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In this paper we propose a new chaotic discrete dynamical system and we prove, theoretically and 

numerically, its complex behavior, using Lyapunov exponent, bifurcation diagram and fractal 

dimensions of the attractor. Then, we use the proposed chaotic dynamical system in a new 

pseudorandom number generator having a structure similar to a linear feedback register. In the end, 

we present the results of its statistical and randomness analysis. The very good results obtained 

qualify the proposed pseudorandom number generator for use in cryptographic and simulation 

applications.   
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1. INTRODUCTION 

The relation between chaos and cryptography has become more and more attractive in the 

cryptography community, since the chaotic dynamical system possess some features, such as a high 

sensitivity to the initial condition, ergodicity, mixing property and structural complexity. Those properties 

can actually fulfill the based requirements postulated by Shannon regarding the security of a cryptosystem, 

i.e., confusion and diffusion [1]. Even if the dynamical systems are chaotic, their behavior is, still, 

deterministic. This was the main idea used by Oishi and Inoue [2] in 1982, when they developed a new 

pseudorandom number generator (PRNG) based on arbitrary Kolmogorov entropy. Since then, many 

researchers have proposed new chaos based pseudorandom number generators: Gonzalez and Pino [3] using 

the logistic map, Li in [4] based on the piecewise-linear map, Patidar in [5] involving the chaotic standard 

map and so on [6 – 12]. Some of the proposed pseudorandom number generators have shown a series of 

drawbacks, such as the predictability of generated values induced by the usage of a single chaotic orbit or a 

non-uniformity of the outputs caused by the improperly chose of the control parameters values [13 – 15].  

Motivated by the extent of previous work, this paper aims to present a new chaotic discrete dynamical 

system which, furthermore, is included in a new PRNG, having a linear feedback register structure. 

The paper is organized as follows: Section 2 presents the proposed dynamical system, including its 

chaotic behavior assessment; Section 3 presents the design of the new PRNG scheme, Section 4 presents the 

results of analysis performed using NIST suite, in order to test the randomness and the uniform distribution 

of values generated by the new PRNG. Finally, Section 5 summarizes the work carried out. 

2. THE PROPOSED CHAOTIC DYNAMICAL SYSTEM 

In order to obtain a large parameter’s values space for which a dynamical system is in a chaotic 

regime, we proposed in [16] a new model for chaos generation, defined as: 

xn+1=h(f(xn)), 
(

(1) 
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Where f represents a periodic real map, selected to ensure a large phase space, while h represents a bounded 

map.  

Therefore, the proposed discrete dynamical system, defined with respect to (1), is given by: 

xn+1=f(xn), 

 

(2), 

where r is the control parameter.   

Next, the dynamical behavior of the proposed chaotic system is investigated, by both theoretical 

analysis and numerical simulation [17, 18] (e.g., by means of Lyapunov exponent, attractor’s geometric 

shape and fractal structure, bifurcation diagram, etc.). 

 

Fig. 1 – Lyapunov exponent of the proposed map. 

A strong instrument used for the time behavior analysis is the Lyapunov exponent, which indicates the 

exponential divergence of two orbits starting from two close points in the phase space [17, 18]. If the map 

has a positive exponent, then the dynamical system is in a chaotic regime [17]. In practice, the Lyapunov 

exponents can be calculated numerically using the Wolf's algorithm [19]. In Fig. 1 are plotted the values of 

the Lyapunov exponent of an orbit for parameter . 

It can be seen from the figure above that an orbit which starts from an initial point has a chaotic 

behavior for any value of the parameter r≥5.5. 

 

THEOREM 1. Let  be the map, defined by the relation (2). Then, for any control 

parameter r≥5.5 the map f is chaotic. 

Proof: For an orbit  of the chaotic map f, the Lyapunov exponent  is given by the relation 

[17]:   

, 

(3) 

In order to calculate the limit L, we applied a chi-square test in conjunction with a Monte Carlo 

analysis [20] over 1000 sets of points , and we proved that the values extracted from an 

orbit are uniformly distributed in the interval [0, π]. Thus, we obtain: 
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(4) 

Using trapezoidal numerical integration (Fig. 2) we found the following approximation of the integral 

from the right term of the relation (4): 

 

(5) 

 

Fig. 2 – Numerical approximation of integral L. 

Thus, from relation (5) we obtain: 

. 
(

6) 

From the relation (6) we can conclude that the Lyapunov exponent of the proposed map is positive for 

any value of the control parameter r≥5.5 , so the map is chaotic for any r≥5.5.    

