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The reaction dynamics in eliminated channel can be described by the 'equation of channel state', an 
equation relating the channel reduced R-matrix element to channel logarithmic derivative. The 
'channel state equation' accounts for channel coupling resonances originating in bound or 
quasistationary channel states. The channel coupling results into 'direct compression' of channel 
resonance decay width and in a shift of resonance pole to real axis. Possible connections of channel 
resonances to 'channel coupling poles' and to K-matrix 'molecular resonances' are discussed. 
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1. INTRODUCTION 

The approach of multichannel problems in terms of effective operators is commonly used in Scattering 
Physics. The formal basis is, for example, Projector Method developed in Nuclear Physics by Feshbach 
(1962). The two projection operators are used to divide the set of scattering channels into two subsets, 
retained channels and eliminated channels. An effective Hamiltonian for retained channels is obtained; the 
original “bare" interaction is replaced by an effective one, taking into account eliminated channel. The 
method of channel elimination is historically related to Wigner Reduced R-Matrix (Lane and Thomas, 1958). 
The Reduced R-Matrix consists from a term describing the retained channels, uncoupled to eliminated ones, 
and an additional term which accounts for coupling between the two groups of channels. One can extend the 
concept of reduced operator to Collision Matrix too. 

The Reduced Collision Matrix, both for open or closed eliminated channel, depends on channel 
couplings as well as on phenomena developing in eliminated channel n, described by pole 1)1( −ℜ− nnn L , 
( nnℜ  – reduced R-matrix element, nL  – channel logarithmic derivative). The channel equation 

01 =ℜ− nnn L  does encompass both bound and quasistationary channel states in multichannel reactions. 
This channel state, subject of equation 01 =ℜ− nnn L , is responsible for 'channel resonances'; the 'channel 
resonances' are complementary to multichannel resonances described by R-matrix poles. The 'channel state 
equation' implies an interplay of inner configuration space parameters to those of channel space, resulting in 
specific properties as channel renormalization (threshold and channel coupling compressions) of the reduced 
width and threshold level shift. 

2. CHANNEL STATES AND CHANNEL RESONANCES 

The channel state is defined, (Robson and Lane, 1967; Lane, 1969), as a state with large overlap to 
only one channel; it could be either bound (below particle threshold) or quasistationary (above particle 
threshold) state. The R- matrix prototype of channel state is an R-matrix level with maximum reduced width; 
its decay reduced widths for complementary reaction channels are negligible. The R-matrix channel state in 
multichannel systems is subject of mixing to complementary states due to changes in interactions and in 
channel boundary conditions. The change in boundary conditions could result in that it asymptotes the pure 
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out wave at state energy, either real or complex. The state which asymptotes pure out wave is either bound or 
quasistationary state. It encompasses both inner configuration space and channel space properties. 

An example of channel (single particle) state, having a large overlap to channel wave function, is the 
bound state described in R- Matrix Theory (Lane and Thomas, 1958) by equation SR =−1  (S is logarithmic 
derivative at negative energy). Bound state in R-Matrix Theory is defined not by a R-matrix pole but rather 
by equation nnn SR =−1 , matching internal logarithmic derivative, 1−

nnR , to channel logarithmic derivative, nS , 
(Lane and Thomas, 1958). The shift-function nS  is logarithmic derivative of Whittaker function which, at its 
turn, is out wave at negative energy.  

Quasistationary state or 'radioactive state decaying in reaction channel' is corresponding at positive 
energy of the negative energy bound state. The quasistationary state is a pure out wave; the outgoing wave at 
infinity corresponds to quasistationary state decay (e.g. Sitenko, 1990). By analogy to bound state case, the 
R-matrix equation for quasistationary state should be >− = nnn LR 1 , with >

nL -channel logarithmic derivative for 

out wave. The logarithmic derivative of outgoing wave >
nL  is the corresponding, at positive energy, of the 

shift function  <= nn LS  defined for negative energy; the two functions are related by analytic continuation. 
As in case of bound states, this condition yields a set of eigenenergies which now are complex. The 
boundary conditions for quasistationary state are those of out waves at state energy λE , not at prescribed 
energy. The quasistationary level is no more defined by an R-matrix pole but rather by channel equation 
1 ( ) ( ) 0nn nR Lλ λ− =E E .  

