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The cloud computing providers need to offer security warranties. As we all know, one of the critical 

points is the confidentiality and access to customer data which, these days, is migrated and managed 

in cloud environments. In this sense, one solution is based on encrypting data before its upload in 

cloud. But this approach sets a limit regarding data processing. In this article we present a practical 

application of the homomorphic encryption schemes, namely the problem of finding 

maximum/minimum from a collection of encrypted integers. First, we present our algorithm that can 

be run directly in cloud without the need for an intermediate data exchange with the client. Second, 

our experimental results show the time resources necessary to evaluate the proposed algorithm. 

         Key words:  fully-homomorphic encryption, cloud processing, maximum problem.      

1. INTRODUCTION 

 There is a traditional solution for ensuring the confidentiality of the data which is migrated in cloud. It 

resides in encrypting the data at the source and keeping the encrypted data on servers in cloud. Access to the 

decryption keys is granted only to authorized users. The traditional model consists in three parts: i) the cloud 

provider manages data storage services; ii) the data owners encrypt their data files before the upload in the 

cloud platforms (the encrypted data is stored in cloud or shared with other users that have access rights to it); 

iii) the operations performed on the data (searches, updates, modifications...) are done by the cloud users 

which have to download the data in encrypted format and use the necessary keys for decoding these files. 

However, this approach has its weaknesses. An important one resides in the fact that such a model, let 

us call it static, does not allow processing the data directly from the cloud infrastructure. The main advantage 

of cloud migration, namely the large computing power provided to the customers, cannot be used in this case 

because the data is not accessible to the cloud. Such a solution limits the cloud infrastructure only to the data 

storage service. This approach leads to a decrease in scalability and flexibility. There are others shortcomings 

of the model presented above, but we chose not get into details in these directions as these topics do not 

represent the subject for the present paper. What is important for the perspective of the present paper is the 

possibility of being able to process encrypted data directly in cloud. A solution much closer to the model that 

cloud services are able to offer to their clients involves renting also the processing capabilities. 

The idea of using a fully-homomorphic encryption scheme that would work in reasonable performance 

conditions allow data to be processed in encrypted format. The server knows only the processing algorithm. 

Data processing is done by the server using this algorithm, involving a series of mathematical operations on 

the data. In this case, the formal scenario implies an entity (e.g. a cloud client) that sends information under 

an encrypted format to a third party server (e.g. a cloud computing service that cannot be considered 

trustworthy) in order to store and process data. The server must be able to perform computations on the data 

according to the algorithm, without having access to the decryption keys (thus, neither to the data). The 

result of this encrypted format processing is sent back to the client entity that holds the decryption keys. 

The scenario we are speaking of was first demonstrated to be possible in 2009 by the first fully-

homomorphic encryption scheme. This new scheme, introduced by C. Gentry in [1], allows performing two 

operations (i.e. addition and multiplication) with encrypted data. The result obtained from these operations 
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represent precisely the encryption of the result of some operations performed over the data in clear. This 

entire context of migrating data in cloud aims to perform operations with encrypted data in cloud. From a 

practical point of view, the functionality and the efficiency of the theoretical model would provide an 

excellent mechanism for data protection, at least for ensuring confidentiality. With the data migrated by the 

clients under encrypted forms before reaching the cloud servers and with the homomorphic encryption 

scheme, the cloud servers could implement any computation on these data without having access to the 

customers data. 

Our contribution, in the above presented context, resides in a solution for the issue of determining 

the maximum element within a collection of fully-homomorphic based encrypted values. In this regard, we 

proposed a logarithmic form of the maximum algorithm in order to be best adapted to a leveled – FHE 

scheme. Moreover, our algorithm can find the maximum of a given encrypted values array without the need 

to collaborate with the client. We argued the benefits of our approach in terms of levels costs. We made a 

practical implementation of the algorithm using a leveled-FHE scheme and we measured the involved costs. 

The suggested routines can be part of an application running on an untrusted server (located in cloud). 

A first simple example of applicability that crossed our minds is a cloud server that holds two lists: one 

corresponding to the name in clear of the employees of a client company and a second one with encrypted 

values for their corresponding salaries. In this scenario, the client can get from the server the largest value for 

the amount of the revenue which is paid by the company, without the cloud server to find out this value or 

whose employee it belongs. 

