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In this paper the quasi-static equation in the distributions space 2( )′ \D , is established with respect to 
the quantity EIv rv= , called deflection stiffness, for the vibrations of the elastic bars with 
geometrical, material and external discontinuities. This equation incorporates both the distributed 
loads and the concentrated ones, whether given or constraint, as well as the influence of the 
discontinuities due to the jumps of the quantity rv  and its derivative. It is shown that the quasi-static 
equation also describes the bending of the elastic bar with discontinuities. Finally the quasi-static 
equation is given for a double-embedded bar with two material discontinuities and subjected to 
concentrated loads, varying in time. 
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1. INTRODUCTION 

In the study of the boundary-value problems regarding the bending and the transverse vibrations of the 
elastic bars difficulties are encountering due to the discontinuity points of the bar. These points of 
discontinuity can be divide into three classes, namely: 

a) External points of discontinuity, which are the action points of the concentrated forces and moments; 
b) Internal discontinuity points, which are the points in which the mechanical properties of the bar, i.e. 

the stiffness EI  and the mass density ρ , change; 
c) Geometric discontinuity points which are due to the joints. 

 In the study of the boundary-value problem occur the following physical quantities: ( )( ), ( ),EI x xρ  
( , ), ( , ), ( , ), ( , ) [ , ]v x t T x t M x t x t a b +∈ ×\ , representing the bar stiffness, the mass density, the deflection, the 

shear force and the bending moment, respectively. 
 These quantities and their derivatives of a certain order may have discontinuities of the first order at the 
points of discontinuity of the classes a, b or c. This means that, in a such point, for the physical quantity, the 
lateral limits exist and are finite. The discontinuity at a point of a physical quantity is expressed by using the 
jump of that quantity. Thus, if ( , )a bα ∈  is a point of discontinuity of the first order for the physical quantity 

( , ),( , ) [ , ]f x t x t a b +∈ ×\ , then its jump at α  is [ ]( , ) ( 0, ) ( 0, )f x t f t f tα α α= + − − , where ( 0, )f tα + =  

= lim ( , )
x
x

f x t
α
α

→
>

, ( 0, ) lim ( , )
x
x

f t f x t
α
α

α
→
<

− =  are the right and left limit at α , respectively. 

 We shall show that physical quantity with which can express the bar discontinuities is ( )( , )EIv x t =  
= ( )( ) ( , ), ( , ) [ , ]EI x v x t x t a b +∈ × \ . For this reason the quantity ( )EIv  we shall call the rigidity of the 
deflection v . 
 This quantity plays a similar role as the mechanical quantity mv , representing the impulse of a 
material point of mass m  and speed v . 
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 We note that the classical method of solving the boundary-value problem can be applied only to the 
portions of the bar where the loads, as well as the mechanical properties of the bar, have not discontinuities. 
This leads to the study of several equations (one equation for each segment) with certain conditions in the 
joints of the segments. This method proves to be laborious and generally does not allow writing a single 
equation that incorporates the influence of geometrical, material and external discontinuities. 
 These deficiencies can be overcome by using the distributions theory that erases the boundary between 
continuous and discrete. Thus, concentrated forces and moments can be represented in a unified form using 
Dirac distribution [1] i.e. ( ), ( )P x a m xδ δ α′− − . Thus, the problems of elasticity is approach in this manner 
in the papers: [2, 3, 4, 6]. 
 In this paper by consistently using distribution theory, the quasi-static equation is established, in the 
distributions space 2( )′ \D , for bars with discontinuities. Note that this equation incorporates both the 
distributed loads and the concentrated ones, whether given or constraint. Also, the equation highlights the 
influence of the discontinuities by the rigidity jumps ( )( , )EIv x t  of the deflection and its derivative. 
 These jumps can be interpreted as the charge densities due to the discontinuity points of the bar. It is 
shown that the quasi-static equation describes the bending of the elastic bars with discontinuities as a 
particular case. 