The equation 01 =− nnnLR  defines pole of reduced R-matrix. We related it here to R-matrix approach 
to bound state and quasistationary state and to “channel state" defined by Lane. The equation 01 =ℜ− nnnL  
defines pole of reduced collision matrix. 

A pole at negative energy in collision matrix elements can be obtained by the condition 

nnnn SL ==ℜ <−1 , ( nS -shift function below threshold). In non-coupling limit the reduced R- matrix nnℜ  
reduces to single channel R-matrix element nnR . Or this is just bound state condition of the R-Matrix Theory, 

(Lane and Thomas, 1958, p. 280). The result 01 =−ℜ −
<nnn L  is an R-matrix proof that the bound state from a 

closed channel induces resonance in competing open channels of the multichannel system. 
A pole in reduced collision matrix at positive energy is obtained by a condition which is analog to the 

bound state case, >− =ℜ nnn L1 .  
The equation 

1 ( ) ( ) 0nLλ λ− ℜ =E E  (1) 

defines the channel (bound or quasistationary) state in case of multichannel system. Both ℜ  and L, energy 
dependent, are assumed to be analytically continuable from E to complex λE .  

The energy λE  of the n-channel state λ  in multichannel system, subject to equation 
1 ( ) ( ) 0nn nLλ λ− ℜ =E E , is complex even at negative energy due to complex-valued reduced-matrix element 

nnℜ ; the bound state becomes quasistationary due to coupling to open reaction channels. 
As physical examples of multichannel resonances we mention the 'channel' and 'inner' resonances in 

Multichannel Quantum Defect Theory. The resonances in electron multichannel scattering on atoms or ions 
originate either in multielectron excitations of electronic inner core or from excitation of Rydberg far-away 
located states; they are called “inner resonances” and “channel resonances”, respectively (Lane, 1986). 
Adopting this terminology we could have in mind another processes in Scattering Physics, as e.g. nucleon 
scattering on nuclei. The “inner” and “channel” resonances do correspond to “compound nucleus”- and to 
“single particle”-resonances, respectively. In the R-Matrix Theory, usually, one considers only compound 
system multichannel resonances described by poles of all R-matrix elements. The inner multichannel 
resonances are described by R-matrix poles while the channel resonances are related to channel's logarithmic 
derivative and reduced R- matrix element. 
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The 'channel state', subject of equation 1 0nn nR L− = , shares both channel )( nL  and compound system 
)( nnR  characteristics implying specific spectroscopic aspects. In next chapters one discusses multichannel 

atomic and nuclear phenomena in relation to the 'channel state equation'.  

3. CHANNEL RESONANCE RELATED TO POTENTIAL SCATTERING  

The level's (real or complex) energy, 0E , in absence of coupling to open channels, is defined by bound 
or quasistationary state condition 0)()( 0

1 =−−
0EREL nnn . 

The actual level's energy, defined by 0)()( 0
1 =ℜ−−

0EE nnnL , implies level shift and decay width with 
respect to same parameters of origin state. 

The channel state equations 
1

0 0( ) ( ) 0n nnL E R E− − =  (2) 

1
0 0( ) ( ) 0n nnL− − ℜ =E E  (3) 

inn nn n nRℜ = + ∆ + Γ  (4) 

result into resonance parameters as reduced width. The potential scattering means that )(ERnn  and )(Ennℜ  
are smooth functions on energies; the only function stronger dependent on energy in channel equations is the 
logarithmic derivative. 

The complex level shift is, in first order of Taylor expansion ( 0)()( 00
1 =−− EREL nnn ) 

0 2 '
0 0

( ) i ( )
(d d ) ( )

n n

n nn nn

E
L E R R E
∆ + Γ

− = −
+

0 0
0

E E
E . (5) 

The R-matrix 'reduced width' (Lane and Thomas, 1958) defined by equation 
' 2 2/nn nn nR R= γ  (6) 

results into 'renormalized reduced width' equation 
' 2 2

0( ) 1 1n n nL E + γ = ω  (7) 

2 2 ' 2 2
0(1 ( ) )n n n n n nL Eω = γ + γ = β γ . (8) 

The subunitary factor ( 0' >nL ) 

' 2
01 (1 ( ) )n n nL Eβ = + γ  (9) 

is R-matrix compression factor and it is effective near threshold ('threshold compression'). The logarithmic 
derivative is monotone increasing with energy, 0Re ' >nL  and 0Im >'

nL . The real and imaginary parts of  
R-matrix compression factor are positive and subunitary.  