This paper is organized as follows. In Section 2 we briefly present some homomorphic encryption 

schemes along with a summary of the BGV [2] scheme. We chose the BGV scheme for the implementation 

of our solution of finding the maximum from a collection of encrypted integer values. Section 3 briefly 

describes the issue of comparing two encrypted integers. We used it within the proposed solution which we 

described in Section 4 along with our experimental results. Finally, Section 5 outlines our conclusions. 

2. HOMOMORPHIC ENCRYPTION SCHEMES 

Homomorphic cryptography was first introduced by R. Rivest et al. [3] in the early 1978s. Gentry’s 

idea [1] is that any processing algorithm over a set of data can be reduced to a multitude of addition and 

multiplication operations at the bit level (XORs and, respectively, ANDs). Thus, if those data are bitwise 

encrypted and the encryption scheme supports the application of as many homomorphic transformations in 

relation to the two mathematical operations above, then it becomes possible to perform any processing 

algorithm directly on the encrypted data. The result of the processing is the one that could be obtained if the 

same operations were applied over the data in clear format. 

Still, a question remains. Is this idea efficient enough to be used for computing models applied over 

externalized data? The efficiency is analyzed in relation to (1) the time required for executing the 

encryption/decryption algorithms and the processing operations evaluation and (2) the required computing 

resources (memory, processing power etc.), both on the server and at the client. Gentry analyzed in [4] the 

time required to a Google search using a query containing only one word which is encrypted. The encryption 

is realized using techniques from [1]. Gentry estimated that this new kind of Google search is a trillion times 

longer than the existing time required for queries in unencrypted format of the same word. Even if deeper 

analyses were made on Gentry’s proposal, his estimation offers quite an eloquent dimension of the 

inefficiency of these schemes at the moment. 

Another challenge with these types of schemes is represented by the support in obtaining the highest 

possible flexibility at the level of the processing algorithm. This flexibility refers to the ability of the scheme 

to support a wider range of operations on the encrypted data, while also keeping the accuracy of the results 

and an acceptable level of resources required for accomplishing this processing. In this context of 

performance, regarding efficiency and flexibility, there are more issues that compromise Gentry’s idea. Since 

2009, a lot of research effort was focused on finding reliable solutions that meet the requirements of the 

scenario presented at the beginning of this section. In the recent years, there were many continuations to 

Gentry’s work, either new schemes or new optimizations to the existing ones [2, 5 – 12].
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2.1. BGV Encryption Scheme 

The simplest and one of the most efficient fully homomorphic encryption scheme which is known to 

date was constructed in [6] and it was refined in [2]. The whole construction is based on the so called 

"learning with errors" (LWE) problem, first presented by Regev in [13] (see also [14]). The LWE assumption 

states that if 
n

qZs  is an n  dimensional (secret) vector, then any polynomial number of "noisy" random 

linear combinations of the coefficients of s  are computationally indistinguishable from uniformly random 

elements in qZ . More precisely: 
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where 
n

qZia  and qiu Z  are uniformly random, and the "noise" 
ie  is sampled from a noise distribution 

that outputs numbers much smaller than q  (for example, a discrete Gaussian distribution over qZ  with small 

standard deviation). The LWE problem is at least as hard as finding short vectors in any lattice (see [13] and 

[15]). 

To encrypt a bit m , a random 
n

qa Z  and a "noise" qe Z  are chosen. It is computed 

 sa,2emb  with s  representing the public/secret key. The cipher-text is 
1),(  n

qbc Za . For the 

decryption process, there has to be done the computation  sa,b . The result is represented by me 2  

(mod q ). Since e  is chosen to be much smaller than q , it is obtained that me 2  (mod q ) me 2= . 

Finally, it is computated me 2  (mod 2) to obtain m . 

This scheme is homomorphic in respect to addition, until too much noise accumulates. To make it 

homomorphic in respect to multiplication it is needed the re-linearization, introduced in [2, 6]. This method 

allows the multiplication by encrypting the resulted product under a new secret key. By posting a "chain" of 

L  secret keys, it may be performed up to L  levels of multiplications. This new construction produces a 

leveled fully homomorphic encryption scheme without using Gentry’s bootstrapping procedure (see [1]). 