2. GENERAL RESULTS. GENERALIZED EQUATION FOR QUASI-STATIC ELASTIC BARS 
WITH DISCONTINUITIES 

 We consider a straight homogeneous elastic rod of finite length [ , ]x a b∈  and the points 
1 2 1 1, ,..., , , , ...,i i j i nc a c c c c c c b− += =  (Fig. 2.1). We suppose that the point ( , )jc a b∈  is an articulation point 

and that at the points , 1,ic i n=  act concentrated forces and moments. These loads can be given or constraint, 
depending on the bar attachment. Consequently, the considered bar is a system of two bars [ , ]ja c  and [ , ]jc b  
connected by the joint jc . Some of the points i jc c≠  can be attachment points of the system of two bars, by 
the supports and the embedding. 

 
Fig. 2.1. 

 We denote by 1( ), ( ) ( )i i locP t m t L +∈ \ , locally integrable functions, representing the intensity of 
concentrated force and moment, which vary in time, and act at the point 1, 1, , ,i nc i n c a c b= = = . The forces iP  
act perpendicular to bar in the vertical plane Oxv , and the moments im  cause the bending of the bar in the 
same plane Oxv . We will also denote by ( , ), ( , ), ( , ), ( , ),( , ) [ , ]v x t q x t T x t M x t x t a b +∈ ×\ , respectively, the 
deflection of the bar, the intensity of the distributed load, the shear force and the bending moment. 
 We admit that the intensity ( , )q x t  of the distributed loads is continuous in each of the intervals 

1( , ), 1, 1i ic c i n+ = − , having discontinuities of the first order at the ends of intervals. Denoting 
1

1
1

( , )
n

i i
i

J c c
−

+
=

=∪ , 

means that ( )0( , )q x t C J +∈ ×\ , so q  is integrable on [ , ]a b  with respect to the variable [ , ]x a b∈ . Let 

1 2,E E  be the elasticity modulus on the segments [ , ]ja c  and [ , ]jc b , respectively, and 1 2,I I  the moments of 
inertia of the cross section to the neutral axis to the two segments. Consequently, the rigidity EI  of the bar 
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on each of the two segments is constant, but has different values in general, i.e., 
1 1 1 2 2 2const., [ , ), const., [ , ]j jr E I x a c r E I x c b= = ∈ = = ∈ .It follows that the bar rigidity r EI=  is a function 

of [ , ]x a b∈  and has the expression ( ) 1 1 1

2 2 2

, [ , ),
( ) ( )

, [ , ],
j

j

r E I x a c
r x EI x

r E I x c b
= ∈= =  = ∈

 having at the joint point 

( , )jc a b∈  a discontinuity of the first order. 
 We note that the deflection ( , ), ( , ) [ , ]v x t x t a b +∈ ×\  is a continuous function on [ , ]a b +×\ . As regards 
the ordinary derivative ( , )xv x t∂� , it is continuous on [ , ]a b , except the point ( , )jc a b∈ , where it has a 
discontinuity of the first order. This means that the rotation angles of the sections on either side of the joint, 
i.e. ( 0, )x jv c t∂ +�  and ( 0, )x jv c t∂ −�  will generally be different.  
 Therefore, the equation of the deformed axis of the bar will be different for the portions separated by 
joints. From the above, it follows that the rigidity r EI=  of the bar has a discontinuity of the first order in 
the joint jc , while the deflection v  is continuous at jc . Consequently, the quantity rv EIv= , which we call 
deflection rigidity, has a discontinuity of the first order in the joint jc . Thus, for the deflection rigidity we 
have 

1 1 1 1 1

2 2 2 2 2

( , ) ( , ), ( , ) [ , ) ,
( )( , ) ( ) ( , )

( , ) ( , ), ( , ) [ , ) ,
j

j

r v x t E I v x t x t a c
rv x t r x v x t

r v x t E I v x t x t c b
+

+

= ∈ ×= =  = ∈ ×

\
\

 

where 1v  and 2v  are the bar deflections on the segments [ , ]ja c  and [ , ]jc b . 
 In connection with the considered functions we assume the assumptions 

( ) ( )

( ) ( )

4,2 1,2 0

1
1,0 2,0

1 1
1

( , ) ( ) [ , ) ( , ] , ( , ) ,

( , ) , ( , ) , ( , ), , .

j j

n

i i n
i

v x t C J C a c c b q x t C J

T x t C J M x t C J J c c c a c b

+ + +

−

+ + +
=

∈ × × ∈ ×

∈ × ∈ × = = =

\ ∩ ∪ \ \

\ \ ∪
 (2.1)

