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The algorithm Rijndael was tested and chosen as the Advanced Encryption Standard (AES) in 2001, 

at the end of a security evaluation that lasted for years. Testing and evaluation process proved the 

algorithm’s strength and efficiency. The algorithm AES is a block cipher with a SPN (Substitution 

Permutation Network) structure. The cornerstone of the algorithm’s security is the substitution box 

(S-box) and its strength relies on its special algebraic construction which uses mixed operation in 

different order Galois Fields (base field and extended field). This paper is a study on the possibilities 

to improve some cryptographic properties of Rijndael Substitution box and the effect of these 

changes. 
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1. INTRODUCTION 

The algorithm Rijndael was developed by Joan Daemen and Vincent Rijmen, and was selected by 

National Institute of Standards and Technology (NIST) as standard encryption algorithm (Advanced 

Encryption Standard - AES) in 2001. The algorithm is a symmetric block cipher based on a substitution-

permutation network (SPN). AES has long been a subject of interest for developers, cryptanalysts and the 

researchers, due to following: 

– Security: the algorithm was extensively tested for long period of time (4 years, by NIST, in order to 

be adopted as a standard and 14 years, by the academic community, since the adoption as standard). During 

the evaluation, the algorithm was tested against linear and differential cryptanalysis attacks. The exceptional 

resistance against these attacks was obtained by so called „design by cryptanalysis” technique. This design 

approach means that the developers intended to create an algorithm especially resistant to some specific 

attacks, in this case linear and differential cryptanalysis attacks. 

– Speed: AES is the fastest algorithm compared to other block algorithm offering the same level of 

cryptographic strength. 

– Simplicity: The structure of the algorithm is easy to understand and can be easily decomposed in 

parts to be analyzed and evaluated. 

2. THE STRUCTURE OF AES 

The algorithm AES is fully described in FIPS-PUB-197 standard. For the sake of completeness, a brief 

description of the algorithm presenting the main parameters will also be given here. AES is a key-iterated 

block cipher composed of repeated application of round transformations on the data block. The block length 

size of AES is 128 bit length and there are three variants of the algorithm, with various key sizes: 128, 192 

and 256 bits. The input and output of AES are considered one-dimensional arrays with the dimension of 8-bit 

bytes. For the encryption operation the inputs are the plaintext block and the key, and the output is the 

ciphertext block. For the decryption operation the inputs are the ciphertext block and the key, and the output 
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is the plaintext block. The round transformation of AES operates on an intermediate result named state.  The 

state is interpreted as a rectangular matrix of bytes having 4 rows and a number of columns Nb which is equal 

to the block length (128) divided by 32, hence 4 columns. The key is mapped onto a two-dimensional cipher 

key. The cipher key is also a rectangular array with four rows similar to the state. The number of columns of 

the cipher key is denoted by Nk and is equal to the key length (128, 192 or 256) divided by 32, hence 4, 6 or 

8 columns. The bytes of the key are mapped onto the bytes of the cipher key in the order: k0,0, k1,0, k2,0, k3,0, 

k0,1, k1,1, k2,1, k3,1, k0,2… 
 

 
Fig.1 – The state and the key (Nb =4 and Nk =6). 

 

The AES has a number of rounds indicated by Nr which depends on the size of the key. For key sizes 

of 128, 192 or 256 bits, the number of rounds is respectively 10, 12 or 14. The AES encryption process is 

composed of the initial key addition, denoted by AddRoundKey, followed by Nr – 1 applications of the 

transformation Round, and finally one application of FinalRound. The initial key addition and every round 

take as input the State and a round key. The round key for round i is denoted by ExpandedKey [i], and 

ExpandedKey [0] denotes the input of the initial key addition. The derivation of ExpandedKey from the 

CipherKey is denoted by KeyExpansion. 

The round transformation is denoted Round, and is a sequence of four transformations, called steps. 

The final round of the cipher is slightly different, it is denoted FinalRound, and is a sequence of three steps 

instead of four steps. Below, in the form of command script, there are described the operations of rounds that 

operates on arrays to which pointers (State, ExpandedKey[i]) are provided. 
 