3. COMPARISON OF FH-ENCRYPTED INTEGERS 

For the algorithm which we propose in the next section of this paper, we needed the >  comparison 

operator. In this manner, we make a short review of our previous implementation [16] of a homomorphic 

evaluation for the comparison operators applied to encrypted integer values. 

In [16], we bring in an ))(( 2 nlogO  solution that evaluates the comparison YX > . This comparison 

evaluates two fully-homomorphic–based encrypted integers. Long story short, this approach uses the binary 

representations of the integers 021= xxxX nn   and 021= yyyY nn  . In the particular case of the one-

bit length integers, x  and y , the comparison operators can be expressed using the following polynomial 

relations in 2Z . The addition and the multiplication operations represent the bitwise XOR and AND:  

     1=> xxyyx                                                                    (2) 

1=1=  yxyx                                                                (3) 

For the general case of n -bit length integers, the polynomial relation which can evaluate the 

comparison YX >  are recursively constructed using the following decomposition (  /2= nl ): 
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The relations (2) and (3) are generalized by the recurrences presented below (choosing each time 

 /2= jl ). This generalisation is possible making use of (4) and the definitions of the two functions t  and 

z  (see bellow):  

 









 1>,

1=,
=

,,,

, jtzt

jxyx
t

liljliljli

iii

ji                                                       (5) 

 



 

 1>,

1=1,
=

,,

, jzz

jyx
z

liljli

ii

ji                                                            (6) 

 

The two functions t  and z  are defined as follows: 

1.  ti,j represents the boolean value corresponding to the truth value of the expression 

ijiiji yyxx  11 > 
 

2.  zi,j represents the boolean value corresponding to the truth value of the expression 

ijiiji yyxx  11 = 
. 

 

The evaluations of YX >  and YX =  can be obtained by computing nt0,  and nz0, , respectively. 

Their definitions led to an implementation based on divide-and-conquer approach. The main benefit consists 

in the depth of the equivalent boolean circuits which are exactly 1)(2  nlog  in the case of nt0,  and 

 )(2 nlog  for nz0, . The practical implementation (followed by the corresponding experimental results) 

described in [16] is built on top of HElib library [17]. It consists in coding the corresponding compute_t and 

compute_z recursive functions (C/C++ code). In this manner, we used the leveled version of the BGV FHE 

scheme [2] (embedded in the 2014 version of HElib). The reported time for the comparison of two 8-bit 

integers, YX > , is seconds12  (for 128 bits of the claimed security and using one core of an Intel(R) 

Xeon(R) E5-1620 at 3.6 GHz).  

In the literature, there is another approach of the same issue of the encrypted integers comparison, 

which can be found in [18]. This one is based on integers substraction and evaluation of the resulted sign-bit. 

As both methods, [18] and [16], have similar efficiency, we chose to use [16] as it represents the result of our 

previous work. 

4. THE MAXIMUM OF A FH-ENCRYPTED ARRAY 

4.1. A naive approach 

 A rather naive approach for the maximum problem was already suggested in [16]. The method 

requires the existence of a messages exchange protocol between a server and a client. The messages are 

represented by FH-encrypted values. In short, we supposed that the server holds a set of N  encrypted 

numbers },,,{ 21 NCxCxCx  , with iCx  representing the FH-encryption of the value ix  for Ni 1= . The 

algorithm to find the maximum value, that we proposed in [16], is described below:   

    • For each index i  found in the { N1, } interval, the server makes the following computations:   

        - For all j  with ij  , the server computes the ),( ji CxCxF  evaluation. The F  function is the 

result of calling a function compute_s that evaluates the result of   operator. The result of the evaluation of 

),( ji CxCxF  is (1)Enc  if and only if ji xx  ; 

        - The server computes the product ),(=)( jiij
CxCxFiP  

. )(iP  is (1)Enc  if and only if 

ix  is the maximum in the set },,,{ 21 Nxxx   ( ji xx   for any ij  ) .
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    • The server sends the value of )(iP  to the client  

    • The client decrypts it and if the obtained value is 1, then the protocol stops with the result that 

the 
ix  value is the maximum element  

    • If the client decrypts 0, then it will request the server to go for the next i  in the index set 

}{1, N . 

