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This paper proposes an attribute based encryption scheme based on multilinear maps as a more 

efficient variant of the scheme of S.Garg et al. [1]. Our scheme also uses secret sharing as a way to 

share some secret associated to the output gate of the Boolean circuit top down to the leaves. 
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1. INTRODUCTION 

Attribute based encryption (ABE) was introduced by Sahai and Waters in [2] and can be considered a 

generalisation of identity based encryption. An ABE scheme encrypts a message together with some 

attributes such that the message can be recovered only in some circumstances, which are described below. 

Attribute based encryption schemes are efficient when we want to encrypt an information and only 

some users can decrypt it. If we use asymmetric schemes, we need to encrypt the message for every user, 

with his public key. If we have a large number of users, this procedure can cost a lot. Another disadvantage 

for using public key schemes, is that we can’t send encrypted information to users without knowing their 

identity. Also, using public key schemes, it’s hard to implement a system where users have permission to 

decrypt the ciphertext based on some conditions. If efficient attribute based encryption schemes would be 

developed, then the encrypted cloud storage would be improved by using them. 

There are two variants of ABE: Key-Policy ABE and Ciphertext-Policy ABE. Goyal et al. [3] 

introduced the idea of KP-ABE systems and Bethencourt et al. [4] introduced the idea of CP-ABE systems. 

In a Key-Policy ABE system, a ciphertext encrypting a message M  is associated with an assignment   of 

attributes (they are viewed as Boolean variables). A secret key SK  is issued by an authority and is 

associated with a Boolean function f  chosen from some class of allowable functions F . A user with a 

secret key for f  can decrypt a ciphertext associated with  , if and only if 1=)(f . 

In a Ciphertext-Policy system, the role of encryption and key derivation are reversed. A user’s private-

key is associated with a set of attributes and a ciphertext specifies an access policy over a universe of 

attributes. A user will be able to decrypt a ciphertext, if and only if his attributes satisfy the policy of the 

respective ciphertext. 
 

Contributions. We propose and ABE scheme that can be used either as a Key-Policy scheme or a 

Ciphertext-Policy scheme. We describe only the scheme with Key-Policy, which can be easily transformed 

in a Cipher-Policy scheme. Our starting point is [1] where an ABE scheme based on multilinear maps was 

proposed. This scheme uses multilinear maps and works for general Boolean circuits. The main idea is to 

associate a number of keys to each gate of the Boolean circuit and to reconstruct bottom up the secret. The 

output gate of the Boolean circuit will receive the secret such constructed, which will be used in order to 

decrypt the message. The Boolean circuit has Or-gates or And-gates on internal nodes and input-gates on 

leaves . 

Our scheme differs from the scheme of S.Garg et al. [1] in terms of the number of keys used and 

access structure. In their scheme, where every gate has exactly one output and two inputs, for each Or-gate 
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they create four key components, for each And-gate they create three and for each wire two. When we deal 

with this kind of gates, we create only two keys for the Or-gate and no keys for the And-gate or wire. 

2. PRELIMINARIES 

 This section recalls basic concepts of ABE. 

Attribute based encryption. An ABE scheme consists of four probabilistic polynomial time 

algorithms as follows: 

Setup( ln,,1 ): To construct the setup algorithm we require an input parameter  , the maximum 

depth l  of a circuit and the number of Boolean inputs n  (number of attributes in our scheme). This 

algorithm outputs public parameters PP  and a master key MK . 

Encrypt( MPP ,, ): To construct the encryption algorithm we require as input the public parameters 

PP , the set of attributes   and a message M . This algorithm outputs a ciphertext CT . 

KeyGen( CrMK , ): To construct the keygen algorithm we require as input the master key MK  and 

the Boolean circuit Cr . This algorithm outputs a secret key SK  that enables the user to decrypt a message 

under a set of attributes   if and only if 1=)(Cr . 

Decrypt( CTSK , ): To construct the decryption algorithm we require as input a secret key SK  and 

ciphertext CT . This algorithm tries to decrypt the ciphertext CT  and outputs a message M  if successful. 

