
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 16, Special Issue 2015, pp. 287-298

 AN ATTRIBUTE BASED ENCRYPTION SCHEME BASED ON MULTILINEAR MAPS

 Alin Silviu BUTNARU, Petru Alexandru IOJA

 Department of Computer Science, Alexandru Ioan Cuza University, Iasi, Romania

 E-mail: alinnereid@gmail.com

This paper proposes an attribute based encryption scheme based on multilinear maps as a more

efficient variant of the scheme of S.Garg et al. [1]. Our scheme also uses secret sharing as a way to

share some secret associated to the output gate of the Boolean circuit top down to the leaves.

 Key words: Attribute based encryption, Multilinear maps, Secret sharing, Key-Policy ABE.

1. INTRODUCTION

Attribute based encryption (ABE) was introduced by Sahai and Waters in [2] and can be considered a

generalisation of identity based encryption. An ABE scheme encrypts a message together with some

attributes such that the message can be recovered only in some circumstances, which are described below.

Attribute based encryption schemes are efficient when we want to encrypt an information and only

some users can decrypt it. If we use asymmetric schemes, we need to encrypt the message for every user,

with his public key. If we have a large number of users, this procedure can cost a lot. Another disadvantage

for using public key schemes, is that we can’t send encrypted information to users without knowing their

identity. Also, using public key schemes, it’s hard to implement a system where users have permission to

decrypt the ciphertext based on some conditions. If efficient attribute based encryption schemes would be

developed, then the encrypted cloud storage would be improved by using them.

There are two variants of ABE: Key-Policy ABE and Ciphertext-Policy ABE. Goyal et al. [3]

introduced the idea of KP-ABE systems and Bethencourt et al. [4] introduced the idea of CP-ABE systems.

In a Key-Policy ABE system, a ciphertext encrypting a message M is associated with an assignment  of

attributes (they are viewed as Boolean variables). A secret key SK is issued by an authority and is

associated with a Boolean function f chosen from some class of allowable functions F . A user with a

secret key for f can decrypt a ciphertext associated with  , if and only if 1=)(f .

In a Ciphertext-Policy system, the role of encryption and key derivation are reversed. A user’s private-

key is associated with a set of attributes and a ciphertext specifies an access policy over a universe of

attributes. A user will be able to decrypt a ciphertext, if and only if his attributes satisfy the policy of the

respective ciphertext.

Contributions. We propose and ABE scheme that can be used either as a Key-Policy scheme or a

Ciphertext-Policy scheme. We describe only the scheme with Key-Policy, which can be easily transformed

in a Cipher-Policy scheme. Our starting point is [1] where an ABE scheme based on multilinear maps was

proposed. This scheme uses multilinear maps and works for general Boolean circuits. The main idea is to

associate a number of keys to each gate of the Boolean circuit and to reconstruct bottom up the secret. The

output gate of the Boolean circuit will receive the secret such constructed, which will be used in order to

decrypt the message. The Boolean circuit has Or-gates or And-gates on internal nodes and input-gates on

leaves .

Our scheme differs from the scheme of S.Garg et al. [1] in terms of the number of keys used and

access structure. In their scheme, where every gate has exactly one output and two inputs, for each Or-gate

288 Butnaru Alin Silviu and Ioja Petru Alexandru 2

they create four key components, for each And-gate they create three and for each wire two. When we deal

with this kind of gates, we create only two keys for the Or-gate and no keys for the And-gate or wire.

2. PRELIMINARIES

 This section recalls basic concepts of ABE.

Attribute based encryption. An ABE scheme consists of four probabilistic polynomial time

algorithms as follows:

Setup(ln,,1): To construct the setup algorithm we require an input parameter  , the maximum

depth l of a circuit and the number of Boolean inputs n (number of attributes in our scheme). This

algorithm outputs public parameters PP and a master key MK .

Encrypt(MPP ,,): To construct the encryption algorithm we require as input the public parameters

PP , the set of attributes  and a message M . This algorithm outputs a ciphertext CT .

KeyGen(CrMK ,): To construct the keygen algorithm we require as input the master key MK and

the Boolean circuit Cr . This algorithm outputs a secret key SK that enables the user to decrypt a message

under a set of attributes  if and only if 1=)(Cr .