 These assumptions, taking into account [6], [1], allow the writing of the complete system of equations 
of transverse vibrations of elastic bars [ , ]a b , namely 

( )

2

2 2

( , ) ( , ) ( , ) 0, ( , ) ( , ),
( , ) ,

( , ) ( , ) ( , ),
x t x

x x

T x t q x t v x t T x t M x t
x t J

M x t EI v x t EIv x t

ρ
+

∂ + − ∂ = = ∂
∈ ×

= − ∂ = −∂

� � �
\� �  (2.2)

where ρ  is the mass density per unit length, and ,x t∂ ∂� �  are the partial derivatives in the ordinary sense. 
 To these equations, valid for each of the intervals 1( , ), 1, 1i ic c i n+ = − , we must add the appropriate 
boundary conditions of the ends intervals, as well as the initial conditions 

0 10 0
( , ) ( ), ( , ) ( ), [ , ].tt t

v x t u x v x t u x x a b
=+ =+

= ∂ = ∈�  

 An important case of equations (2.2) is that where the distributed loads and the concentrated ,( ) ( )i iP t m t  
(forces and moments) ones, whether given or constraint, vary slowly with respect to time. Then, in the sys-
tem (2.2) we can neglect the inertial force 2 ( , )t v x tρ∂�  and thus we obtain the system of quasi-static equations 

2( , ) ( , ) 0, ( , ) ( , ), ( , ) ( )( , ), ( , ) .x x xT x t q x t T x t M x t M x t rv x t x t J +∂ + = = ∂ = −∂ ∈ ×� � � \  (2.3)

 These equations describe the quasi-static transverse vibrations of the elastic bars. We shall admit that 
the initial conditions corresponding to quasi-static equations (2.3) are zero. 
 To consider the quantities appearing in equations (2.3) as function type distributions from 2( )′ \D , we 
will prolong them with null values outside their domain of definition [ , ]a b +×\ . We mention that 2( )\D  is 
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the test space of indefinitely differentiable functions with compact support and 2( )′ \D , [1] the set of linear 
and continuous functionals defined on 2( )\D . 

 Let 
1, [ , ],

( )
0, [ , ],

x a b
x

x a b
χ

∈
=  ∉

 be the characteristic function corresponding to the interval [ , ]a b  and 

0, 0,
( )

1, 0,
t

H t
t
<

=  ≥
 Heaviside's function. We define the following function type distributions from 2( )′ \D  

l( )

1

2

1 1

2 2

( , ), ( , ) [ , )
( , ), ( , ) [ , ]

ˆ( , ) ( , ), ( , ) [ , ] ( , ) ( ) ( ),
0, otherwise,

0, otherwise

( , ), ( , ) [ , )
( ) ( , ), ( , ) [ , ]

( , )
0, otherwise

j

j

j

v x t x t a c
v x t x t a b

v x t v x t x t c b v x t x H t

r v x t x t a c
r x v x t x t a b

rv x t r v

χ
+

+
+

+
+

∈ ×
∈ × = = ∈ × = 

 


∈ ×
∈ ×

= =


\
\

\

\
\

( , ), ( , ) [ , ] ( ) ( , ) ( ) ( ),
0, otherwise

ˆ ˆˆ( , ) ( , ) ( ) ( ), ( , ) ( , ) ( ) ( ), ( , ) ( , ) ( ) ( ),
ˆ ˆ( ) ( ) ( ), ( ) ( ) ( ).

j

i i i i

x t x t c b r x v x t x H t

q x t q x t x H t T x t T x t x H t M x t M x t x H t

P t P t H t m t m t H t

χ

χ χ χ

+


 ∈ × =



= = =

= =

\ (2.4)

 The writing of these quantities using the functions ( )xχ  and ( )H t  is abbreviated and formal. 
 For these functions and their derivatives with respect to the variable x∈\ , the points , 1,ic i n=  are, 
generally, discontinuity points of the first order. Thus, the point of action of a concentrated force is a point of 
discontinuity of the first order for shear force T̂  and for the derivative ˆ

xM∂�  of the bending moment. 
 Also, the point of action of a concentrated moment is a point of discontinuity of the first order for the 
bending moment M̂  and ordinary point for the shear force T̂ . We note that the jumps of the shear force and 
of the bending moment at the points , 1,ic i n=  have the expressions 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( 0, ) ( 0, ) ( ), ( , ) ( 0, ) ( 0, ) ( ).
i i

i i i i i ic c
T x t T c t T c t P t M x t M c t M c t m t   = + − − = − = + − − = −     (2.5)