Otherwise, it outputs a special symbol  . 

Each ABE scheme should satisfy the following correctness property: Consider all messages M , 

attributes   and depth l  circuits Cr  where 1=)(Cr . If PPEncrypt( , CTM ),  and 

SKCrMKKeyGen ),(  where MKPP,  were generated from a call to the setup algorithm, then 

MCTSKDecrypt =),( .  

Multilinear maps. We say that a map 
21: GGe n   is an maprmultilinean  if it satisfied the 

following properties:   

    1.  1G  and 2G  are groups of the same prime order.  

    2.  If Znaaa ,...,, 21
 and 

121 ,...,, Gxxx n   then  

n
aaa

n
n

a

n

aa
xxxexxxe

...
21

21
2

2
1

1 ),...,,(=),...,,( . 

    3.  The map e  is non-degenerate: if 1Gg   is a generator of 1G  then ),...,,( ggge  is a generator 

of 2G .  

A multilinear map generator ),(1 kG  is a randomized algorithm that runs in a polynomial time and 

takes as input a security parameter  , a positive integer k  and outputs a sequence of groups 

),...,,(= 21 kGGGG


 each of large prime order 
2>p . Let 

ig  be a canonical generator of 
iG  and 1= gg . 

In this paper, we sometimes abuse notation and drop the subscripts i,j writing, for example : 
ab

ji

b

j

a

i ggge =),( . 

The multilinear Diffie-Hellman assumption.  This assumption states that given ,,, 21
aa

ggg  

1
1..., Gg n

a
  it is hard to compute 1

...
21),..,,( n

aaa
ggge  in 2G . In other words, we say that the multilinear 

map generator G  satisfies the multilinear Diffie-Hellman assumption if for all polynomial time randomized 

algorithms A , the probability of being able to compute 1
...

21),..,,( n
aaa

ggge  from 121 ,...,,, n
aaa

gggg  is 

negligible. 
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Boolean Circuit.  For Boolean circuits we used the standard notation and concepts as in [1]. That is, 

we deal with monotone Boolean circuits having only input gates, or-gates, and-gates and just one output. The 

logic gates have at least two inputs and one or more outputs.  

Circuit Notation. We need to modify the circuit notation from [1] because we use more than two 

inputs for and/or-gates. Our circuits will be a quadruple ),,,(= GateslqnCr . We let n  be the number of 

inputs, q  the number of gates and l  the number of levels in the circuit. Let Gates  be a list of 

gatescircuit  , where a ),,,(= wiresinputlevelidtypegatecircuit  . The type  can be 

OrAndInput ,, , id  is a unique natural number for each gate, level  is the level where the gate is found and 

wiresinput   is a list of id ’s for the inputs ( idwires  ) of the gate. If the type  is Input  the 

wiresinput   will be empty. The id ’s will be set from left to right, from bottom to top in an ascending 

order, starting from 1 to the number of nodes in the circuit. Because of this, the input-gates will have as id ’s 

= }{1,..., n . The idwires   is a list of natural numbers set like id ’s for the gates, except they are now set 

for the wires in the circuit. Let iresinputw
 for a node be a list of idwires  , for the wires that are input for 

this node, and iresoutputw
 a list for the wires that are output for this node. We also define a function 

)(wdepth  where if 1=)(wdepthinputw  and in general )(wdepth  of wire w  is equal to the shortest 

path to an input wire plus 1. Because we use layered circuits, if jwdepth =)( , all the inputs for w  will 

have 1= jdepth .  

3. OUR CONSTRUCTION 

 We propose the following ABE scheme. 

Setup( ln,,1 ): To construct the setup algorithm we require an input parameter  , the maximum 

depth l  of a circuit and the number of Boolean inputs n  (number of attributes in our scheme). 

Using a group generator 1)=,(1 lkG  we produce groups ),...,,(= 21 kGGGG


 of prime order p , 

with generators 
kgg ,...,1

. Next we chose a random pZ  and for each attribute we choose a random 

number 1Gti  . Let 1= GG  and 1= gg . 