Decrypt(CTSK ,): To construct the decryption algorithm we require as input a secret key SK and

ciphertext CT . This algorithm tries to decrypt the ciphertext CT and outputs a message M if successful.

Otherwise, it outputs a special symbol  .

Each ABE scheme should satisfy the following correctness property: Consider all messages M ,

attributes  and depth l circuits Cr where 1=)(Cr . If PPEncrypt(, CTM ), and

SKCrMKKeyGen ),(where MKPP, were generated from a call to the setup algorithm, then

MCTSKDecrypt =),(.

Multilinear maps. We say that a map
21: GGe n  is an maprmultilinean if it satisfied the

following properties:

 1. 1G and 2G are groups of the same prime order.

 2. If Znaaa ,...,, 21
 and

121 ,...,, Gxxx n  then

n
aaa

n
n

a

n

aa
xxxexxxe

...
21

21
2

2
1

1),...,,(=),...,,(.

 3. The map e is non-degenerate: if 1Gg  is a generator of 1G then),...,,(ggge is a generator

of 2G .

A multilinear map generator),(1 kG is a randomized algorithm that runs in a polynomial time and

takes as input a security parameter  , a positive integer k and outputs a sequence of groups

),...,,(= 21 kGGGG


 each of large prime order
2>p . Let

ig be a canonical generator of
iG and 1= gg .

In this paper, we sometimes abuse notation and drop the subscripts i,j writing, for example :
ab

ji

b

j

a

i ggge =),(.

The multilinear Diffie-Hellman assumption. This assumption states that given ,,, 21
aa

ggg

1
1..., Gg n

a
 it is hard to compute 1

...
21),..,,(n

aaa
ggge in 2G . In other words, we say that the multilinear

map generator G satisfies the multilinear Diffie-Hellman assumption if for all polynomial time randomized

algorithms A , the probability of being able to compute 1
...

21),..,,(n
aaa

ggge from 121 ,...,,, n
aaa

gggg is

negligible.

3 An attribute based encryption scheme based on multilinear maps 289

Boolean Circuit. For Boolean circuits we used the standard notation and concepts as in [1]. That is,

we deal with monotone Boolean circuits having only input gates, or-gates, and-gates and just one output. The

logic gates have at least two inputs and one or more outputs.

Circuit Notation. We need to modify the circuit notation from [1] because we use more than two

inputs for and/or-gates. Our circuits will be a quadruple),,,(= GateslqnCr . We let n be the number of

inputs, q the number of gates and l the number of levels in the circuit. Let Gates be a list of

gatescircuit  , where a),,,(= wiresinputlevelidtypegatecircuit  . The type can be

OrAndInput ,, , id is a unique natural number for each gate, level is the level where the gate is found and

wiresinput  is a list of id ’s for the inputs (idwires ) of the gate. If the type is Input the

wiresinput  will be empty. The id ’s will be set from left to right, from bottom to top in an ascending

order, starting from 1 to the number of nodes in the circuit. Because of this, the input-gates will have as id ’s

= }{1,..., n . The idwires  is a list of natural numbers set like id ’s for the gates, except they are now set

for the wires in the circuit. Let iresinputw
 for a node be a list of idwires  , for the wires that are input for

this node, and iresoutputw
 a list for the wires that are output for this node. We also define a function

)(wdepth where if 1=)(wdepthinputw and in general)(wdepth of wire w is equal to the shortest

path to an input wire plus 1. Because we use layered circuits, if jwdepth =)(, all the inputs for w will

have 1= jdepth .

3. OUR CONSTRUCTION

 We propose the following ABE scheme.

Setup(ln,,1): To construct the setup algorithm we require an input parameter  , the maximum

depth l of a circuit and the number of Boolean inputs n (number of attributes in our scheme).

Using a group generator 1)=,(1 lkG we produce groups),...,,(= 21 kGGGG


 of prime order p ,

with generators
kgg ,...,1

. Next we chose a random pZ and for each attribute we choose a random

number 1Gti  . Let 1= GG and 1= gg .