 As regards the deflection ˆ( , )v x t , it is continuous with respect to the variable x, for [ , ]x a b∈ . Instead, 

the points 1c a=  and nc b=  are points of discontinuity of the first order for v̂  and lrv , as well as for the 

derivatives lˆ, ( )x xv rv∂ ∂� � . We note that the joint point ( , )jc a b∈  is point of continuity for v̂  and point of 

discontinuity for lrv , lˆ, ( )x xv rv∂ ∂� � . For jumps of the quantities lrv  and l( )x rv∂�  at the points , , ja b c  we have 
the expressions 

l l l

l l l

l l l

l l l

1 1

2 2

1 1

2 1

( )( 0, ) ( )( 0, ) ( 0, ) ( );

( )( 0, ) ( )( 0, ) ( 0, ) ( );

( 0, ) ( 0, ) ( 0, ) ( );

( 0, ) ( 0, ) (

a

b

x x x xa

x x x xb

rv rv a t rv a t r v a t H t

rv rv b t rv b t r v b t H t

rv rv a t rv a t r v a t H t

rv rv b t rv b t r v b

  = + − − = + 

  = + − − = − − 

 ∂ = ∂ + − ∂ − = ∂ + 

 ∂ = ∂ + − ∂ − = − ∂ 

� � � �

� � � �

l l l

[ ]
l

2 1

0, ) ( );

ˆ ˆ( )( 0, ) ( )( 0, ) ( 0) ( 0, ) ( 0) ( 0, ) ( ) ( , ) ( )

ˆ( , ) ( ), this relation takes place due to the deflection continuity  in the joint ;

( ) (

j

j

j

j j j j j j jc

j jc

x xc

t H t

rv rv c t rv c t r c v c t r c v c t r r v c t H t

r v c t H t v c

rv

−

  = + − − = + + − − − = − = 

=

 ∂ =∂ 
� � l l ( )2 1)( 0, ) ( )( 0, ) ( 0, ) ( 0, ) ( ) ( ) ( ).

j

j x j x j x j x c
rv c t rv c t r v c t r v c t H t rv H t + − ∂ − = ∂ + − ∂ + = ∂ 

� � � �

(2.6)
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 The quasi-static equations (2.3), with respect to the quantities defined by (2.4) and (2.4'), are rewritten 
in the form 

l2ˆ ˆ ˆ ˆˆ( , ) ( , ) 0, ( , ) ( , ), ( , ) ( )( , ), ( , ) .x xT x t q x t T x t M x t M x t rv x t x t J ++ = = ∂ = −∂ ∈ ×� � \  (2.7)

 Next, we denote by x∂  the derivative in the sense of distributions and with x∂�  the derivative in the 
ordinary sense. The dependence [1], of the two derivatives is given by 

 PROPOSITION 2.1. If the function f is of class 1( )C \ , except the points , 1,ix i p= , where it has 
discontinuities of the first order with the jumps [ ] ( 0) ( 0)

i

i ixf f x f x= + − − , then 

[ ]
1

( ),
i

p

x x ix
i

f f f x xδ
=

∂ = ∂ + −∑�  (2.8)

where ( )ix xδ −  is the Dirac delta distribution concentrated at the point ix . 
 Applying this formula and taking into account (2.5) we obtain 

1 1

ˆ ˆ ˆ ˆ ˆ[ ] ( ) ( ) ( ),
i

n n

x x c i x i i
i i

T T T x c T P t x cδ δ
= =

∂ = ∂ + × − = ∂ − × −∑ ∑� �  (2.9)