The public parameters PP  are nk ttg ,...,, 1


 and the group sequence. 

The master key MK  is 
)( 1kg . 

Encrypt( MPP ,, ): To construct the encryption algorithm we require as input the public parameters 

PP , the set of attributes   and a message M . 

The encryption algorithm chooses a random ps Z  and outputs the ciphertext ,,(= s

M gCCT  

)= s

ii tCi   where 
s

kM gMC )(= 
. 

KeyGen( ),,,(=, GateslqnCrMK ): To construct the keygen algorithm we require as input the 

master key MK  and the Boolean circuit Cr . This algorithm outputs a secret key SK  that enables the user 

to decrypt a message under a set of attributes   if and only if 1=)(Cr . The key generation algorithm 

chooses a random pr Z . The algorithm then produces a header component : 
)(

1)(= r

kH gK 




. 

In the secret sharing procedure, we share 
rs

kg  starting from the output wire of the output gate of the 

Boolean circuit. The secret sharing is: 

  Input-wire: Suppose that the input-wire has the output 
xsg2

. We will generate a random pz Z  

and create two key components: 
z

i

xtgb =1  and 
zgb =2
, where i  is the id  of this gate.
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  And-gate: Consider first the case with exactly one output wire and q input wires. Assume that the 

output wire of the gate is 
xs

jg . First, we generate 1q  random numbers pqaa Z11,...,  and then assign 

s
q

aaax

jg
)

1
...

21
(




 to the first input wire and 
s

q
a

j

sa

j gg 11 ,..., 
 to the next 1q  input wires. 

This construction is illustrated in Fig. 1.  

                          

Fig. 1 – And-gate with exactly one output. 

If the And-gate has more than one output, let 
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,   be the values associated to the output 

wires. Like in the first case, we generate 1q  random numbers pqaa Z11,...,  and one random number 

px Z . We assign 
s

q
aaax

jg
)

1
...

21
(




 to the first input wire and 
s

q
a

j

sa

j gg 11 ,..., 
 to the next 1q  input wires. 

We then generate o random numbers 
obbb ,...,, 21

 such that 
ii xbx =  for all oi 1 . The key components: 

o
bb

gg ,...,1  are also assigned to the gate. 

This construction is illustrated in Fig. 2. 

 

 

Fig.  2 – And-gate with more than one output. 
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  Or-gate: Suppose that the Or-gate has q  input wires and o  output wires. Let 
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,, 

 be 

the values associated to the output wires. We generate q  random numbers pqaaa Z,...,, 21  and assign 

s
i

a

jg  to the 
thi  input wire. The key components 

ji
b

g ,
 are also assigned to the gate where jiji bax ,=   for all 

oi 1  and qj 1 . 

This construction is illustrated in Fig. 3.  

 

     
Fig. 3 – Or-gate. 

In order to create this sharing scheme, first we need to create a circuit like the initial one where we put 

coefficients on wires which will allow us to create the key components. 

Decrypt( CTSK , ): Suppose that we are evaluating decryption for a secret key SK  associated with a 

circuit Cr  and a ciphertext with input x . We will be able to decrypt it only if 1=)(xCr . 

The goal of decryption is to compute 
s

kg
 ( M  can be recovered by computing 

s

kM gCM /= ). First, 

we compute 
rs

k

s

k

sr

k

s

HH ggggegKeK 


  =),(=),(= 1 . Our goal is now reduced to computing 

rs

kg . 

Next we evaluate the circuit bottom up. If 1=)(xCrw  then, our algorithm can compute the 

information in this node, like below. Our algorithm starts from the leaves and tries to go up to the last output 

and if the user is allowed to decrypt the ciphertext, in the last output will be 
rs

kg . 

We may assume that all inputs of an And-gate have the same generator jg . If, for instance, some 

inputs have the generator 
ug , with ju < , then we may apply ),( gge x

u  to obtain 
x

ug 1 . This procedure can 

be repeated until we obtain 
x

jg . 