The public parameters PP are nk ttg ,...,, 1


 and the group sequence.

The master key MK is
)(1kg .

Encrypt(MPP ,,): To construct the encryption algorithm we require as input the public parameters

PP , the set of attributes  and a message M .

The encryption algorithm chooses a random ps Z and outputs the ciphertext ,,(= s

M gCCT

)= s

ii tCi  where
s

kM gMC)(= 
.

KeyGen(),,,(=, GateslqnCrMK): To construct the keygen algorithm we require as input the

master key MK and the Boolean circuit Cr . This algorithm outputs a secret key SK that enables the user

to decrypt a message under a set of attributes  if and only if 1=)(Cr . The key generation algorithm

chooses a random pr Z . The algorithm then produces a header component :
)(

1)(= r

kH gK 




.

In the secret sharing procedure, we share
rs

kg starting from the output wire of the output gate of the

Boolean circuit. The secret sharing is:

 Input-wire: Suppose that the input-wire has the output
xsg2

. We will generate a random pz Z

and create two key components:
z

i

xtgb =1 and
zgb =2
, where i is the id of this gate.

290 Butnaru Alin Silviu and Ioja Petru Alexandru 4

 And-gate: Consider first the case with exactly one output wire and q input wires. Assume that the

output wire of the gate is
xs

jg . First, we generate 1q random numbers pqaa Z11,..., and then assign

s
q

aaax

jg
)

1
...

21
(




 to the first input wire and
s

q
a

j

sa

j gg 11 ,..., 
 to the next 1q input wires.

This construction is illustrated in Fig. 1.

Fig. 1 – And-gate with exactly one output.

If the And-gate has more than one output, let
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,  be the values associated to the output

wires. Like in the first case, we generate 1q random numbers pqaa Z11,..., and one random number

px Z . We assign
s

q
aaax

jg
)

1
...

21
(




 to the first input wire and
s

q
a

j

sa

j gg 11 ,..., 
 to the next 1q input wires.

We then generate o random numbers
obbb ,...,, 21

 such that
ii xbx = for all oi 1 . The key components:

o
bb

gg ,...,1 are also assigned to the gate.

This construction is illustrated in Fig. 2.

Fig. 2 – And-gate with more than one output.

5 An attribute based encryption scheme based on multilinear maps 291

 Or-gate: Suppose that the Or-gate has q input wires and o output wires. Let
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,, 

 be

the values associated to the output wires. We generate q random numbers pqaaa Z,...,, 21 and assign

s
i

a

jg to the
thi input wire. The key components

ji
b

g ,
 are also assigned to the gate where jiji bax ,=  for all

oi 1 and qj 1 .

This construction is illustrated in Fig. 3.

Fig. 3 – Or-gate.

In order to create this sharing scheme, first we need to create a circuit like the initial one where we put

coefficients on wires which will allow us to create the key components.

Decrypt(CTSK ,): Suppose that we are evaluating decryption for a secret key SK associated with a

circuit Cr and a ciphertext with input x . We will be able to decrypt it only if 1=)(xCr .

The goal of decryption is to compute
s

kg
 (M can be recovered by computing

s

kM gCM /=). First,

we compute
rs

k

s

k

sr

k

s

HH ggggegKeK 


  =),(=),(= 1 . Our goal is now reduced to computing

rs

kg .

Next we evaluate the circuit bottom up. If 1=)(xCrw then, our algorithm can compute the

information in this node, like below. Our algorithm starts from the leaves and tries to go up to the last output

and if the user is allowed to decrypt the ciphertext, in the last output will be
rs

kg .

We may assume that all inputs of an And-gate have the same generator jg . If, for instance, some

inputs have the generator
ug , with ju < , then we may apply),(gge x

u to obtain
x

ug 1 . This procedure can

be repeated until we obtain
x

jg .

For each gate, we will do the following :

  Input-wire: If 1=)(xCri , the ciphertext contains iC and we can calculate

xss

i

zsz

i

x

i

s gtgegtgeCbegbe 221 =),(),(=),(),( .

 And-gate: Consider first the case with exactly one output wire and q input wires, where all inputs

have 1=)(xCr , like we described earlier, the first input wire contains
s

q
aaax

jg
)

1
...

