-based C++ 

library that implements the BGV [3] leveled-FHE scheme. The HElib provides the basic FHE functionalities 

to perform our needed computations. We worked with 2Z  base and used XOR and AND implemented 

operations on FHE–ciphertexts. Based on these functionalities, we implemented the homomorphic evaluation 

of the 16-bit adder circuit using the form described above. In our implementation, we used also the proposed 

optimization based on the partial terms caching technique during the carries computations. This reduced the 

total number of multiplications from 605 (without caching) to 169 (with caching). 

In our experiments the round keys were expanded also before, and then were FHE encrypted. We 

conducted tests using two configurations for BGV parameters. To keep a reasonable level of efficiency and 

security, for both configurations, we made a setup for the BGV scheme configured with a modulus chain 

allowing a maximum of 45 levels-depth computations ( 45=L ). With this setup in place, we have 

completed 11 from 22 rounds of the SPECK32/64. We presented the results in terms of timing and memory 

costs. The results (in terms of timing and memory costs) are presented in the Table 1. 
   

Table 1  

The SPECK evaluation costs 

  BGV params    Sec( k )   l slots   Enc Time   Time/block   RAM  

 27303=m , 21168=)(m , 45=L   80<  bits   756   1772 sec   2.34 sec   ≈ 5.8 GB  

 46063=m , 45360=)(m , 45=L     110  bits   1008   3624 sec   3.60 sec   ≈ 15.6 GB  

 

In conclusion, the half of the SPECK encryption took us 3624 sec for 46063=m , 45360=)(m  

and 45=L  (these lead to a security level of 110 bits). In this setting, we have 1008 slots. Using the SIMD 

[7] capabilities of HElib we get an amortized time of  3.6 sec per SPECK block. 
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5. RELATED WORK 

 In the literature it was recently proposed a series of homomorphic evaluations [13, 18-22] over 

different primitives and cryptographic algorithms. Part of them focus on AES algorithm or other symmetric 

algorithms like lightweight ciphers. 

In [18] is presented a homomorphic evaluation of AES–128 cipher. First version of this research was 

published in 2012 and updated then in 2015. The implementation is based on the BGV [3] scheme (leveled–

FHE scheme) and was built up on HElib FHE–library [17]. During their work, the authors proposed multiple 

optimizations for the BGV scheme. The aim was to adjust the scheme and its related techniques (key-

switching, modulus-switching) to the specific needs of the AES circuit. These optimizations are now 

included in the baseline version of the HElib, being considered as useful to evaluate other circuits too. The 

authors used both variants of the BGV scheme (with and without boostrapping) for evaluation. There were 

proposed three approaches for encoding the plaintext/ciphertext : a) packed, where a single ciphertext is used 

to encrypt the entire AES state matrix; b) byte-sliced, in this case 16 ciphertexts are used, each one 

corresponding to encryption of one byte )( 82
F  from the AES state matrix; and c) bit-sliced, which operates 

with 128 ciphertexts, each corresponding to a bit from the plaintext. In terms of circuit depth, each AES 

round is evaluated at a cost of 4 levels (the S-box lookup requires approximately 3.5 levels; other 0.5 levels 

being required by the Mix-Column transformation). In terms of time consumption, the complexity comes 

from key-switching operations (20 operations/round) which are required after each multiplication and 

automorphism (the automorphisms are free in terms of level consumption). The all 10 rounds of AES-128 

are evaluated for a total cost of 40 levels. Packed implementation without boostrapping was tested using the 

parameters 53261=m , 46080=)(m  (a equivalent security level of 150  bits). The homomorphic 

evaluation of the AES encryption function was completed in 252 seconds using an usual laptop and 3GB of 

RAM. Using the SIMD [7] processing technique they have been processing 120 AES blocks in parallel 

yielding an amortized rate of 2 seconds per block. Using the boostrapping and 28679=m , 23040=)(m  

(the security is roughly equivalent to 120 bits), the encryption of 180 AES blocks was accomplished in 18 

minutes, which means about 6 seconds per block. 