Round (State, ExpandedKey[i]) 

{ 

SubBytes (State); 

ShiftRows (State); 

MixColumns (State); 

AddRoundKey (State, ExpandedKey[i]); 

} 

FinalRound (State, ExpandedKey [Nr]) 

{ 

SubBytes (State); 

ShiftRows (State); 

AddRoundKey (State, ExpandedKey [Nr]) ; 

} 
 

The transformation SubByte (Substitution of Bytes) is the only non-linear step of the cipher. SubByte 

is a layer of permutation consisting of S-box applied bytes of the state. The figure 2 describes the effect of 

SubByte transformation to the state. The designers of the AES applied the following design criteria for S-

box, as follows: 

1. Non-linearity 

a) Correlation. The maximum input-output correlation amplitude must be as small as possible. 

b) Difference propagation probability. The maximum difference propagation probability must be as 

small as possible. 

2. Algebraic complexity. The algebraic expression of Substitution of Bytes operation (SRD) in GF(28) 

has to be complex. 
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Fig. 2 – SubByte operation on the state. 

 

The AES S-box was chosen being defined by the following function in GF(28) : 

 

       g : a  b = a-1.      (1) 
 

In the formula (1), the elements of GF(28) are considered to be polynomials having a degree smaller 

than eight, with coefficients in the finite field GF(2). By definition, the multiplication is done modulo the 

irreducible polynomial m(x) = x8 + x4 + x3 + x + 1, and the multiplicative inverse a-1 is defined accordingly. 

The value 00 is mapped onto itself. By definition, g has a very simple algebraic expression, that is g = x254. 

This simple expression could allow algebraic manipulations to be used to effectuate algebraic attacks on the 

cipher. Therefore, the authors of the AES built the S-box as the sequence of g and an invertible affine 

transformation f. The affine transformation f has no impact on the non-linearity properties, but if it is 

properly chosen, it allows SRD to have a complex algebraic expression. The authors have chosen an affine 

transformation that has a very simple description, but a complicated algebraic expression if it is combined 

with the transformation g. 

3. THE ALGEBRAIC EXPRESSION OF THE AES S-BOX 

In [1], the authors present five methods to find the algebraic expression of Rijndael S-box. These 

methods are as follows: 

(1) Lagrange formula; 

(2) Partition equivalence; 

(3) Solve the equations of the polynomial base; 

(4) Solve the dual trace of natural base; 

(5) Solve the q-polynomial. 

The authors of the present paper started to find the algebraic expression by using the Lagrange 

interpolation formula in finite fields. In order to do this, having in mind the high complexity of the calculus 

involved, the authors developed a program in Mathematica . They noticed that for polynomial expression 

that has to approximate more than 13 points, the calculus complexity is too high and the program cannot 

cope with it. So they changed the approach and made the decision to find the algebraic expression of AES S-

box through solving a linear system with coefficients in GF(28). For this purpose, the authors also developed 

a program in Mathematica  to solve the linear equation system described below. An algebraic expression 

that describes any transformation in finite fields, including an S-box, has the general expression: 

 

SB(x) = b0 + b1 · x + b2 · x2 + b3 · x3 + … + b253 · x253 + b254 · x254 + b255 · x255 .  (2) 

 

By setting all possible values for x  GF(28) and considering the coefficients {b0, b1… b255} as 

variables, it is obtained the linear system with coefficients in GF(28):  
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Many papers, including [1] and [2] give the expression of the AES- GF S-box, in the form: 

fRD (x) = 05 · x254 + 09 · x253 + F9 · x251 + 25 · x247 + F4 · x239 + 01 · x223 + B5 · x191 + 8F · x127 + 63  (4) 

Solving the linear system (3) the coefficients b0, b1 … b255 of algebraic expression of the S-box are found 

easily. For example, solving the system (3) for unmodified AES S-box, the coefficients {b0, b1 … b255} = { 

A256[99],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,A256[143],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,A256[181],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0, A256[1],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, A256[244],0,0,0,0,0,0,0, A256[37],0,0,0, A256[249],0, 

A256[9], A256[5],0}. In this notation, A256[249] represents the 249th element of Galois Field, 

corresponding to ‘F9’ hex value. The obtained values are according to algebraic form of S-box (4), which 

confirms the validity of the method. 

In [1], the authors pretend that the AES S-box can be vulnerable to the interpolation attack due to the 

fact that has only 9 terms are involved in the algebraic expression. In order to increase the number of terms 

involved in the algebraic expression of proposed S-box, the authors tried the multiplication of AES S-box 

algebraic expression.  

4. THE MULTIPLICATION OF THE AES S-BOX 

It is expected that multiplying an algebraic expression by itself, the number of terms may increase or 

may remain the same. Caution must be taken in order to verify if the obtained function is still a permutation. 