The above solution has some disadvantages. For each 
thi  iteration of this message exchange, the client 

has indeed the possibility to know whether or not the maximum of the array is represented by the x  value 

(indexed by i  in the set of encrypted values). It is obvious that, in the worst case, in order to find the 

maximum over a set of N  values, it is necessary to know N  intermediate results computed and sent by the 

server to the client. Furthermore, for the computation of each of these values, there are necessary 1N  

evaluations of the comparison operator   (which is also the most expensive of the three operators that can 

be evaluated =,>, ). Another disadvantage is due to the fact that the server can find the information 

regarding the position i  of the maximum element, even if it does not know its value. Indeed, this can be a 

problem considering the context of certain applications which involve the usage of the solution for the 

maximum. 

Resuming the simple example we presented in the first chapter of this paper, we try to exemplify this 

disadvantage. Suppose, again, the server in cloud that holds the two lists: one containing the employees of a 

client company (storing the names of the employees in clear, on the server) and one composed by the 

encrypted values for their salaries. In the context of the client requesting the employee (meaning the index in 

the list) with the highest income, the server can find out the person with the maximum revenue. In order to 

eliminate this problem, the protocol above needs to be continued so as to fully browse the list of indexes up 

to step Ni = , even if the client already learned the maximum in an intermediate step. In this case, all 1N  

comparison evaluations are performed on the server, although at the client some of the N  decryptions may 

not be necessary. 

4.2. The new proposal 

 We continue our previous work (started in [16]), where we used the functions of homomorphic 

evaluation of the comparison operators that we proposed. In the present section we describe a better 

implementation and an improvement of the algorithm for finding the maximum value of a set of FH-

encrypted integers. Some experimental results for sustaining our results are also summarized. Our new 

solution, that we are about to present, adapt the well known classical algorithm for finding maximum of an 

array (presented in Algorithm 1) in order to support the homomorphic evaluations. 

 
Algorithm 1 Classical algorithm for maximum 

1: function GETMAX(int V [ ], int N) , where N is the number of elements of V 

2:       int max = v[0]; 

3:       for (int i = 1; i < N; i++) 

4:            if (v[i] > max) 

5:                max = v[i]; 

6:       return max; 

7: end function 

 

To allow the homomorphic evaluation of the above algorithm we have to rewrite some parts of it (the 

decision section) using polynomial forms. First of all, we use an additional function that makes the selection 

of the maximum of two values. The result of this selector depends on the result of the comparison between 

its input values. We define the selection function as follows: 
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It is easy to see that the function sel (which is in fact the maximum selection operator of two integer 

values a  and b , depending on the value of t ) can be written under a polynomial form: 

 

 btattbasel )(1=),,(                                                              (8) 

In [16], we defined the function compute_t which returns the boolean value of the comparison ba >  

evaluation. We replaced the comparison component of the Algorithm 1 with the function compute_t and the 

decisional component with the selection function sel. In this way, if we have an array of FH bitwise-

encrypted integers and we are using the polynomial implementation of compute_t, then we can run the 

function described by the Algorithm 2 to find the maximum value of an array containing FH-encrypted 

integers. The new form of the maximum algorithm is presented in Algorithm 2. 

  
Algorithm 2 The maximum algorithm 

1: function GETMAX(int V [ ], int N), where N is the number of elements of V 

2:       int max = v[0]; 

3:       for (int i = 1; i < N; i++) 

4:       { 

5:             t = compute_t (v[i], max); 

6:             max = sel (v[i], max, t); 

7:       } 

8:       return max; 

9: end function 

 

We obtained the polynomial form of the function sel having all operations in 2Z  (the multiplication 

and the addition are realized using the AND and XOR bit-operators) by using the binary representations for 

