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Secret sharing allows a dealer to distribute a secret among multiple parties such that authorized 

coalitions can reconstruct the secret. Traditionally, the dealer knows the exact share each user holds. 

Grigoriev and Shpilrain recently considered secret sharing systems for which the dealer does not 

know the share of a particular party and introduced a construction for the special case of all-or-

nothing schemes. We extend their work and propose some simple to describe threshold secret sharing 

schemes that satisfy this property. 
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1. INTRODUCTION 

Blakley [2] and Shamir [14] independently introduced secret sharing as a solution to the key 

management problem. A secret sharing scheme is a cryptographic primitive that allows a dealer to split a 

secret into multiple shares and distribute them among multiple parties; authorized sets of parties can 

reconstruct the secret, while unauthorized sets obtain no (in case of perfect secret sharing) or insufficient 

information about the secret. 

Secret sharing can be naturally classified based on the structure of the authorized sets. An all-or-

nothing scheme requires all shares for reconstruction, while a threshold scheme permits reconstruction from 

at least t+1 out of n  shares (t<n). 

1.1. Motivation and related work 

Traditionally, the dealer splits the secret into n  shares and securely distributes one share to each 

participant, knowing the exact share each user holds. Recently, Grigoriev and Shpilrain considered secret 

sharing for which nobody (including the dealer) knows the share of a particular party [7]. Their study 

restricts to the case of all-or-nothing schemes, which motivates us to extend their work to the more general 

class of threshold secret sharing. 

The property is somehow related to the notion of cryptographic anonymous secret sharing [6, 8], 

which informally states that the owners of the submitted shares cannot be identified by an adversary who 

observes the shares. The dealer is never considered to be an adversary, so cryptographic anonymity does not 

aim to hide the shares from the dealer itself. This means that in the open reconstruction settings (i.e. shares 

are made public at reconstruction) the dealer could reveal who reconstructed the secret. This ability of the 

dealer can be undesirable in some scenarios, like for example one that illustrates a practical application of 

cryptographic anonymity – controversial reconstruction [8]: in this case there are strong argues whether the 

secret should be reconstructed or not; so, a group of parties that decides reconstruction wishes to keep the 

individual identities hidden. If the dealer knows the shares each participant owns and all shares are distinct, 

then it can easily identify the reconstruction group. 
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1.2. Contribution 

We continue the work of Grigoriev and Shpilrain [7] and consider some simple ways to obtain 

threshold secret sharing schemes such that nobody (except the party itself) knows the share of any particular 

party. Similar to original paper, we do not consider coalitions among the dealer and the participants, we just 

consider the straightforward property that the dealer cannot reveal the shares owned by a particular share by 

itself. 

Both constructions modify the Shamir’s secret sharing [14]. To maintain the privacy of the shares with 

respect to the dealer, we disallow it to know both the polynomial and the value were the polynomial is 

evaluated to generate a share: (1) in the first construction, the dealer chooses the polynomial, but does not 

learn the values where the polynomial is evaluated in; (2) in the second construction, the dealer knows the 

values where the polynomial is evaluated in, but does not learn the polynomial itself. 

The first construction is easy to describe and has the advantage of working over public channels only, 

but it is built from black-box obfuscation, which definitely makes it impractical. To overcome this issue, 

black-box obfuscation can be easily replaced by OPE (Oblivious Polynomial Evaluation). The second 

construction is self-contained and does not rely on any other primitive or protocol. It is theoretically secure, 

but requires secure communication channels between any two parties. All our constructions are inspired from 

existing works that aim to solve other problems or satisfy other properties. 

We do not aim to get efficient constructions for the given property; our goal is to show that such 

constructions are possible for threshold secret sharing. So, we keep the constructions simple to describe and 

understand. 

2. PRELIMINARIES 

2.1. Basic Definitions and Notations 

Let p  be a large prime number and 1},{0,= pp Z  the set of integers modulo p . All 

computations are performed in pZ , hence we do not explicitly mention this when it is evident from the 

context. 