For each gate, we will do the following : 

  Input-wire: If 1=)(xCri , the ciphertext contains iC  and we can calculate 

xss

i

zsz

i

x

i

s gtgegtgeCbegbe 221 =),(),(=),(),(  . 

 And-gate: Consider first the case with exactly one output wire and q  input wires, where all inputs 

have 1=)(xCr , like we described earlier, the first input wire contains 
s

q
aaax

jg
)

1
...

21
(




 and the next 1q  
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inputs contain 
s

i
a

jg . Multiplying the information from these inputs we get 
xs

jg , which will be contained by 

the output wire. 

If the And-gate has o  output wires and q  input wires, where all inputs have 1=)(xCr , like we 

described earlier, the first input contains 
s

q
aaax

jg
)

1
...

21
(




 and the next 1q  inputs contain 
s

i
a

jg . 

Multiplying the information from these inputs we will get 
xs

jg . Using key components o
bb

gg ,...,1 , where 

1= xxb ii
 for all oi 1 , we will compute for each key 

ib , 
s

i
x

j

x
i

xsx

j
i

bxs

j gggge 1

1

1 ==),( 




, then we assign 

s
i

x

jg 1
 to the 

thi  output wire.  

  Or-gate: Suppose that the Or-gate has o  output wires and q  input wires and at least one input has 

1=)(xCr , like we described earlier, the 
thi  input contains 

s
i

a

jg . Using the key components 
1

, =

j

a
i

x
ji

b

gg  

from any input wire l  we can compute, for each output wire i , 
s

i
x

j
l

a
i

xs
l

a

j

li
bs

l
a

j gggegge 1

1
, =),(=),( 



. This 

value, 
s

i
x

jg 1 , will be assigned to the 
thi  output wire. 

If 1=)(xCr  then the algorithm will output 
rs

kg , this is the value assigned to the last output wire. 

Finally, multiplying HK   with 
rs

kg  we obtain 
s

kg
 and dividing MC  by 

s

kg
 we obtain the message M . 

 When the Or-gates have many output wires we may try to change the generator two times in order to 

reduce the number of keys. We describe below this new construction indicating only the encryption and 

decryption for Or-gates. 

 

Encryption part: Suppose that the Or-gate has q  input wires and o  output wires. 

Let 
s

o
x

j

sx

j

sx

j ggg 2
2

2
1

2 ,...,,   be the values associated to the outputs. We generate q  random numbers 

pqaaa Z,...,, 21  and assign 
s

i
a

jg  to the 
thi  input wire. We then generate a random number px Z  and 

publish q  key components i
b

g , where 
iibax =  for all qi 1 . For each output wire, we publish o  key 

components k
c

g , where 
kkcxx =  for all ok 1 . 

This construction is illustrated in Fig. 4. 

 

 

Fig.  4 – Or-gate, switching generator two times. 
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Decryption part: Suppose that the Or-gate has o  output wires and q  input wires and at least one 

input has 1=)(xCr , like we described above, the 
thi  input contains 

s
i

a

jg . Using key components i
b

g , 

starting from any input wire, we can compute 
xs

j
i

bs
i

a

j ggge 1=),( 
. Using key components k

c
g  and 

xs

jg 1  we 

compute 
s

k
x

j
k

cxs

j ggge 21 =),( 
 for all ok 1  and assign 

s
k

x

jg 2
 to the hk t

 output wire. 

 Using this method we only need oq   key components but we need to change the generator two 

times. 

Examples of sharing on different gates. For each And-gate with exactly one output wire we share 

the output to the input gates without using any key components. For example, if we have 
xs

jg  in the output 

and we have three inputs, we generate two random numbers ba,  and we assign 
sbax

jg )( 
 to the first input 

wire, 
as

jg  to the second input wire and 
bs

jg  to the last one. If all the inputs are satisfied, all the values from 

the inputs are the ones from above and we can multiply them in order to obtain the value associated to the 

output wire, which is 
xs

j

bs

j

as

j

sbax

j gggg =)( 
. 