021 ,...,= aaaa nn   and 021 ,...,= bbbb nn  . We also needed to define 021 ,...,= tttT nn   as the integer value 

having all bits 1 or 0 (representing the n -duplicated result of the compute_t function). We used the 

definition of sel under the following polynomial form:  
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For the implementation of the sel function, which evaluates the polynomial relation in (10), we 

worked with bit-level encrypted values (therefore, all operations are done in 2Z , where additions and 

multiplications mean XORs and ANDs, respectively). For the FHE needed crypto-primitives (KeyGen, Enc, 

Dec, add and mul operators) we used the features provided by HElib [17]. We also adapted the finding 

maximum function (GETMAX) to a form that uses the divide-and conquer technique. As the Algorithm 2 

uses a linear iteration of the input array, in the context of the homomorphic encrypted values, it is not 

optimal. The non-optimal feature arises from the 1N  iterations (comparisons and selections) with an 

)(NO  equivalent homomorphic circuit depth (the number of consecutive multiplications which have a 

negative impact for the growth of the curve of the cipher-text noise). The divide-and-conquer approach is 

more appropriate in this case. Overall, it does not decrease the total number of iterations (therefore, neither 

the total number of involved multiplications), but it reduces the homomorphic circuit depth to ))(( 2 NlogO  

instead of )(NO . 

The Algorithm 3 contains our final recursive implementation. We are working with bit-level encrypted 

integers. The encryption of each integer results in a vector of ciphertexts and, in this case, the input array of 

the maximum algorithm is an array of vectors of encrypted bits. Using this approach, the server knows the 

algorithm required for it to deliver the maximum element in the array. What is of great importance is the fact 

that the server does not know neither the value of the maximum, nor its position (its index) in the input 

collection of elements. This hidden information occurs as a result of the truth values of the comparisons 
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which are not known to the server (the ct_t value is also encrypted). In this case, the selection of the 

maximum of two values occurs invisibly for the server. Additionally, each intermediate maximum value 

ct_max (the encrypted maximum of two integers) is modified as a result of the mathematical computations 

which are required for its homomorphic evaluation. Finally, after completing all iterations, the server is 

unable to identify the maximum of the array. 

  
Algorithm 3 The maximum algorithm working on encrypted values 

1: function GETMAX(vector < vector < Ctxt >> V [ ], int start, int N) 

2:       if (N == 1) 

3:             return V [start] 

4:       vector<Ctxt> ct_max_1 = GETMAX (V, start,  /2N ); 

5:       vector<Ctxt> ct_max_2 = GETMAX (V, start +  /2N ,  /2N ); 

6: 

7:       vector < Ctxt > ct_t = compute_t (ct_max_1, ct_max_2); 

8:       vector < Ctxt > ct_max = sel (ct_max_1, ct_max_2, ct_t); 

9:       return ct_max; 

10: end function 

5. EXPERIMENTAL RESULTS 

For the experimental part of the Algorithm 3, we used the HElib-based implementation of the 

comparison operator ( > ) made within [16]. For n -bits length integers, each iteration of the algorithm needs 

1)(2 nlog  levels for evaluation of the compute_t function (comparison). The sel function (selection) 

contains only one multiplication and, therefore, it needs one additional level. We have already argued that 

the circuit depth is )(2 Nlog . This means a total of 2))()(( 22 nlogNlog  levels needed for the evaluation 

of the maximum finding algorithm for an array of N  encrypted integers. This will conduct to a limitation of 

using the leveled version of the [2] scheme. In our case, for an initial setup measuring L  levels, we can keep 

the correctness of the algorithm for at most 
2))(

2
/(

2
nlogL

 numbers. There is well known that the performance 

of the scheme is affected by the bound )(= mN  , modulus chain length (fixed number of levels) and the 

security parameter k . 