This condition is to be checked for an S-box in order to be invertible. 

In this section the authors start to multiply the algebraic expression (4), thus: 

fRD
(i) (x) = (05 · x254 + 09 · x253 + F9 · x251 + 25 · x247 + F4 · x239 + 01 · x223 + B5 · x191 + 8F · x127 + 63)i (5) 

where i{1,2,…254}. Due to the fact that the programs Mathematica , which the authors used, is unable to 

factor complex algebraic expressions with coefficients in GF(28), the authors chose another approach, that is 

the multiplication of every other element of AES S-box by itself for a number i of times. Then the algebraic 

expression for the resulting equivalent S-box is found by solving the linear system of equation with 

coefficients in GF(28), similar to (3). 

Finding the algebraic expression of: 

fRD
(i) (x) = (05 · x254 + 09 · x253 + F9 · x251 + 25 · x247 + F4 · x239 + 01 · x223 + B5 · x191 + 8F · x127 + 63)i  (6) 

is equivalent to solve the linear system given in: 
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 The solution of system (7), for i=239 is: 

{b0,b1…b255}= 

A256[99],A256[120],A256[244],A256[238],A256[219],A256[234],A256[241],A256[106],A256[78],A256[1

98],A256[140],A256[62],A256[79],A256[105],A256[7],A256[25],A256[229],A256[88],A256[118],A256[7

3],A256[131],A256[137],A256[117],A256[72],A256[217],A256[119],A256[220],A256[251],A256[165],A2

56[57],A256[151],A256[41],A256[126],A256[157],A256[57],A256[75],A256[233],A256[221],A256[122],

A256[124],A256[125],A256[129],A256[162],A256[144],A256[204],A256[247],A256[186],A256[29],A256[

28],A256[119],A256[239],A256[79],A256[17],A256[169],A256[4],A256[2],A256[185],A256[206],A256[1
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55],A256[122],A256[11],A256[117],A256[7],A256[100],A256[127],A256[78],A256[126],A256[56],A256[

93],A256[97],A256[11],A256[19],A256[121],A256[48],A256[57],A256[63],A256[45],A256[182],A256[39]

,A256[147],A256[81],A256[167],A256[10],A256[18],A256[57],A256[190],A256[149],A256[75],A256[101

],A256[233],A256[43],A256[104],A256[119],A256[160],A256[17],A256[47],A256[46],A256[92],A256[16]

,A256[3],A256[25],A256[5],A256[238],A256[12],A256[145],A256[255],A256[4],A256[167],A256[163],A

256[126],A256[104],A256[231],A256[199],A256[73],A256[232],A256[171],A256[249],A256[214],A256[1

80],A256[173],A256[78],A256[117],A256[96],A256[22],A256[4],A256[122],A256[30],A256[146],A256[2

26],A256[189],A256[204],A256[186],A256[213],A256[200],A256[201],A256[20],A256[203],A256[59],A2

56[8],A256[84],A256[123],A256[194],A256[190],A256[42],A256[153],A256[48],A256[179],0,A256[229],

A256[132],A256[59],A256[235],A256[123],A256[71],A256[192],A256[158],A256[21],A256[133],A256[10

1],A256[12],A256[130],A256[50],A256[83],A256[242],A256[136],A256[73],A256[234],A256[42],A256[9

2],A256[149],A256[64],A256[241],A256[150],A256[121],A256[230],A256[160],A256[113],A256[39],A25

6[21],A256[105],A256[46],A256[246],A256[227],A256[222],A256[76],A256[44],A256[201],A256[197],A

256[139],A256[119],A256[244],A256[26],A256[55],A256[52],A256[37],A256[68],A256[216],A256[96],A

256[79],A256[73],A256[72],A256[13],A256[215],A256[176],A256[241],A256[189],A256[61],A256[84],A

256[58],A256[72],A256[145],A256[191],A256[208],A256[106],A256[232],A256[189],A256[206],A256[53

],A256[242],A256[112],A256[63],A256[186],A256[195],A256[250],A256[114],A256[254],A256[105],A25

6[254],A256[168],A256[235],A256[57],A256[189],A256[245],A256[6],A256[115],A256[37],A256[65],A2

56[222],A256[142],A256[242],A256[196],A256[50],A256[202],A256[16],A256[128],A256[216],A256[146

],A256[110],A256[20],A256[192],A256[205],A256[155],A256[10],A256[75],A256[246],0}. We can notice 

that for fRD
(239) (x) there are involved 254 terms. 