21
(




 and the next 1q

292 Butnaru Alin Silviu and Ioja Petru Alexandru 6

inputs contain
s

i
a

jg . Multiplying the information from these inputs we get
xs

jg , which will be contained by

the output wire.

If the And-gate has o output wires and q input wires, where all inputs have 1=)(xCr , like we

described earlier, the first input contains
s

q
aaax

jg
)

1
...

21
(




 and the next 1q inputs contain
s

i
a

jg .

Multiplying the information from these inputs we will get
xs

jg . Using key components o
bb

gg ,...,1 , where

1= xxb ii
 for all oi 1 , we will compute for each key

ib ,
s

i
x

j

x
i

xsx

j
i

bxs

j gggge 1

1

1 ==),(




, then we assign

s
i

x

jg 1
 to the

thi output wire.

 Or-gate: Suppose that the Or-gate has o output wires and q input wires and at least one input has

1=)(xCr , like we described earlier, the
thi input contains

s
i

a

jg . Using the key components
1

, =

j

a
i

x
ji

b

gg

from any input wire l we can compute, for each output wire i ,
s

i
x

j
l

a
i

xs
l

a

j

li
bs

l
a

j gggegge 1

1
, =),(=),(



. This

value,
s

i
x

jg 1 , will be assigned to the
thi output wire.

If 1=)(xCr then the algorithm will output
rs

kg , this is the value assigned to the last output wire.

Finally, multiplying HK  with
rs

kg we obtain
s

kg
 and dividing MC by

s

kg
 we obtain the message M .

 When the Or-gates have many output wires we may try to change the generator two times in order to

reduce the number of keys. We describe below this new construction indicating only the encryption and

decryption for Or-gates.

Encryption part: Suppose that the Or-gate has q input wires and o output wires.

Let
s

o
x

j

sx

j

sx

j ggg 2
2

2
1

2 ,...,,  be the values associated to the outputs. We generate q random numbers

pqaaa Z,...,, 21 and assign
s

i
a

jg to the
thi input wire. We then generate a random number px Z and

publish q key components i
b

g , where
iibax = for all qi 1 . For each output wire, we publish o key

components k
c

g , where
kkcxx = for all ok 1 .

This construction is illustrated in Fig. 4.

Fig. 4 – Or-gate, switching generator two times.

7 An attribute based encryption scheme based on multilinear maps 293

Decryption part: Suppose that the Or-gate has o output wires and q input wires and at least one

input has 1=)(xCr , like we described above, the
thi input contains

s
i

a

jg . Using key components i
b

g ,

starting from any input wire, we can compute
xs

j
i

bs
i

a

j ggge 1=),(
. Using key components k

c
g and

xs

jg 1 we

compute
s

k
x

j
k

cxs

j ggge 21 =),(
 for all ok 1 and assign

s
k

x

jg 2
 to the hk t

 output wire.

 Using this method we only need oq  key components but we need to change the generator two

times.

Examples of sharing on different gates. For each And-gate with exactly one output wire we share

the output to the input gates without using any key components. For example, if we have
xs

jg in the output

and we have three inputs, we generate two random numbers ba, and we assign
sbax

jg)(
 to the first input

wire,
as

jg to the second input wire and
bs

jg to the last one. If all the inputs are satisfied, all the values from

the inputs are the ones from above and we can multiply them in order to obtain the value associated to the

output wire, which is
xs

j

bs

j

as

j

sbax

j gggg =)(
.

For each And-gate with more than one output we share the outputs to the input wires using a number

of key components equal to the number of output wires. For example, if we have two outputs with values
sx

jg 1
1 and

sx

jg 2
1 and three inputs, first we generate a random number x and two other random numbers ba,

such that xax =1 and xbx =2 and we assign
sbax

jg)(
 to the first input,

as

jg to the second input and
bs

jg

to the last one. For this gate, we attach the key components
ba gg , . Multiplying the values from the input

gates we get
xs

jg and using the key components and applying the multilinear function we get the values from

the outputs, which are
sx

j

axs

j ggge 1
1=),( and

sx

j

bxs

j ggge 2
1=),( .