For 2))(/(1= 2  nlogLN , the linear completion of the Algorithm 2 conducts to a threshold which 

can be completely inefficient in real applications. In order to illustrate this fact, let us consider the example 

of a configuration of 50=L  levels. Algorithm 2 limits the array to a maximum of 11=N  numbers (8-bits 

integers). In this proper case, Algorithm 3 allows a processing of 1025 numbers representing a threshold 

which is much more closer to the needs of the real applications. As the parameter L  drastically affects the 

performance and the security of the scheme, its value can not increase unconditionally. Though, it can be 

established a trade-off between N , the number of values that are processed by a real application, and the 

values of m  and L  which provide an acceptable level for the security and the efficiency. If N  exceeds the 

value for L  (which is acceptable in terms of the scheme security and efficiency), the solution can be based 

on the bootstrapping technique. Even using the leveled version under the bootstrapping optimization of the 

BGV scheme [2], the tree approach which we proposed in Algorithm 3 is more efficient. This efficiency 

derives from the fact that the recrypt operation (which is time consuming) will be rarely used (as its rate of 

applicability is logarithmic instead of the linear one that is used by the Algorithm 2). 

We conducted experiments testing the time consumption for the evaluation of our algorithm. We tried 

various combinations of the m  and L  parameters. These parameters define the level of security and they 

affect the efficiency of the FHE scheme that we used. For the security level we worked with the HElib 

estimation (in accordance with [19], equation number 8, for 1= ). In Table 1 we resume the costs (in 

terms of both time and memory consumption) that we measured for the homomorphic evaluation of the 

GETMAX function. 
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Table 1 

The GETMAX evaluation costs (in terms of time and memory) of different configurations. 

Params 
Sec( k ) 

getmax comp_t select Lf Enc Dec Mem 

m = 21845, L = 22, N = 16 48 bits 279.1 sec 10.4 sec 8.3 sec 1 1.5 sec 0.7 sec ~ 800MB 

m = 28679, L = 22, N = 16 106 bits 346.9 sec 12.8 sec 10.2 sec 1 1.6 sec 0.9 sec ~ 1.0GB 

m = 53261, L = 40, N = 16 140 bits 1295 sec 47.3 sec 38.9 sec 18 5.7 sec 3.2 sec ~ 3.8 GB 

 

The conducted tests involved an workstation with an x64 of openSUSE 12.1 distribution (Intel i7-

4710HQ processor running at 3.5 GHz, one core and 8GB RAM). Working with the bit-level encryption, we 

used 2=p  as the base for plain-space specific parameter of the HElib and we used 23 bits per level. Table 

1 contains the needed time costs for the homomorphic evaluation of the GETMAX function for an array of 

16=N  integer values (of 8=n  bits length). From the table, one can observe that for an 140 bits security 

level, the maximum element can be found in 21 minutes. The average time consumption values at each 

iteration of the algorithm are also presented in Table 1. This time consumption is implied by two basic 

operations: the comparison (ct_t) and the selection (ct_max). The fL  value denotes the base level where the 

maximum element is found at the end of the evaluation. 

In the case of HElib implementation for an initial fixed L , the values of fL  are consistent with the 

computations above, considering that the base level of a recent encrypted number is 2L . Resuming to our 

case, for 16=N  and 8=n  there are taking place a number of 5=L  modulus-switching operations at each 

of the 4=)(2 Nlog  necessary levels for the circuit completion. The table contains (indicative) both the 

average time required for the encryption (Enc) and the decryption (Dec) of an 8-bit integer and the average 

memory needed for the evaluation (the array of the encrypted numbers is loaded entirely into the memory). It 

is obvious that the memory requirement is quite high (3.8 GB for 16=50,= NL  numbers). A more optimal 

solution may be considered as making use of some software engineering tricks (e.g. keeping into memory, 

when needed, of only a subset of the array which enters or is about to enter into the processing iteration). 

The proposed solution can be considered relatively efficient in terms of time and the size of the 

processed data. Still, the memory consumption may lead to a limitation. For 21845=m  and 40=L , we 

tested 101=N  encrypted numbers. The result containing the maximum value we obtained in 3400 seconds 

and it required 4.8GB of memory. For comparative purposes we did an alternative implementation for the 

maximum algorithm. It is based on the FHEW library [20], which provides the FHE symmetric encryption 

scheme detailed by [12]. The FHEW library allows to encrypt single bit messages using a fast bootstrapping 

technique to supports the homomorphic evaluation of arbitrary boolean circuits on encrypted data. Using the 

FHEW, in the same hardware conditions and similar security level, finding the maximum of 16 integers took 

about 3000 seconds, at least twice the time consumed by HElib leveled implementation. 