Let pS Z  be the secret a dealer D  shares among a set of n  parties },,{ 1 nPP   using a secret 

sharing scheme, which usually consists in two phases: (1) sharing phase: the secret S  is randomly split 

among the players 
nPP ,,1   and (2) reconstruction phase: an authorized set of parties collaboratively 

computes the secret S . Optionally, a registration phase could exist prior to the sharing phase to allow the 

players register or perform some prerequisites for the sharing. 

A secret sharing scheme must satisfy (at least) two basic properties: (1) correctness - any authorized 

set of users can recover S  and (2) secrecy - no unauthorized set of users can find S  (except with negligible 

probability). Let A  be a t -bounded adversary that can compromise at most t  out of n  non-dealer parties 

with the goal to break secrecy property, i.e. to reveal the secret S . We work in the semi-honest (or honest-

but-curios) adversarial model, for which the parties follow the protocol exactly. More precise, the adversary 

gains knowledge of the shares of up to t  players with the goal to reveal S , but cannot coordinate the actions 

of the players. 

In addition to correctness and privacy, we ask that an honest-but-curios dealer D  does not know the 

share of any particular party. So, a dealer that follows the protocol exactly should be unaware of the shares 

the parties own. In the proofs, we will refer to this property as unknown shares.
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2.2. Shamir’s Secret Sharing 

Shamir’s threshold secret sharing scheme is based on polynomial interpolation: a t -degree polynomial 

)(sf  is uniquely defined by 1t  distinct pairs ))(,( sfs . We review next the construction [14]: 

Construction 2.1.  

    1.  Sharing Phase.   

        (a) D  chooses uniformly at random a t -degree polynomial ][xf pZ  such that Sf =(0)  and 

computes )(if , ni 1 ;  

        (b) D  privately sends )(if  to player 
iP , for all ni 1 ; 

    2.  Reconstruction Phase. Any 1t  (or more) parties 
11 ,, tPP   (without loss of generality after 

a possible reordering) recover 
ij

j
ifS

jitj

t

i 






1,1

1

1=

)(= . 

 
Shamir’s scheme satisfies two important properties: (1) it is ideal, since both the secret and the shares 

lie in pZ  and (2) it is perfect (when the exact degree of the polynomial is unknown), because t  or less users 

learn no information about the secret: for every value of the secret pS Z , the participants can reconstruct 

with the same probability a polynomial that passes through the t  points they own and )(0, S  (we have 

considered the worst case scenario, when t  participants cooperate). 

2.3. All-or-Nothing Secret Sharing 

We review next a simple and efficient all-or-nothing secret sharing scheme [11]: 

Construction 2.2.  

    1.  Sharing Phase.   

        (a) D  chooses uniformly at random piS Z , 11  ni  and computes 
i

n

i

n SSS 



1

1=

= ;  

        (b) D  privately sends 
iS  to player 

iP , for all ni 1 ;  

    2.  Reconstruction Phase. All parties 
nPP ,,1   recover 

i

n

i

SS 
1=

= . 

 

The scheme satisfies the same two properties as Shamir’s scheme: (1) it is ideal, since both the secret 

and the shares lie in pZ  and (2) it is perfect, because less than n  users obtain no information about the 

secret: for every value of the secret pS Z , the last share is computed with the same probability as 

i

n

i

n SSS 


 
1

1=

1 =  (we have considered the worst case scenario, when 1n  participants cooperate). 