For each Or-gate, if we change the group generator once, the number of key components will be equal

to the number of inputs multiplied by the number of outputs. If we change the group generator twice, the

number of key components will be equal to the number of inputs plus the number of outputs.

4. SECURITY OF OUR CONSTRUCTION

 We prove selective security of our scheme under the k -MDDH assumption, that given

,,,= 1
1

cs gggg Zk
c

g..., it is hard to distinguish
j

c
kj

s

kgT
 ][1,= . Recall first the security game.

In the game-based security definition, as in other similar systems (e.g.[1], [2], [3]), an attacker is able

to query for multiple keys, but not the ones that can easily be used to decrypt the ciphertext. The adversary

may perform a polynomial number of requests for private keys corresponding to any circuit Cr , but must

encrypt some string
*x (the

*x is a string of length n with elements 0,1 and it shows what attributes

adversary has) such that every circuit Cr for which a private key was requested has 0=)(*xCr . The

security game has the following steps:

Setup. The challenger runs the setup algorithm and gives the public parameters PP to the adversary

and keeps the MK .

 Phase 1. The adversary makes any polynomial number of queries in order to obtain private keys for a

circuit description f of its choice. The challenger returns for each query the output of),(CrMKKeyGen .

294 Butnaru Alin Silviu and Ioja Petru Alexandru 8

 Challenge. The adversary sends two messages
0M and 1M having the same length. He also gives a

challenge string
*x such that for all f requested in Step 1 we have 0=)(*xf . The challenger then chooses

a random {0,1}b , and computes
**),,(CTMxPPEncrypt b  and sends

*CT to the adversary.

 Phase 2. Phase 1 can be repeated with the restriction that for all f requested 0=)(*xf .

 Guess. The adversary outputs {0,1}b .

The advantage of an adversary A in this game is defined as
2

1
]=[ bbPr .

We say that an attribute-based encryption scheme for circuits is secure if all polynomial time

adversaries have a negligible advantage in the described game.

We say that a system is selectively secure if the system is secure in a game where we add a new step

before setup called Init, where the adversary can send to the challenger the string
*x .

Now, we can prove the following : The construction given in the previous section achieves selective

security for arbitrary circuits of depth 1k in the KP-ABE security game under the k-MDDH assumption.

Proof. The init, setup and challenge ciphertext are the same as in [1].

Init. B first receives the 1l -multilinear problem where it is given the group description

),...,,(= 21 kGGGG


 and a problem instance Tgggg k
ccs ,,...,,, 1 . T is either

j
c

kj
s

kg
 ][1,

 or a random

group element in
kG .

Next, the attacker declares the challenge input
nx {0,1}* .

Setup. B chooses random pn Zyy ,...1 . For][1, ni set








0=if

1=if
=

*1

*

i

c
i

y

i
i

y

i
xg

xg
t

Remark. We need i
y

g to be either statistically close to or indistinguishable from 1
c

i
y

g


.

 Next, B sets
i

c
ki

kk gg
 


][1,=




 where  is chosen randomly. It computes this using k
cc

gg ,...,1

from the assumption by means of the iterated use of the pairing function.

Remark. We need
i

c
ki

kk gg
 


][1,=




 to be either statistically close to or indistinguishable from


kg .

Challenge Ciphertext. Let][1,* nS  be the set of input indices where 1=*

ix . The reduction

algorithm receives two messages
10 ,MM and flips a coin b . B creates the challenge ciphertext as:

))(=,,(= i
ys

i

ss

kb gCiggTMCT   .

If
j

c
kj

s

kgT
 ][1,= , then this is an encryption of bM ; otherwise if T was chosen random in kG then

the challenge ciphertext contains no information about the message from the attacker’s view.

KeyGen Phase. Both key generation phases are executed in the same manner by the reduction

algorithm. Therefore, we describe them once here. The attacker will give a circuit Cr to the reduction

algorithm such that 0=)(*xCr . Consider a gate w at depth j and the simulators viewpoint of wr . If

9 An attribute based encryption scheme based on multilinear maps 295

0=)(*xCrw
 then the simulator will view

wr as the term 121 ...  jccc plus some additional known

randomization terms. If 1=)(*xCrw
 then the simulator will view

wr as 0 plus some additional known

randomization terms. If we can keep this property intact for simulating the keys up the circuit, the simulator

will view r as
kccc  ...21

. This will allow for it to simulate the header component HK by cancellation.