The time evolution of an orbit can be also represented using another instrument for chaos theory, the 

bifurcation diagram, which represents the set of all attractors (Fig. 3) in respect to the control parameter    

[17, 18]. 

 

Fig. 3 – Bifurcation diagram of the proposed map. 



360 Ana Cristina Dascalescu and Radu Boriga 4 

       

It can be observed that for a value of the parameter  r≥2.1, the  map has an instable behavior and for 

the parameter  r≥5.5 the map enters in a complete chaotic regime.  

The road to chaos of the map with parameter r≥5.5 is not achieved through the doubling process of 

the period, specific to some chaotic maps [17], but is induced by the existence of a dense periodic orbits of 

any period in the phase space [0, π]. 

Also, the analysis of the attractor’s geometric shape of a dynamical system [17] can provide 

information about its behavior, for certain values of its control parameter. An attractor specific for a chaotic 

dynamical system has a complex fractal structure, while for a periodic dynamical system the attractor has a 

regular shape [17]. In Fig. 4 is represented the attractor of the f map for r=10. 

 

Fig. 4 – The attractor of the proposed map for r=10. 

The fractal structure of an attractor is indicated by a fractional value of its fractal dimension, which is 

a measure of the complexity of a self-similar geometric shape. The fractal dimensions commonly used are 

box-counting dimension, Hausdorff dimension, information dimension and correlation dimension [21-23]. 

Using the plots from Fig. 5 and Fig. 6, we established that the attractor of the  map has a box-counting 

dimension DB=1.9151 and a correlation dimension DC=1.9172.   

  

Fig. 5 – Box-counting dimension of the attractor . Fig. 6 – Correlation dimension of the attractor . 

The fractional values of these fractal dimensions lead us to the conclusion that the proposed map has a 

strange attractor, which indicates an underlying chaotic behavior. 

Summing up, the obtained results prove that the proposed map has a chaotic behavior for a very large 

parameter values interval (i.e., for any value ≥5.5), in comparison to the well-known chaotic maps [17, 18] 
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such as logistic map (i.e., for ) tent map (i.e., for ), etc. So, the proposed chaotic map is 

suitable for chaos-based cryptographic applications. 

3. THE PROPOSED PRNG 

In the case of chaos-based PRNGs, the security issues are typically caused either by predictability of 

the values extracted from a single orbit of the involved chaotic map, or by the choice of its control 

parameters from a narrow values interval [13 – 15], which, because of discretization effects, can lead to a 

degradation of the chaotic behavior to a stable one (e.g., the logistic map has some "islands of stability" 

around the values 3.63, 3.74 and 3.82 of the control parameter, even it has a chaotic behavior starting from 

the value 3.57 of the control parameter [17, 18]). 

The proposed PRNG has a linear feedback register structure, based on 32 chaotic maps of type (2), 

having different values of control parameters. The current value, initialized with the seed, is passed circularly 

through each of the 32 chaotic maps. After each group of  chaotic maps, the current value is discretized to 

an unsigned integer, which is bitwise rotated by a random number of positions and, afterwards, it's outputted. 

Moreover, the control parameter of the next chaotic map will be dynamically altered by adding the sum of 

some of the previously chaotic maps outputs, selected using a binary mask. Thus, the unpredictability and the 

sensitivity to the initial conditions of the proposed PRNG is very high. 

  In this way, the proposed PRNG highly ameliorates both shortcomings above mentioned. Each 

output is obtained from multiple compounded chaotic orbits and, moreover, is altered by a bitwise rotation. 

The usage of chaotic maps of type (2) guarantees a full chaotic regime, without "islands of stability", for any 

value of the control parameter greater than 5.5, allowing a safe selection of control parameters from a very 

large interval of values.  

Next, we will denote by  a subprogram which implements a chaotic map of type 

(2), by  a subprogram which returns the bit  of a -bytes unsigned integer , by 

 a subprogram which returns the value of an unsigned integer  after a circular shift of its bits 

with  positions, and by  the  largest integer less than or equal to the real number . 

Thus, the proposed algorithm for generating pseudorandom numbers is as it follows: 

 

Algorithm 1. The proposed pseudorandom number generator 

INPUT: unsigned integers  (number of random unsigned integers to be generated) and  (the binary mask), 

real number  (initial value, chosen from the interval ), array  of real numbers (control 

parameters of the chaotic maps, chosen so to ensure a chaotic behavior, i.e. greater than ) 

 

 

 

 
while  do 

 
while  and ( ) do 

 

 
if  then 

 

 

 

 
end if 

 
end while 

 
end while 

OUTPUT: array  of random unsigned integers 
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A logic diagram of the proposed algorithm is presented in Fig. 7. 