In [19] is presented also a bit-sliced homomorphic evaluation of the AES-128 circuit. The evaluation 

is based on a custom and optimized implementation of the ATV leveled-FHE encryption scheme [23] (based 

on the NTRU cryptosystem [24]). The authors evaluated homomorphically the full 10 rounds of the AES 

circuit (40 levels) in 31 hours working with 2048 message slots. This means an amortized evaluation time of 

55 seconds per AES block. 

In [20] is presented an evaluation of the PRINCE [25] lightweight block cipher. The leveled 

implementation is based on the NTRU cryptosystem. The work shows that the PRINCE encryption can be 

implemented using only 2 levels per round. Thus, to complete the 12 rounds of the algorithm, has been used 

a 24–level deep circuit. The batched implementation evaluated 1024 blocks in 57 minutes, with 3.3 seconds 

per block amortization. The authors make also a analysis regarding the depth of the circuits for other few 

lightweight ciphers (Present, HIGHT, SEA, KATAN-64, SIMON64/128, requiring circuits of 62, 96, 372, 

254, 44 levels, respectively). 

In [21, 22] there are homomorphic evaluations for different variants of SIMON [12] lightweight 

algorithm. In [21] is realized a bit-sliced implementation based on some FV and YASHE schemes. Using 

parameters that assure a security of 80 bits, a SIMON32/64 instance has been completed in 3062 seconds 

(FY) and 1029 seconds (YASHE) and having amortized times of 1.7 and 0.57 seconds per block, 

respectively. In [22] has been used the BGV leveled-FHE scheme and the HElib library. The resulted 

implementation evaluated all the 44 rounds of the SIMON64/128 (requires 1 level per round) in 112 minutes. 

Other implementations (along with interesting considerations) on the homomorphic computations of 

cryptographic algorithms and primitives can be found in [13]. The authors take into discussion several 

algorithms (AES, SHA256, Salsa20, KECCAK). For each of them are presented various encoding 

techniques. For AES and KECCAK are presented implementations (these are based also on HElib) and 
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experimental results in terms of timing costs and ciphertext sizes. This is probably the first implementation 

of this type for the KECCAK algorithm (SHA-3 winner). The SHA256 and Salsa20 algorithms involve 32-

bits additions operations. The homomorphic circuit proposed in [13] for the addition has a depth of 10 levels. 

In these conditions, the total number of required levels is very high and leads to very inefficient 

implementations. 

6. CONCLUSIONS 

 In this paper we presented a homomorphic evaluation of the SPECK lightweight encryption 

algorithm. From our best knowledge, this is the first such attempt for this algorithm. In the context of the 

homomorphic computations, the costliest operation of the SPECK’s algorithm is the n-bits integer addition. 

In this regard, we proposed a reduced circuit (in terms of circuit depth) for this operation. In the case of 32-

bits addition, we reduced a 10-depth circuit (proposed in [13]) to a 5-depth circuit. This result leads to the 

possibility of performing better homomorphic implementations for other applications which are based on the 

32-bits integer additions. In the general case of n-bits integer additions and applying the design described in 

this paper, the n-bits additions can be homomorphically evaluated using )(2 nlog -depth circuits. We 

proposed also some optimizations techniques that could be applied during the homomorphic computation 

processing for the adder circuit. These aim was to reduce the total number of multiplications which are 

expansive in terms of processing time. We made an implementation for the SPECK cipher rounds. For our 

implementation, we used the BGV [3] leveled–FHE scheme and HElib [17] library. The usage of leveled–

FHE schemes removes the need of the recrypt operation specific to the bootstrapping techniques and could 

provide an acceptable degree of efficiency in the case of real applications. For performance reasons, we have 

chosen to implement the SPECK32/64 variant. This uses 16-bit integer additions, involving thus a 

consumption of 4 levels per round. To keep a reasonable level of efficiency and security, we made a setup in 

our work, for the BGV scheme configured with a modulus chain allowing a maximum of 45 levels-depth 

computations. With this setup in place, we have completed 11 from 22 rounds of the SPECK32/64. We 

presented the results in terms of timing and memory costs. 
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