1 1

ˆ ˆ ˆ ˆ ˆ[ ] ( ) ( ) ( ),
i

n n

x x c i x i i
i i

M M M x c M m t x cδ δ
= =

∂ = ∂ + × − = ∂ − × −∑ ∑� �  (2.10)

where ×  is the direct product symbol v . 
 Analogously, applying the formula (2.8) for the deflection rigidity lrv  we obtain 

l l l l l l l
1, ,

( ) ( ) [ ] ( ) [ ] ( ) [ ] ( ) ( ) [ ] ( ),
j k

x x a b c j x c k
k j n

rv rv rv x a rv x b rv x c rv rv x cδ δ δ δ
=

∂ =∂ + × − + × − + × − =∂ + × −∑� �
(2.11)

l l l l2 2

1, , 1, ,

( ) ( ) [ ] ( ) [ ] ( ),
k k

x x c k x c k
k j n k j n

rv rv rv x c rv x cδ δ
= =

′∂ = ∂ + × − + ∂ × −∑ ∑� �  (2.12)

where 1 , , ( , )n jc a c b c a b= = ∈  is the joint point of the bar, and the jumps of the rigidity deflection lrv  and of 

the derivative l
x rv∂�  at the point ,a b  and jc  are given by expressions (2.6). 

 On the base of the formulas (2.9), (2.10), (2.12) and of the equations (2.7) we obtain 

l l l
1 1

2

1, , 1, ,

ˆ ˆ ˆ ˆˆ ˆ( ) ( ), ( ) ( ),

ˆ [ ] ( ) [ ] ( ).
k k

n n

x i i x i i
i i

x c k x c k
k j n k j n

T q P t x c M T m t x c

rv M rv x c rv x c

δ δ

δ δ
= =

= =

∂ + = − × − ∂ − = − × −

′∂ + = × − + ∂ × −

∑ ∑

∑ ∑ �
 (2.13)

 These equations represent the complete system of quasi-static equations of the transverse vibrations in 
the distributions space 2( )′ \D , for elastic bars with zero initial conditions and with one joint. 
 Eliminating from these equations the quantities T̂  and M̂ , we obtain 

l l l4

1 1 1, , 1, ,

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( ).
k k

n n

x i i i i c k x c k
i i k j n k j n

rv x t q P t x c m t x c rv x c rv x cδ δ δ δ
= = = =

′ ′′′ ′′∂ = + × − + × − + × − + ∂ × −∑ ∑ ∑ ∑ � (2.14)

 The equation (2.14) is the quasi-static equation in 2( )′ \D , with respect to the deflection rigidity 
l( , )rv x t , for the transverse vibrations of the elastic bars with zero initial conditions and with one joint. The 
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unknown of the equation is the deflection rigidity lrv  which expresses the change of the mechanical 
properties of the bar on the two segments [ , ]ja c  and [ , ], ( , )j jc b c a b∈ . 

 The jumps of the unknown lrv  and its derivative l
x rv∂�  at bar ends 1 , nc a c b= =  and in the joint jc  are 

incorporated into the equation. These jumps, like the quantity q̂ , can be interpreted as charge density due to 

the discontinuity points , , ja b c  of the deflection rigidity lrv  and its derivative. Also, the quasi-static equation 
(2.14) incorporates both the density q̂  of the distributed loads and the loads and moments densities, whether 

given or constraint, by the terms 
1

ˆ ( ) ( )
n

i i
i

P t x cδ
=

× −∑  and 
1

ˆ ( ) ( )
n

i i
i

m t x cδ
=

′× −∑ . 

 Consequently, the right side of equation (2.14), namely 

l l
1 1 1, , 1, ,

ˆ ˆˆ ˆ( , ) ( , ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( )
k k

n n

i i i i c k x c k
i i k j n k j n

Q x t q x t P t x c m t x c rv x c rv x cδ δ δ δ
= = = =

′ ′′′ ′′= + × − + × − + × − + ∂ × −∑ ∑ ∑ ∑ � (2.15)

is a load density which depends on the following factors: the density of the distributed loads q̂ ; the density 

of the concentrated forces 
1

ˆ ( ) ( )
n

i i
i

P t x cδ
=

× −∑ ; the density of the concentrated moments 
1

ˆ ( ) ( )
n

i i
i

m t x cδ
=

′× −∑ ; 

the jumps density of the deflection rigidity l
1, ,

[ ] ( )
k

c k
k j n

rv x cδ
=

′′′× −∑  at the points of discontinuity 

1 , ,n jc a c b c= = ; the jumps density of the derivative of the deflection rigidity l
1, ,

[ ] ( )
k

x c k
k j n

rv x cδ
=

′′∂ × −∑ �  at 

the points of discontinuity 1 , ,n jc a c b c= = . 