5. RESULTS 

After solving the system (7) for any i{1,2,…254}, the authors noticed that: 

(i) For i{1,2,4,8,16,32,64,128}, the number of terms involved in the resulting algebraic expression 

remains unchanged, that is 9; 

(ii) For i{1,2,…254}\{1,2,4,8,16,32,64,128}, the number of terms involved in the resulting algebraic 

expression increases, being larger than 91 with a maximum of 254; 

(iii) However, only 128 of the resulting fRD
(i) (x) are permutations, that is almost half; 

(iv) The authors considered the general expression (2) having 256 terms. But in GF(28) for any value of 

x, excepting the null value, the following expression holds: 

 

x255=1.                  (8) 

 

As consequence, the coefficient b255 found by solving the linear system (7) is null for any 

i{1,2,…254}. This was expected because the value of the coefficient b255 can be included in the value of b0 

in all equations of (7), due to (8), but not in the first equation. This exception explains the null value for b255. 

Table 1 

Order of multiplication/ number of terms for algebraic expression (i/k) 

i/k 1/9 2/9 4/9 7/91 8/9 9/93 

13/92 14/91 16/9 19/93 22/93 23/163 26/92 

28/91 29/163 31/218 32/9 37/93 38/93 41/93 

43/163 44/93 46/163 47/217 49/93 52/92 53/162 

56/91 58/163 59/219 61/219 62/218 64/9 67/92 

71/163 73/93 74/93 76/93 77/162 79/219 82/93 

83/162 86/163 88/93 89/163 91/219 92/163 94/217 

97/93 98/93 101/163 103/219 104/92 106/162 107/219 

108/219 112/91 113/163 116/163 118/219 121/217 122/219 

124/218 127/254 128/9 131/91 133/93 134/92 137/93 

139/163 142/163 143/218 146/93 148/93 149/163 151/217 
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152/93 154/162 157/219 158/219 161/92 163/163 164/93 

166/162 167/219 169/162 172/163 173/219 176/93 178/163 

179/219 181/219 182/219 184/163 188/217 191/254 193/91 

194/93 196/93 197/163 199/218 202/163 207/217 206/219 

208/92 209/163 211/219 212/162 214/219 217/219 218/219 

223/254 224/91 226/163 227/218 229/217 232/163 233/219 

236/219 239/254 241/218 242/217 244/219 247/254 248/218 

251/254 253/254 254/254 - - - - 

 

In Table 1 there are given the results after solving the systems of equations (7) for any i{1,2,…254}. 

In this table i represent the order of multiplication for elements of standard AES S-box, and k represents the 

number of terms for corresponding algebraic expression. The missing orders of multiplication (e.g. 

k{3,5,6…252}) correspond to noninvertible maps which are not appropriate for building S-boxes, and they are not 

listed here. 
Taking into consideration additional requirement for an S-box, given in [2], that are non-linearity and 

difference propagation probability, the authors noticed that the non-linearity of algebraic expressions (i) 

remains 112 and difference propagation probability is 2-6, but for algebraic expressions (ii) the non-linearity 

decreases under 100 (in average 96) and difference propagation probability is higher than 2-6. 

6. CONCLUSIONS 

Even if the proposed purpose of S-box multiplication (that is to increase the number of terms involved 

in the algebraic expression of S-box) was attained for some powers of i, the authors noticed that the other 

design criteria for S-box deprecated. These deprecated properties are non-linearity and difference 

propagation probability. This study concludes that it is not possible to improve all design criteria for S-box at 

the same time by multiplication.  

REFERENCES 

1. L. JINGMEI, W. BAODIAN, W. XINMEI, New Method to Determine Algebraic Expression of Rijndael S-box, InfoSecu04,     

pp. 181-185, 2004. 

2. J. DAEMEN, V. RIJMEN, The Design of Rijndael AES – The Advanced Encryption Standard, Springer, 2002. 

3. NIST, Specification for the ADVANCED ENCRYPTION STANDARD (AES), Federal Information Processing Standards  

Publication 197, 2001. 

4. S. D. SINHA, C. P. ARYA, Algebraic Construction and Cryptographic Properties of Rijndael Substitution Box, Defence  

Science Journal, 62, 1, pp. 32-37, 2012. 

 