2.4. Pseudo-Random Generator 

A pseudo-random generator PRG is a deterministic algorithm that on input a random seed outputs a 

longer pseudo-random sequence. Informally, a pseudo-random generator is secure if no efficient algorithm 

can make the difference between its output and a uniformly random sequence of the same length. As a 

consequence, given the output of the pseudo-random generator, it is computationally infeasible to determine 

the seed. 
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2.5. Obfuscation 

Obfuscation is a technique used to hide the content of a program or implementation by making it hard 

to understand and analyze. An obfuscator O  is an efficient algorithm that on input a program P  outputs 

another program )(PO  with the same functionality as P  (i.e. for the same input x , )(=))(( xPxPO ) that 

keeps private the internal implementation. Ideally, a black-box obfuscator should behave as a virtual black-

box in the sense that it only allows access to the inputs and outputs of the system: anything that can be 

efficiently computed from )(PO  can be efficiently computed given oracle access to P  [1]. Barak and al. 

showed the impossibility of a universal black-box obfuscator that could be applied for any program [1]; 

subsequent work extended the impossibility results [3]. However, candidates for simple programs do exist [5, 

12, 15]. 

2.6. Oblivious Polynomial Evaluation 

OPE (Oblivious Polynomial Evaluation) [9,13] is a protocol between two parties, a sender and a 

receiver such that the sender inputs a polynomial f  and the receiver inputs a value s ; at the end of the 

protocol, the sender gains no information about s , while the receiver gains )(sf , the evaluation of the 

polynomial in s  and nothing else. Hence, OPE allows the receiver to get the value )(sf  for any s  without 

learning anything else about the polynomial f  and without revealing to the sender any information about s . 

3. FIRST CONSTRUCTION 

3.1. Construction 

We present a secret sharing scheme from black-box obfuscation and pseudo-random generators that 

keeps the shares hidden from the dealer. The construction is inspired by the Boneh-Zhandry NIKE [4]. While 

their construction only needs indistinguishability obfuscation (to solve a long time open problem), our 

construction considers the stronger notion of black-box obfuscation, which is unacceptable for practical 

reasons. However, we present the construction as a first and simple to expose solution to our problem. 

The idea is the following: each party 
iP  generates a seed 

is  and publishes )(= ii sPRGx , where 

PRG is a pseudo-random generator. The dealer D  chooses a t -degree polynomial f  as in Shamir’s scheme, 

but instead of distributing the shares to the parties, he builds and publishes an obfuscated program that 

allows the parties to compute the shares by themselves. To operate, the obfuscated program requires a valid 

seed; in this way, each of the parties can only evaluate f  in a single point and hence the protocol maintains 

the threshold. Anyone else (including the dealer) does not know any of the seeds and therefore is unable to 

compute the corresponding shares. 

The construction is as follows: 

Construction 3.1.  

    1.  Registration Phase. Each party iP , ni 1  chooses uniformly at random a private seed 

*

pis Z  and publishes )(= ii sPRGx . 

    2.  Sharing Phase.   

        (a) D  chooses uniformly at random a t -degree polynomial ][xf pZ  such that Sf =(0)  

and builds the program },,
1

{;
n

xxfPrg   as follows: 

             * Input: 
*

ps Z   

            * Constants: f , },,{ 1 nxx  , PRG   
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                A.  if },,{)( 1 nxxsPRG  , then output )(sf   

                B.  otherwise, output    

  

        (b) D  makes public )( },,
1

{;
n

xxfPrg O , the black-box obfuscated version of 
},,

1
{;

n
xxfPrg  ;  

        (c) Each party 
iP , ni 1  runs )( },,

1
{;

n
xxfPrg O  on input 

is  to obtain )( isf ;  

    3.  Reconstruction Phase. Any 1t  (or more) parties 
11 ,, tPP   with distinct 

11 ,, txx   

(without loss of generality after a possible reordering) recover 
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j

jitj
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t
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s
sfS
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1
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In comparison to Shamir’s scheme, the construction: (1) remains ideal; (2) maintains the same 

reconstruction algorithm; (3) loses perfect secrecy, but achieves computational secrecy from black-box 

obfuscation and pseudo-random generators; (4) requires no secure communication. 

3.2. Proofs 

THEOREM 3.1 (Correctness).  If D  is honest, then at the end of the reconstruction phase any set of 

at least 1t  parties 
11 ,, tPP   with distinct 

11 ,, txx   output the correct secret.  