 

 

Fig. 7 – The logic diagram of the proposed algorithm. 

Obviously, the asymptotic computational complexity of the proposed algorithm it's a linear one in 

terms of number  of random unsigned integers to be generated, i.e. , so it can be considered as a very 

fast one. Experimentally, the proposed PRNG have proved an average speed around 10 MB/s, confirming its 

fastness. 

Moreover, the proposed PRNG is scalable, allowing the use of an arbitrary number of chaotic maps of 

type (2) (with the only restriction that it must be multiple of 4) and is suitable for implementation using 

parallel programming.  

4. PERFORMANCES ANALYSIS OF THE PROPOSED PRNG 

4.1. Seed space 

One of the most common applications of PRNGs is the use in cryptographic applications to generate 

encryption keys. In this case, the initial conditions of the PRNG will be embedded in the secret key of the 
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cryptographic application, decisively influencing its security. For this reason, a PRNG must have a large 

seed space, in order to prevent an attack by brute-force. 

The seed of the proposed PRNG consists from 33 real numbers (an initial value and 32 control 

parameters of the involved chaotic maps) and an unsigned integer (the binary mask). The implementation of 

the PRNG must use a real data type having a high precision, in order to prevent the negative effects of the 

discretization. If the implementation of the cryptosystem uses a programming language that complies with 

IEEE Standard 754-2008 [24], then we recommend the double data type, which stores real numbers on 8 

bytes, with an accurate of 15 decimal places. In this case, the size of the seed space will be equal to 

, a large enough value to prevent guessing of the initial conditions by a brute-force 

attack in a useful time.  

 4.2. Statistical testing 

Before testing the randomness of the values generated by the proposed PRNG, we performed a 

standard statistical analysis, based on well-known indicators, such as: mean value, variance, standard 

deviation, skewness, kurtosis and entropy [20]. In this scope, we generated m=1000 different binary 

sequences, obtained from 1000 randomly chosen seeds, each sequence having length n=1000000 bytes and 

we performed the statistical analysis at byte level (i.e., considering every byte as an unsigned integer 

between 0 and 255). The average values obtained are summarized in Table 1. 
 

Table 1  

Statistics of the proposed PRNG 

Mean Standard deviation Variance Skewness Excess kurtosis Entropy 

127.4688 73.9037 5461.8 -0.0000961 -1.2003 7.9998 

 

From Table 1 it can be observed that the mean has a value very close to the ideal of 128, while the 

high values of standard deviation and variance shows a spreading of the bytes over the whole range of values 

{0, 1, …, 255}. Moreover, the value very close to  of the skewness indicates a symmetric distribution of the 

values around the mean [20 – 25], while a negative excess kurtosis denotes a distribution with flatter peak 

around the mean [20 – 26]. Summing up, the bytes generated by our PRNG have an uniform distribution, 

along with a very high degree of uncertainty, proved by the value of entropy very close to the ideal value of 

8 [1].  

 4.3. Randomness testing 

In order to analyze the randomness of the values generated by the proposed PRNG, we use The NIST 

Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications 

[27], a statistical package of 15 tests developed to test the randomness of binary sequences produced by a 

PRNG, all being focused on different types of non-randomness that could exist in a binary sequence. Each 

test produces a P-value, which is a real number between 0 and 1. If the P-value is greater than a significance 

level α, by default equal to 0.01, then the binary sequence passes the test, so the sequence may be considered 

to be random with a confidence of 99%. Moreover, if the tested binary sequences are random, then the P-

values must be uniformly distributes in the interval [0,1). The P-valueT corresponding to the uniformity of 

the P-values must to be greater than 0.0001 so as the P-values to be considered uniformly distributed [27].  

In our statistical experimentations we used m=2000 different binary sequences, each sequence of 

length n=1000000 bits. The acceptance region of the passing ratio is , where 

m is the number of tested binary sequences and p=1-α is the probability of passing each test [27]. For 

m=2000 and the probability p=0.99 (corresponding to the default significance level α=0.01) the confidence 

interval is [0.983, 0.996].  
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In Table 2 we summarized the results of the testing process performed by the NIST suite. From the 

second column of the table it can be observed that the passing ratio of each test lies inside the confidence 

interval [0.983, 0.996], while from the third column it can be observed the uniform distribution of the P-

values for each statistical test, so we can conclude that all the binary sequences generated using the proposed 

PRNG are random with respect to all NIST tests.  
 