For each And-gate with more than one output we share the outputs to the input wires using a number 

of key components equal to the number of output wires. For example, if we have two outputs with values 
sx

jg 1
1  and 

sx

jg 2
1  and three inputs, first we generate a random number x  and two other random numbers ba,  

such that xax =1  and xbx =2  and we assign 
sbax

jg )( 
 to the first input, 

as

jg  to the second input and 
bs

jg  

to the last one. For this gate, we attach the key components 
ba gg , . Multiplying the values from the input 

gates we get 
xs

jg  and using the key components and applying the multilinear function we get the values from 

the outputs, which are 
sx

j

axs

j ggge 1
1=),(   and 

sx

j

bxs

j ggge 2
1=),(  . 

For each Or-gate, if we change the group generator once, the number of key components will be equal 

to the number of inputs multiplied by the number of outputs. If we change the group generator twice, the 

number of key components will be equal to the number of inputs plus the number of outputs.  

4. SECURITY OF OUR CONSTRUCTION 

 We prove selective security of our scheme under the k -MDDH assumption, that given 

,,,= 1
1

cs gggg  Zk
c

g...,  it is hard to distinguish 
j

c
kj

s

kgT
  ][1,= . Recall first the security game. 

In the game-based security definition, as in other similar systems (e.g.[1], [2], [3]), an attacker is able 

to query for multiple keys, but not the ones that can easily be used to decrypt the ciphertext. The adversary 

may perform a polynomial number of requests for private keys corresponding to any circuit Cr , but must 

encrypt some string 
*x  (the 

*x  is a string of length n  with elements 0,1  and it shows what attributes 

adversary has) such that every circuit Cr  for which a private key was requested has 0=)( *xCr . The 

security game has the following steps: 

Setup. The challenger runs the setup algorithm and gives the public parameters PP  to the adversary 

and keeps the MK . 

 Phase 1. The adversary makes any polynomial number of queries in order to obtain private keys for a 

circuit description f  of its choice. The challenger returns for each query the output of ),( CrMKKeyGen . 
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 Challenge. The adversary sends two messages 
0M  and 1M  having the same length. He also gives a 

challenge string 
*x  such that for all f  requested in Step 1 we have 0=)( *xf . The challenger then chooses 

a random {0,1}b , and computes 
** ),,( CTMxPPEncrypt b   and sends 

*CT  to the adversary. 

 Phase 2. Phase 1 can be repeated with the restriction that for all f  requested 0=)( *xf . 

 Guess. The adversary outputs {0,1}b . 

The advantage of an adversary A  in this game is defined as 
2

1
]=[  bbPr . 

We say that an attribute-based encryption scheme for circuits is secure if all polynomial time 

adversaries have a negligible advantage in the described game. 

We say that a system is selectively secure if the system is secure in a game where we add a new step 

before setup called Init, where the adversary can send to the challenger the string 
*x . 

Now, we can prove the following : The construction given in the previous section achieves selective 

security for arbitrary circuits of depth 1k  in the KP-ABE security game under the k-MDDH assumption. 

Proof. The init, setup and challenge ciphertext are the same as in [1].  

Init. B  first receives the 1l -multilinear problem where it is given the group description 

),...,,(= 21 kGGGG


 and a problem instance Tgggg k
ccs ,,...,,, 1 . T is either 

j
c

kj
s

kg
  ][1,

 or a random 

group element in 
kG .  

Next, the attacker declares the challenge input 
nx {0,1}* .  

Setup. B  chooses random pn Zyy ,...1 . For ][1, ni  set  

 







0=if

1=if
=

*1

*

i

c
i

y

i
i

y

i
xg

xg
t  

 

Remark. We need i
y

g  to be either statistically close to or indistinguishable from 1
c

i
y

g


.  

 Next, B  sets 
i

c
ki

kk gg
 


][1,=




 where   is chosen randomly. It computes this using k
cc

gg ,...,1  

from the assumption by means of the iterated use of the pairing function.  

Remark. We need 
i

c
ki

kk gg
 


][1,=




 to be either statistically close to or indistinguishable from 


kg .  