Proof. By construction, at the end of the sharing phase all parties 
iP , ni 1  hold valid points 

))(,( ii sfs  on the polynomial f  such that Sf =(0) . Note that the seeds 
11 ,, tss   are distinct for 

distinct values 
11 ,, txx  . Now, the correctness of the scheme reduces to the correctness of Shamir’s 

scheme.  

 

THEOREM 3.2 (Secrecy).  If  D  is honest, PRG is a secure pseudo-random generator and O  is a 

secure black-box obfuscator, then a t -bounded adversary A  does not reveal any information about the 

secret (except with negligible probability).  

Proof. By definition, a t -bounded adversary A  gains access to the knowledge of up to t  parties, i.e. 

pairs ))(,( ii sfs , ti 1  (without loss of generality, after a possible reordering). The proof reduces to 

Shamir’s secrecy if A  gains no additional information. First, if PRG is a secure pseudo-random generator, 

then A  cannot compute 
is  from the public 

ix , except with negligible probability; hence, A  can query 

)( },,
1

{;
n

xxfPrg O  in at most t  points 
tss ,,1  . Second, if O  is a secure black-box obfuscator, 

)( },,
1

{;
n

xxfPrg O  reveals no information about the polynomial f . Hence, the scheme is computationally 

secure.  

 

THEOREM 3.3 (Unknown shares).  If PRG is a secure pseudo-random generator, then D  does not 

reveal any information about the share of a player 
iP , ni 1  (except with negligible probability).  

Proof. If PRG is a secure pseudo-random generator, then D  cannot compute is  from the public ix , 

except with negligible probability. Since D  does not know the input is  on which the player runs 

)( },,
1

{;
n

xxfPrg O , the output )( isf  remains hidden.  

3.3. Practical solution based on OPE 

The previous scheme is not practical because it uses black-box obfuscation. To overcome this issue, 

we keep the same underlying idea (that the dealer chooses the polynomial, but he does not learn the values 

where the polynomial is evaluated) and replace obfuscation by OPE. This solves the problem, because OPE 

efficient protocols do exist [9, 13]. 
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More precisely, the dealer D  chooses a t -degree polynomial f  as in Shamir’s scheme, but instead of 

distributing the shares to the parties, he runs a OPE protocol with each party. In this way, each party 

evaluates f  in a value, while the dealer does not learn the value where the polynomial is evaluated in. 

Construction 3.2.    

    1.  Registration Phase. Each party 
iP , ni 1  chooses uniformly at random a private seed 

*

pis Z  and publishes )(= ii sPRGx . 

    2.  Sharing Phase.   

        (a) D  chooses uniformly at random a t -degree polynomial ][xf pZ  such that Sf =(0) ;  

        (b) D  runs OPE with each party 
iP , ni 1  on input f , respectively 

is ; at the end of the 

OPE, each 
iP  obtains )( isf ;  

    3.  Reconstruction Phase. Any 1t  (or more) parties 
11 ,, tPP   with distinct 

11 ,, tss   (without 

loss of generality after a possible reordering) recover 

ij

j

jitj

i

t

i ss

s
sfS



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

1,1

1
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 It is easy to see that the properties of the scheme follow directly from the ones of the OPE, similar to 

the results in Section 3.2. Theorem 3.1 (Correctness) and Theorem 3.3 (Unknown Shares) remain 

unchanged, while Theorem 3.2 (Secrecy) becomes: 

 

THEOREM 3.4 (Secrecy).  If D  is honest, PRG is a secure pseudo-random generator and OPE is 

secure, then a t -bounded adversary A  does not reveal any information about the secret (except with 

negligible probability).  

 

To avoid repetition, we only highlight the differences in the proofs: correctness follows from the 

correctness of the OPE, since all parties 
iP , ni 1  hold valid points ))(,( ii sfs  at the end of the sharing 

phase; secrecy uses the fact that the adversary A  cannot gain additional information on f  due to the 

security of OPE; unknown shares property holds because the dealer D  cannot find the player’s input 
is  or 

its output )( isf , as follows directly from the security of OPE. 