6. CONCLUSIONS 

 In this paper we proposed a solution for the homomorphic evaluation of the maximum problem in the 

case of an encrypted array. Our solution is based on the bitwise encryption of integer values and all the 

computations take place in 2Z . We built upon our previous work [16] that present a solution for the 

evaluation of the comparison operator applied to encrypted integers. The new proposal assures the 

confidentiality for both of the maximum value and its position into the array. 

As simple as it is in the plain domain, the maximum problem rise some challenges when it comes to an 

array of encrypted values. First, we present a naive solution which has several security and efficiency issues. 

Second, in contrast with this approach, we proposed a new algorithm that does not need to exchange 

intermediate data with the client in order to identify the maximum. Another contribution of this paper 

concerns the adaptation of the proposed algorithm (i.e. the reduction of levels consumed) for leveled-FHE 

schemes with respect to efficiency. The usage of a leveled FHE schemes [2] removes the need of the recrypt 
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operation specific to the bootstrapping techniques and provides an acceptable degree of efficiency in the case 

of real applications. 

Technical aspects of our implementation and some experimental results involving the time costs are 

described in the last part of the paper. For our implementation we used the latest version of HElib library 

[17]. At the moment, the simple usage of this library represents a challenge as it contains low-level crypto-

primitives and an optimal configuration of its parameters is needed to be set and adjusted through 

experiments for each type of application. 

We consider that efficiently solving the maximum/minimum problem in the encrypted domain is 

important as this could lead to solutions for other types of more complex techniques such as clusterization. 

The advantages of the FHE schemes are incontestable in the context of outsourcing data processing to the 

cloud. Actually, there is a trend to migrate known problems and algorithms to the homomorphic encryption 

field. We can find many recent attempts in the literature which target homomorphic evaluation of known 

problems like sorting of data, signal processing or cryptographic algorithms like AES, Simon or SHA2/3 [18, 

19, 21, 24, 26]. The main problem still remains the lack of the efficiency, and the fact that each application 

must be adapted in a very customized mode to get reasonable performances with the actual implementation 

of the known FHE schemes. 

ACKNOWLEDGMENTS 

 This research was partially supported by the Romanian National Authority for Scientific Research 

(CNCS-UEFISCDI) under the project PN-II-IN-DPST-2012-1-0086 (ctr. 9DPST/2013). All the authors 

contributed equally to this work. 

REFERENCES 

1. C. GENTRY, A Fully Homomorphic Encryption Scheme, PhD Thesis, Stanford University, http://crypto.stanford.edu/craig, 2009. 

2. Z. BRAKERSKI, C. GENTRY, V. VAIKUNTANATHAN, Fully Homomorphic Encryption without Bootstrapping, Innovations 

in Theoretical Computer Science Conference, pp. 309–325, 2012. 

3. R. RIVEST, L. ADLEMAN, M. DERTOUZOS, On Data Banks And Privacy Homomorphisms, Foundations of Secure 

Computation, 4, 11, pp. 169–180, 1978. 

4. C. GENTRY, Computing Arbitrary Functions of Encrypted Data, Communications of the ACM, 53, 3, pp. 97–105, 2010. 

5. M. VDIJK, C. GENTRY, S. HALEVI, V. VAIKUNTANATHAN, Fully Homomorphic Encryption Over The Integers, Advances 

in Cryptology–Eurocrypt 2010, Lecture Notes in Computer Science, 6110, pp. 24–43, 2010. 

6. Z. BRAKERSKI, V. VAIKUNTANATHAN, Efficient Fully Homomorphic Encryption From (Standard) LWE, IEEE 52nd Annual 

Symposium on Foundations of Computer Science, pp. 97–106, 2011. 

7. Z. BRAKERSKI, V. VAIKUNTANATHAN, Fully homomorphic encryption from ring-LWE and security for key dependent 

messages, Advances in Cryptology – Crypto 2011, Lecture Notes in Computer Science, 6841, pp. 505–524, 2011. 

8. N.P. SMART, F. VERCAUTEREN, Fully Homomorphic SIMD Operations, IACR Cryptology ePrint Archive: Report 2011/133, 

http://eprint.iacr.org/2011/133.pdf, 2011. 