 The justification that the quantity Q̂  should be interpreted as a charge density, results from its 
dimensional equation. Because the force F  has the dimensional equation [ ] 2MLTF −= , it follows that the 

deflection rigidity lrv  and the density have the dimensions 

l [ ]1 2 4 4 2 2ˆML T L L ML T , MT .rv q− − − −  = = =   (2.16)

 Because the Dirac delta distribution ( ) ( ), 0,1,2,...p x c pδ − =  has the dimension ( ) 1[ ( )] Lp px cδ − −− = , 
we have the following dimensional equations 

[ ]

l l

2 1 2 2 2 2 2

4 2
4 2 4 2 3 2

ˆ ˆ( ) ( ) MLT L MT , ( ) ( ) ML T L MT ,

ML T[ ] ( ) ML T L MT , [ ] ( ) L MT .
Li i

i i i i

c i x c i

P t x c m t x c

rv x c rv x c

δ δ

δ δ

− − − − − −

−
− − − − −

  ′× − = ⋅ = × − = ⋅ = 

   ′′′ ′′× − = ⋅ = ∂ × − = ⋅ =   
�

 (2.17)

 From (2.16) and (2.17) it follows that the quantity Q̂  given by (2.15), representing the right side of the 
equation (2.14), has the dimension of a load density. 
 As a result, the quasi-static equation (2.14) can be written in compact form in the distributions space 

2( )′ \D , thus 

l4 ˆ( , ) ( , ).x rv x t Q x t∂ =  (2.18)

 PROPOSITION 2.2. Let be the function type distribution l 2( , ) ( )rv x t ′∈ \D , called the rigidity of the 
deflection 2ˆ ( )v ′∈ \D . Then, the quasi-static equation, in the distributions space 2( )′ \D , of the boundary-
value problems regarding the elastic bars with one joint is given by (2.18). The quantity 2ˆ ( )Q ′∈ \D  given 
by (2.15) is the resultant of the distributed forces densities, of the concentrated forces and moments as well 
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as of the densities jumps of lrv  and l
x rv∂�  corresponding to the discontinuity points 1 , nc a c b= =  and to the 

joint ( , )jc a b∈ . 

 Taking into account (2.6) we have l l[ ] [ ] ( , ), [ ] ( , ) ( ),
j j j

j

c c j x c x jc
rv r v c t rv r v c t H t = ∂ = ∂ 

� � because 

( 0, ) ( 0, )x j x jv c t v c t∂ + = ∂ −� � . 
 If jc  is the joint point but is not a material discontinuity point, then according to (2.6) we have 

l l[ ] [ ] ( , ) ( ) 0, ( ) ( ).
j j

j

j

c c j x j x cc
rv r v c t H t rv r c v H t   = = ∂ = ∂  

� �  (2.19)

 Generalization. The quasi-static equation (2.18) written for a single point of discontinuity (geometric 
and material) can be generalized to any number of points of discontinuity. 
 Let , ,..., , ( , )p qc c c c a bα β ∈  be points of geometric and material discontinuities. In this case the quasi-
static equation (2.18) takes the form 

l4 ˆ( , ) ( , ),x rv x t Q x t∗∂ =  (2.20)

where the load density ˆ ( , )Q x t∗  has the expression 

l l
1 1

1, , ,..., , ,

ˆ ˆˆ ˆ( , ) ( , ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) .
k

k

n n

i i i i
i i

c k x kck p q n

Q x t q x t P t x c m t x c

rv x c rv x c

∗

= =

=

′= + × − + × − +

  ′′′ ′′+ × − + ∂ × −   

∑ ∑

∑ �
α β

δ δ

δ δ
 (2.21)

 It follows that, the new charge density Q̂∗  is obtained from the density Q̂ , to which are added the densi-

ties of the jumps of the quantities lrv  and l
xrv∂� , corresponding to the discontinuity points ..., , , , ( , )p qc c c c a bα β ∈ . 