Note that the registration phase becomes optional for the construction based on OPE: correctness holds 

for any set of t  parties with distinct 
is ’s and collisions on 

is  can become negligible for a large enough p . 

However, we keep it for similarity to the previous construction. 

4. SECOND CONSTRUCTION 

4.1. Construction 

We present a theoretically secure secret sharing scheme, inspired by the proactive secret sharing 

scheme of Herzberg et al.[10]. Proactive secret sharing consists in periodically renewing the shares in a way 

that the information revealed to the adversary before renewal becomes useless; it differs from the property 

we want to achieve, but the construction is similar in the sense that the players distribute sub-shares between 

themselves. 

The idea is the following: the dealer D  does not choose the polynomial, but instead he allows each 

party iP  to select a t -degree polynomial if  such that their sum f  is a valid polynomial for the given secret 

(i.e. Sff i

n

i

=(0)=(0)
1=

 ). To guarantee the correctness of f , D  previously distributes (0)if  to 
iP  as a 
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share in an all-or-nothing scheme. Except the free coefficient, D  knows nothing about 
if ; in consequence, 

he does not learn f  and therefore is unable to compute the corresponding shares. 

The construction is as follows: 

 

Construction 4.1.  

    1.  Sharing Phase.   

        (a) D  chooses uniformly at random piS Z , 11  ni  and computes 
i

n

i

n SSS 



1

1=

= ;  

        (b) D  privately sends 
iS  to player 

iP , for all ni 1 ;  

        (c) Each party 
iP , ni 1  uses Shamir’s scheme to share 

iS  among the players, i.e. 
iP  

chooses uniformly at random a t -degree polynomial ][)( xxf pi Z  such that 
ii Sf =(0)  and privately 

distributes sub-share )( jfi
 to party jP , nj 1 ;  

        (d) Each party 
iP , ni 1  computes the share )(=)(

1=

ifif j

n

j

 ;  

    2.  Reconstruction Phase. Any 1t  (or more) parties 
11 ,, tPP   (without loss of generality after 

a possible reordering) recover 
ij

j
ifS

jitj

t

i 






1,1

1

1=

)(= .  

 

In comparison to Shamir’s scheme, the construction: (1) remains ideal; (2) maintains the same 

reconstruction algorithm; (3) preserves perfect secrecy (4) requires secure communication between any two 

parties. 

4.2. Proofs 

THEOREM 4.1 (Correctness). If D  is honest, then at the end of the reconstruction phase any set of 

at least 1t  honest parties 
11 ,, tPP   output the correct secret.  

Proof. By construction, SSff i

n

i

i

n

i

==(0)=(0)
1=1=

 ; hence )(=)(
1=

xfxf i

n

i

  is a valid polynomial 

that can be used to share S  using Shamir’s secret sharing. At the end of the sharing phase, each player holds 

)(=)(
1=

ifif j

n

j

  a valid point on f . Now, the correctness of the scheme reduces to the correctness of 

Shamir’s scheme.  
 

THEOREM 4.2 (Secrecy). If D  is honest, then a t -bounded adversary A  does not reveal any 

information about the secret (i.e. the scheme is perfect).  

Proof. By definition, a t -bounded adversary A  gains access to the knowledge of up to t  parties, i.e. 

values iS , polynomials if  and pairs ))(,( ifi , ti 1  (without loss of generality, after a possible 

reordering). The proof reduces to Shamir’s secrecy if A  gains no additional information from iS  and if , 

ti 1 ; this holds from the perfect secrecy of the all-or-nothing scheme (note that if  can be also seen as 

shares of f ). Hence, the scheme remains perfectly secure. 
 

THEOREM 4.3 (Unknown shares). D  does not reveal any information about the share of a player 

iP , ni 1 .  
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Proof. By construction, the polynomial )(=)(
1=

xfxf i

n

i

  remains hidden to D , except the free 

coefficient Sf =(0) . Hence, D  cannot reveal any information about the shares )(if , ni 1 .  
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