Challenge Ciphertext. Let ][1,* nS   be the set of input indices where 1=*

ix . The reduction 

algorithm receives two messages 
10 ,MM  and flips a coin b . B  creates the challenge ciphertext as: 

))(=,,(= i
ys

i

ss

kb gCiggTMCT   .  

If 
j

c
kj

s

kgT
  ][1,= , then this is an encryption of bM ; otherwise if T  was chosen random in kG  then 

the challenge ciphertext contains no information about the message from the attacker’s view.  

KeyGen Phase. Both key generation phases are executed in the same manner by the reduction 

algorithm. Therefore, we describe them once here. The attacker will give a circuit Cr  to the reduction 

algorithm such that 0=)( *xCr . Consider a gate w  at depth j  and the simulators viewpoint of wr . If 
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0=)( *xCrw
 then the simulator will view 

wr  as the term 121 ...  jccc  plus some additional known 

randomization terms. If 1=)( *xCrw
 then the simulator will view 

wr  as 0  plus some additional known 

randomization terms. If we can keep this property intact for simulating the keys up the circuit, the simulator 

will view r  as 
kccc  ...21

. This will allow for it to simulate the header component HK  by cancellation. 

 We describe how to create the key components for each gate:  

   Input-wire: Suppose that ][1, nw  and therefore is an input wire. 

If 1=)( *

wx  then we choose z  random and the key components will be: 
z

w

xtgb =1
 and 

zgb =2
. 

If 0=)( *

wx  then we let 
wccx 21=  (the output coefficient) and 

wcz  2= , where 
w  and 

w  

are randomly chosen elements. The key components are: w
c

w
w

cc
tgb

 
221

1 =( , 

),(=)= 2
)

1
(

22
2

w
c

w
c

w
y

ww
yc

w
c

gggb
 

. 

Remark. Here we need w
c

w
y

ww
yc

g
 )

1
(

2


 to be appropriately close to a randomly chosen element.  

   And-gate: Let )(= wdepthj . For the first case, where there is exactly one output wire (
xs

jg ) and 

q input wires (let them be 
s

q
r

j

sr

j

sr

j ggg ,...,, 21 ) . 

If 1=)( *

wx  then we generate 1q  random numbers 11,..., qaa  and assign 
sr

j

s
q

aaax

j gg 1
)

1
...

21
(

=


 

to the first input wire and 
s

q
r

j

s
q

a

j

sr

j

sa

j gggg =,...,= 121 
 to the next 1q  input wires. 

If 0=)( *

wx  then exist at least one input wire that are not satisfied. Because of this, exists one 
ir  that 

is view as 
i

rjccc  ...21
 where 

i
r  is a random number. 

Because at the sharing part we chose random number Z11,..., qaa , when we have at least one wire not 

satisfied, when we multiply all the input wires values we will obtain 


j
ccc

jg
...

21
 where   it’s a sum of some 

i
r . 

Remark that 


j
ccc

jg
...

21
 is appropriately close to a randomly chosen element. 

For the case where there are o  output wires (
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,,  ) and q input wires (let them be 

s
q

r

j

sr

j

sr

j ggg ,...,, 21 ): 

If 1=)( *

wx  then we generate 1q  random numbers 11,...,, qaax  and assign 
sr

j

s
q

aaax

j gg 1
)

1
...

21
(

=


 

to the first input wire and 
s

q
r

j

s
q

a

j

sr

j

sa

j gggg =,...,= 121 
 to the next 1q  input wires. Then we generate o 

random numbers obbb ,...,, 21  such that 
ii xbx =  for all oi 1 . The key components: o

bb
gg ,...,1  are also 

assigned to the gate. 

If 0=)( *

wx  then at least one input wire that is not satisfied exists. Because of this, one 
ir  exists that 

is viewed as 
i

rjccc  ...21
 where 

i
r  is a random number. Also 

ix  is viewed as 
i

xjccc  121 ...  for 

all ][1,oi . For the key components, ib  is viewed as 
i

bjc 1
 where 

i
b  is a random number. 

Remark that 


j
ccc

jg
...