 We describe how to create the key components for each gate:

  Input-wire: Suppose that][1, nw and therefore is an input wire.

If 1=)(*

wx then we choose z random and the key components will be:
z

w

xtgb =1
 and

zgb =2
.

If 0=)(*

wx then we let
wccx 21= (the output coefficient) and

wcz  2= , where
w and

w

are randomly chosen elements. The key components are: w
c

w
w

cc
tgb

 
221

1 =(,

),(=)= 2
)

1
(

22
2

w
c

w
c

w
y

ww
yc

w
c

gggb
 

.

Remark. Here we need w
c

w
y

ww
yc

g
)

1
(

2


 to be appropriately close to a randomly chosen element.

  And-gate: Let)(= wdepthj . For the first case, where there is exactly one output wire (
xs

jg) and

q input wires (let them be
s

q
r

j

sr

j

sr

j ggg ,...,, 21) .

If 1=)(*

wx then we generate 1q random numbers 11,..., qaa and assign
sr

j

s
q

aaax

j gg 1
)

1
...

21
(

=


to the first input wire and
s

q
r

j

s
q

a

j

sr

j

sa

j gggg =,...,= 121 
 to the next 1q input wires.

If 0=)(*

wx then exist at least one input wire that are not satisfied. Because of this, exists one
ir that

is view as
i

rjccc  ...21
 where

i
r is a random number.

Because at the sharing part we chose random number Z11,..., qaa , when we have at least one wire not

satisfied, when we multiply all the input wires values we will obtain


j
ccc

jg
...

21
 where  it’s a sum of some

i
r .

Remark that


j
ccc

jg
...

21
 is appropriately close to a randomly chosen element.

For the case where there are o output wires (
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,, ) and q input wires (let them be

s
q

r

j

sr

j

sr

j ggg ,...,, 21):

If 1=)(*

wx then we generate 1q random numbers 11,...,, qaax and assign
sr

j

s
q

aaax

j gg 1
)

1
...

21
(

=


to the first input wire and
s

q
r

j

s
q

a

j

sr

j

sa

j gggg =,...,= 121 
 to the next 1q input wires. Then we generate o

random numbers obbb ,...,, 21 such that
ii xbx = for all oi 1 . The key components: o

bb
gg ,...,1 are also

assigned to the gate.

If 0=)(*

wx then at least one input wire that is not satisfied exists. Because of this, one
ir exists that

is viewed as
i

rjccc  ...21
 where

i
r is a random number. Also

ix is viewed as
i

xjccc  121 ... for

all][1,oi . For the key components, ib is viewed as
i

bjc 1
 where

i
b is a random number.

Remark that


j
ccc

jg
...

21
 is appropriately close to a randomly chosen element. Applying

),(
1)...2

1
(

1
i

bj
cs

j
ccc

j gge
 



 we obtain
s

i
bj

c
i

bj
ccc

j
ccc

jg
)

1
...

211
...

21
(

1

 







 which is also appropriately close to

a randomly chosen element.

296 Butnaru Alin Silviu and Ioja Petru Alexandru 10

  Or-gate: Let
s

q
r

j

sr

j

sr

j ggg ,...,, 21 be the values on the input wires,
s

o
x

j

sx

j

sx

j ggg 1
2
1

1
1 ,...,, 

 be the values

on the output wires and)(= wdepthj .

If 1=)(*

wx we generate q random numbers qaaa ,...,, 21 and assign
s

i
a

jg to the
thi input wire. The

key components
ji

b

g ,
 are also assigned to the gate where jiji bax ,=  for all oi 1 and qj 1 .

If 0=)(*

wx none of the input wires are satisfied. Because of this, for all][1, qi
ir is viewed as

i
rjccc  ...21

 where
i

r is a random number. Also, for all][1,oi
ix is view as

i
xjccc  121

For the key components, jib , is viewed as
ji

bjc
,

1 
 where

ji
b

,
 is a random number.