 As regards the rigidity r EI=  of the bar and the rigidity l( , )rv x t  of the deflection we have the 
expressions 

l

( , ), ( , ) [ , ) ,
, [ , ),

( , ), ( , ) [ , ) ,
, [ , ),
...................( ) ( , )

( , ), ( , ) [ , ) ,
, [ , ),

( , ), ( , ) [ ,
, [ , ],

q q p q
q p q

n n q
n q

r v x t x t a c
r x a c

r v x t x t c c
r x c c

r x rv x t
r v x t x t c c

r x c c
r v x t x t c

r x c b

+

+

+

∈ ×
∈

∈ × ∈= = ∈ × ∈
 ∈

∈

\
\

………… ……………
\

α α α
α α

β β α β
β α β

] ,
0, otherwise.

b +







 ×



\

 (2.22)

 The quantities lrv  and l
xrv∂�  have discontinuities of the first order at the points 1 , , ,..., , ,p q nc a c c c c b cα β= = . 

 We note that the quasi-static equation (2.20) contains as a particular case the bending equation of the 
elastic bars with geometric and material discontinuities. For this, it is sufficient for the loads ˆ( , ), ( )iq x t P t  and 

( )im t  to be taken under the form 0 0
0

( ), ( , ) [ , ] ,
ˆ ˆ( , ) ( ) ( ) ( ) const.,

0, othewise, i i
q x x t a b

q x t q x H t P t P+∈ ×
= = = =



\
 

0( ) const.i im t m= =  Consequently, the deflection ˆ( , )v x t  and the rigidity l( , )rv x t  of the deflection v̂  have the 
expressions 

l m0 0
0 0 0

( ), [ , ], ( ) ( ), ( , ) [ , ] ,
ˆ ˆ ˆ( , ) ( ) ( ), ( ) ( , ) ( ) ( )

0, otherwise, 0, othewise,
v x x a b r x v x x t a b

v x t v x H t v x rv x t rv x H t +∈ ∈ × 
= = = = 

 

\
(2.23)
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where 0 ( ), [ , ]v x x a b∈  is the deflection of the elastic bar produced by the action of the static loads 0 ( )q x , 
1

0 0 0
0 1 1

1

[ , ], ( ), , , ( , ), , .
n

i i i i n
i

x a b q C J P m J c c c a c b
−

+
=

∈ ∈ = = =∪  For the jumps l[ ]
i

crv  and l
i

x c
rv ∂ 

�  we have the 

expressions l m l m
0 0[ ] ( ) ( ), ( ) ( ).

i

i i i

c x xc c c
rv rv x H t rv rv x H t     = × ∂ = ∂ ×     

� �  Taking into account (2.20) and (2.21) 

we obtain 

m4
0 0

ˆ( ) ( ) ( ) ( )x rv x H t Q x H t∂ × = × , (2.24)

where 

m m0 0
0 0 0 0

1 1 1, , ,... , ,

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) .
i i

n n

i i i i i x ic ci i i p q n

Q x q x P x c m x c rv x c rv x c
α β

δ δ δ δ
= = =

    ′ ′′ ′′= + − + − + − + ∂ −     ∑ ∑ ∑ � (2.25)

 From (2.24) it follows 

m4
0 0

ˆ( ) ( ).x rv x Q x∂ =  (2.26)

 This equation is the generalized equation, in the distributions space ( )′ \D , of the bending of the 
elastic bars with geometric and material discontinuities. 

3. CONCLUSIONS 

 By defining the quantity lrv , called the rigidity of the deflection v̂ , the quasi-static equation written in 
distributions space 2( )′ \D  has a uniform and general form. It is distinguished by the feature of 
incorporating all types of loads that can act on the bar, as well as all the material, geometric and external 
discontinuities of the elastic bar. This concise writing of the quasi-static equation allows us to obtain general 
solution of the boundary value problem using the notion of fundamental solution of linear operators. 
 We note that the traditional approach to boundary problems can be applied only to portions of the bar 
where the loads and the mechanical properties of the bar have no discontinuities. In this way we obtain 
equations for each segment of the bar, with some joint conditions. This mode does not allow writing a single 
equation that incorporates the influence of geometrical, material and external discontinuities of the bar. 
 These show the effectiveness of the method using the distribution theory and interest in writing the 
quasi-static equation in a compact form in the space 2( )′ \D . 
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