21
 is appropriately close to a randomly chosen element. Applying 

),(
1)...2

1
(

1
i

bj
cs

j
ccc

j gge
 



  we obtain 
s

i
bj

c
i

bj
ccc

j
ccc

jg
)

1
...

211
...

21
(

1

 







  which is also appropriately close to 

a randomly chosen element.  
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   Or-gate: Let 
s

q
r

j

sr

j

sr

j ggg ,...,, 21  be the values on the input wires, 
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,, 

 be the values 

on the output wires and )(= wdepthj . 

If 1=)( *

wx  we generate q  random numbers qaaa ,...,, 21  and assign 
s

i
a

jg  to the 
thi  input wire. The 

key components 
ji

b

g ,
 are also assigned to the gate where jiji bax ,=   for all oi 1  and qj 1 . 

If 0=)( *

wx  none of the input wires are satisfied. Because of this, for all ][1, qi  
ir  is viewed as 

i
rjccc  ...21

 where 
i

r  is a random number. Also, for all ][1,oi  
ix  is view as 

i
xjccc  121 ... . 

For the key components, jib ,  is viewed as 
ji

bjc
,

1 
 where 

ji
b

,
  is a random number. 

From any input wire l , applying for each output wire i , ),( ,
1)...

21
(

ji
bj

cs
l

rj
ccc

j gge
 



 we will get 

s
ji

b
l

r
l

rj
c

ji
bj

ccc
j

ccc

jg
)

,
1

,
...

211
...

21
(

1

 







 . 

Remark that 
s

ji
b

l
r

l
rj

c
ji

bj
ccc

j
ccc

jg
)

,
1

,
...

211
...

21
(

1

 







  is appropriately close to a randomly chosen 

element. 

For the output gate we chose 
w  at random. At the end we have 

riki
cr  ][1,

=  for the output 

gate. Thus, the header component of the key is computed as w
k

r

kH ggK
 





 )(=)(= 11
.  

Guess Phase. The challenger receives back the guess {0,1}M  from the adversary. If 1=M   it 

guesses that T  is a tuple; otherwise, it guesses that it’s random. 

This shows that any adversary that runs in polynomial time with non-trivial advantage in the KP-ABE 

selective security game will have an identical advantage in breaking the k -MDDH assumption.  

For the Or-gate where we change the generator two times, in the KeyGen Phase we will create the key 

components as follows: 

Let 
s

q
r

j

sr

j

sr

j ggg ,...,, 21  be the values on the input wires, 
s

o
x

j

sx

j

sx

j ggg 2
2

2
1

2 ,...,,   be the values on the output 

wires and )(= wdepthj . 

If 1=)( *

wx  we generate q  random numbers qaaa ,...,, 21  and assign 
s

i
a

jg  to the 
thi  input wire. Next 

we will generate a random number x  and attach the key components i
b

g  where 
iibax =  for all qi 1 . 

We also publish o  key components k
d

g , where 
kkdxx =  for all ok 1 . 

If 0=)( *

wx  none of the input wires are satisfied. Because of this, for all ][1,1 q  
ir  is viewed as 

i
rjccc  ...21

 where 
i

r  is a random number. Also 
ix  is viewed as 

i
xjccc  221 ...  for all 

][1,oi . For the key components, ib  is viewed as 
i

bjc 1
 where 

i
b  is a random number and 

id  is 

viewed as 
i

djc 2  where 
i

d . 

From any input wire l, applying ),(
1

)...
21

(
l

bj
cs

l
rj

ccc

j gge
 




 we will get 

s
l

b
l

r
l

rj
c

l
bj

ccc
j

ccc

jg
)

1
...

211
...

21
(

1

 







 . 

Remark that 
s

l
b

l
r

l
rj

c
l

bj
ccc

j
ccc

jg
)

1
...

211
...

21
(

1

 







  is appropriately close to a randomly chosen 

element.  

 Because of this, if we apply ),(
2

)
1

...
211

...
21

(

1
i

dj
cs

l
b

l
r

l
rj

c
l

bj
ccc

j
ccc

j gge
 










  for this element we 

also get an element that is appropriately close to a random chosen element. 
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