Table 2  

The results of the NIST tests 

Test name 
Passing ratio 

of the test 
P-value for 
uniformity 

Result 

Frequency 0.989500 0.643366 SUCCESS 

Block Frequency 0.992000 0.362765 SUCCESS 

Cumulative Sums 0.990000 0.324436 SUCCESS 

Runs 0.991500 0.348869 SUCCESS 

Longest Run 0.990500 0.428095 SUCCESS 

Rank 0.988000 0.224821 SUCCESS 

FFT 0.986000 0.557481 SUCCESS 

Non-Overlapping Template 0.985000 0.663130 SUCCESS 

Overlapping Template 0.993500 0.833436 SUCCESS 

Universal 0.986500 0.013953 SUCCESS 

Approximate Entropy 0.989000 0.863690 SUCCESS 

Random Excursions 0.983512 
 

0.644003 
 

SUCCESS 

Random Excursions Variant 0.985161 
 

0.582224 
 

SUCCESS 

Serial 0.988500 0.234981 SUCCESS 

Linear Complexity 0.990000 0.899871 SUCCESS 

  

In conclusion, all the results obtained shows that the proposed PRNG is fast and has a very large 

seed space, and, the most important, generates random values with an uniform distribution, which qualifies it 

for use in cryptographic and simulation applications.  

4.4. Strict avalanche criterion randomness test 

Firstly, the Strict Avalanche Criterion (SAC) was proposed in [28] for measuring the amount of non-

linearity in substitution boxes used in block ciphers (e.g. AES and DES). In this sense, it estimates the 

amount of change in the output sequence when the key is changed by one bit. Mathematically, a mapping  

having a -bit output from an input satisfies SAC if: 

 

(7), 

where  denotes the Hamming weight and  denotes the Hamming distance [29]. 

Castro et al. proposed in [30] a new definition of SAC for randomness testing of a PRNG, interpreting 

the Hamming distances between F(x) and  as a random variable and stated that it should follow the 

Binomial distribution  

 

(8) 

The test is applied on the PRNG output, interpreted as sequence of n-bit blocks 

( ) and the distribution of Hamming distances between pairs of adjacent blocks is 

observed. The closeness of this distribution with B(1/2, n) is measured using the chi-square goodness-of-fit 

test. If the observed distribution is close to the expected one, the sequence is considered to pass the test. 
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In our SAC testing process we used the same m=2000 different binary sequences, each sequence of 

length 1000000 bits, used in NIST randomness tests described above. In Table 3 we summarized the average 

results of the SAC tests, considering a 0.05 significance level. 
 

Table 3  

The results of the SAC tests 

Block length 
( ) 

Chi-square goodness-of-fit test 
Result 

Obtained value Expected value 

8 9.2714 15.5073 SUCCESS 

16 12.4437 26.2962 SUCCESS 

32 28.7903 46.1943 SUCCESS 

64 49.7318 83.6753 SUCCESS 

128 53.7717 155.4047 SUCCESS 

  

 In conclusion, the obtained results shows that the proposed PRNG passes the SAC randomness test for 

all block lengths of , so it possesses a high degree of unpredictability of the generated 

values.  

4.5. Speed test 

 An important factor to be taken into account in the performance evaluation of a PRNG is the speed. In 

this sense, we run the proposed algorithm, implemented in C language, under Windows 8.1, using a PC with 

Intel(R) Core(TM) i3 @2.53GHz CPU and 4GB RAM. In Table 4 we compare the mean speed of the 

proposed PRNG with the speeds of other chaos-based PRNGs.  
 

Table 4  

Speed performances 

PRNG Speed (MB/s) 

Our PRNG 29.12 

Ref. [31] 3.88 

Ref. [32] 3.33 

 
 Analyzing the speeds from Table 4, we can say that the proposed PRNG is a fast one, with a mean 

speed of 30 MB/s, which is better than other chaos-based proposed PRNGs. 

5. CONCLUSIONS 

In this paper, firstly we proposed a new discrete chaotic dynamical system and, using the Lyapunov 

exponent and other chaos theory tools, we proved that it has a chaotic behavior for a very large control 

parameter values interval. Secondly, this important feature of the proposed chaotic dynamical system is 

exploited in a new PRNG schema having a linear feedback register structure, allowing a dynamic alteration 

of the control parameters values of some involved chaotic maps. Finally, we presented the results of the 

statistical and randomness testing performed on the values outputted by the proposed PRNG. The very good 

results obtained, along with its simplicity and high speed, qualify the proposed PRNG schema for use in 

cryptographic and simulation applications.    
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