9. Z. BRAKERSKI, Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP, Advances in Cryptology – 

CRYPTO 2012, Lecture Notes in Computer Science, 7417, pp. 868-886, 2012. 

10. D. BONEH, C. GENTRY, S. HALEVI, F. WANG, D.J. WU, Private database queries using somewhat homomorphic 

encryption, ACNS 2013, Lecture Notes in Computer Science, 7954, pp. 102-118, 2013. 

11. J.-S. CORON, T. LEPOINT, M. TIBOUCHI, Batch fully homomorphic encryption over the integers, IACR Cryptology ePrint 

Archive: Report 2013/036, https://eprint.iacr.org/2013/036.pdf, 2013. 

12. L. DUCAS, D. MICCIANCICIO, FHE Bootstrapping in less than a second, IACR Cryptology ePrint Archive: Report 2014/816, 

http://eprint.iacr.org/2014/816.pdf, 2014. 

13. O. REGEV, On Lattices, Learning With Errors, Random Linear Codes And Cryptography, ACM Symposium on Theory of 

Computing, pp. 84–93, 2005. 

14. V. LYUBASHEVSKY, C. PEIKERT, O. REGEV, On Ideal Lattices And Learning With Errors Over Rings, Advances in 

Cryptology – Eurocrypt 2010, Lecture Notes in Computer Science, 6110, pp. 1–23, 2010. 

15. C. PEIKERT, Public-key Cryptosystems From The Worst-Case Shortest Vector Problem: Extended Abstract, ACM Symposium 

On Theory of Computing, pp. 333–342, 2009.  



338       Mihai Togan, Luciana Morogan and Cezar Plesca     10 

 

 

16. M. TOGAN, C. PLESCA, Comparison-based computations over fully homomorphic encrypted data, 10th International 

Conference on Communications (COMM), pp. 1–6., 2014. 

17. S. HALEVI, V. SHOUP, The HElib library, https://github.com/shaih/HElib, 2015. 

18. C. AGUILAR-MELCHOR, S. FAU, C. FONTAINE, G. GOGNIAT, R. SIRDEY, Recent Advances in Homomorphic 

Encryption, IEEE Signal Processing Magazine, 30, 2, pp. 108–117, 2013. 

19. C. GENTRY, S. HALEVI, N. P. SMART, Homomorphic Evaluation of the AES Circuit (Updated Implementation), IACR 

Cryptology ePrint Archive: Report 2012/099, https://eprint.iacr.org/2012/099.pdf, 2015. 

20. L. DUCAS, D. MICCIANCIO, FHEW, A Fully Homomorphic Encryption library, https://github.com/lducas/FHEW, 2014. 

21. R.L. LAGENDIJK, Z. ERKIN, M. BARNI, Encrypted Signal Processing for Privacy Protection: Conveying the utility of 

homomorphic encryption and multiparty computation, IEEE Signal Processing Magazine, 30, 1, pp. 82–105, 2013. 

22. Y. DOROZ, Y. HU, B. SUNAR, Homomorphic AES Evaluation Using NTRU, IACR Cryptology ePrint Archive: Report 

2014/039,  

23. T. LEPOINT, M. NAEHRING, A Comparison of the Homomorphic Encryption Schemes FV and YASHE, IACR Cryptology 

ePrint Archive: Report 2014/062, https://eprint.iacr.org/2014/062.pdf, 2014. 

24. B. CARMER, D.W. ARCHER, Block Ciphers, Homomorphically, Galois, Inc., 2014. 

25. Y. DOROZ, A. SHAHVERDI, T. EISENBARTH, B. SUNAR, Toward Practical Homomorphic Evaluation of Block Ciphers 

Using Prince, IACR Cryptology ePrint Archive: Report 2014/233, https://eprint.iacr.org/2014/233.pdf, 2014. 

26. S. MELLA, R. SUSSELA, On the Homomorphic Computation of Symmetric Cryptographic Primitives, Cryptography and 

Coding, Lecture Notes in Computer Science, 8308, pp. 28–44, 2013. 

   
 

 

 