From any input wire l , applying for each output wire i ,),(,
1)...

21
(

ji
bj

cs
l

rj
ccc

j gge
 



 we will get

s
ji

b
l

r
l

rj
c

ji
bj

ccc
j

ccc

jg
)

,
1

,
...

211
...

21
(

1

 







 .

Remark that
s

ji
b

l
r

l
rj

c
ji

bj
ccc

j
ccc

jg
)

,
1

,
...

211
...

21
(

1

 







 is appropriately close to a randomly chosen

element.

For the output gate we chose
w at random. At the end we have

riki
cr ][1,

= for the output

gate. Thus, the header component of the key is computed as w
k

r

kH ggK
 





)(=)(= 11
.

Guess Phase. The challenger receives back the guess {0,1}M from the adversary. If 1=M  it

guesses that T is a tuple; otherwise, it guesses that it’s random.

This shows that any adversary that runs in polynomial time with non-trivial advantage in the KP-ABE

selective security game will have an identical advantage in breaking the k -MDDH assumption.

For the Or-gate where we change the generator two times, in the KeyGen Phase we will create the key

components as follows:

Let
s

q
r

j

sr

j

sr

j ggg ,...,, 21 be the values on the input wires,
s

o
x

j

sx

j

sx

j ggg 2
2

2
1

2 ,...,,  be the values on the output

wires and)(= wdepthj .

If 1=)(*

wx we generate q random numbers qaaa ,...,, 21 and assign
s

i
a

jg to the
thi input wire. Next

we will generate a random number x and attach the key components i
b

g where
iibax = for all qi 1 .

We also publish o key components k
d

g , where
kkdxx = for all ok 1 .

If 0=)(*

wx none of the input wires are satisfied. Because of this, for all][1,1 q
ir is viewed as

i
rjccc  ...21

 where
i

r is a random number. Also
ix is viewed as

i
xjccc  221 ... for all

][1,oi . For the key components, ib is viewed as
i

bjc 1
 where

i
b is a random number and

id is

viewed as
i

djc 2 where
i

d .

From any input wire l, applying),(
1

)...
21

(
l

bj
cs

l
rj

ccc

j gge
 




 we will get

s
l

b
l

r
l

rj
c

l
bj

ccc
j

ccc

jg
)

1
...

211
...

21
(

1

 







 .

Remark that
s

l
b

l
r

l
rj

c
l

bj
ccc

j
ccc

jg
)

1
...

211
...

21
(

1

 







 is appropriately close to a randomly chosen

element.

 Because of this, if we apply),(
2

)
1

...
211

...
21

(

1
i

dj
cs

l
b

l
r

l
rj

c
l

bj
ccc

j
ccc

j gge
 










 for this element we

also get an element that is appropriately close to a random chosen element.

11 An attribute based encryption scheme based on multilinear maps 297

REFERENCES

 1. S. GARG, C. GENTRY, S. HALEVİ, A. SAHAİ, B. WATERS, Attribute-Based Encryption for Circuits from Multilinear

Maps, Lecture Notes in Computer Science, 8043, 2013, pp. 479-499, CRYPTO 2013.

 2. A. SAHAİ, B. WATERS, Fuzzy Identity Based Encryption, Lecture Notes in Computer Science, 3494, 2005, pp. 457-473,

Eurocrypt 2005.

 3. V. GOYAL, O. PANDEY, A. SAHAİ, B. WATERS, Attribute-based encryption for fine-grained access control of encrypted

data, Proceedings of the 13th ACM conference on Computer and communications security, pp. 89 - 98, New York, NY,

USA, 2006.

 4. J. BETHENCOURT, A. SAHAİ, B. WATERS. Ciphertext-policy attribute-based encryption, Proceedings of the 2007 IEEE

Symposium on Security and Privacy, IEEE Computer Society, pp. 321 - 334, Washington, DC, USA, 2007.

 5. D. BONEH, A. SİLVERBERG, Applications of Multilinear Forms to Cryptography, Contemporary Mathematics, 324, pp.

71-90, 2003.