The complex level-shift in terms of renormalized reduced width becomes 
2

0 2
0

( ( ) i ( ))
( )

n
n n

nn

E
R E
ω

− = − ∆ + Γ0 0 0E E E . (10) 

The decay width Im ( ) − 0E  component originating in channel coupling is 

2

0 0 2
0

Im( ) ( )
( )

n
n n

nn

G E
R E
ω

= − − = Γ 0E E . (11) 
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In this definition is assumed that logarithmic derivative )( 0ELn  is real (case of negative energy 00 <E or 
case of non-zero partial wave just above threshold 00 ≈E ). Observe that channel resonance width 

2 2( )n n nnRΓ ω0E  is factorised into a component depending on single channel parameters 2 2
n nnRω  and 

another one originating in channel couplings nΓ . 

In limit 0' ≈nnR  the renormalized reduced width becomes 2 1(d / d )n nL E −ω = . Far away from threshold 
const.nL ≈  and 2

nω  is very large; no resonance effect. The logarithmic derivative nL  is strongly varying 
near threshold and renormalized reduced width 2

nω  becomes smaller; a resonance effect can appear only near 
threshold. 

In statistical limit for background scattering (Lane and Thomas 1958) 
2Im ,n nn n DλΓ = ℜ = π < γ >  (12) 

where 2
n Dλ< γ >  is n-channel pole strength function, (D - mean level spacing). In the limit 0)( 0

' →ERnn  it 
results 2 1

0(d / d )n nL E −ω →  and 2 2 1 2 1 1
0 0 0/ (d / d ) ( )(d / d )n nn n nn n n nnR L E R L E L E R− − − −ω → =  

( )2 1
0 0/ ( ) / d / dn n n n nnG D L E L E R −= < γ > π × × . (13) 

Observe that quantity ( )0 0/ ( ) / d / dn nD L E L Eπ ×  is dimensionless and positive. In threshold limit 

0 0 0d / d ( ( ) (0)) / ( ) /n n n nL E L E L E L E E≅ − ∆ = ∆  it is just π  provided DE =∆ . Anyway the width nG  is 
proportional to averaged reduced width 2

n< γ >  and from here its physical significance. 
The implication of concomitant validity of equations for single channel case (2), and for multichannel 

case (3) was exploited in this paragraph, proving specific aspects of 'channel coupling resonance' which does 
not originate in a R-matrix level but rather in interplay of reduced R-matrix element with energy dependent 
channel logarithmic derivative. 

4. QUANTUM DEFECT CHANNEL RESONANCES 

The energy-dependent logarithmic derivative, with poles on real axis, is used in Atomic Physics for 
studying electron Rydberg states, at negative energy. The (reduced) R-matrix element of eliminated channel 
could be then considered as non-dependent on energy. By applying the channel state equation to electron 
Rydberg states, one should obtain basic results of Quantum Defect Theory. The electron (closed channel, 
n=e) logarithmic derivative is given by (Baz, Zeldovich and Perelomov, 1971; Landau and Lifschitz, 1980) 

2cot ( )eL E E< π= − π α −  ( 2 2 2 2
1 2 / 2e e mα = ; 1e , 2e  and m -channel particles electric charges and 

reduced mass). The Rydberg states, in absence of inner core, are defined by equation 01 =−
<eL . The level 

equation 1 0eL−
< =  results into energy of Rydberg states, defined with respect to πE  threshold 

energy, 2 2/nE E nπ − = α , with n an integer number. 
If the quantum defect, due to inner core, is taken into account then the principal quantum number n is 

replaced by effective quantum number ν  resulting into level-shift, which, at its turn, is related to quantum 
defect µ  by relation nν = − µ  (Seaton, 1983). The electron channel logarithmic derivative below threshold 
becomes cot coteL < = − πν = πµ . In non-coupling limit, the reduced R- matrix becomes the single channel R- 
matrix element eeR . The bound state condition, for one electron closed channel, according to 1 0e eeL R−

< − = , 
is now tan eeRπµ = ; it relates one-channel quantum defect, µ , to Rydberg channel R-matrix element, eeR . 

The coupling of the closed channel e to open channels results in the resonance equation  

tan 0eeπν + ℜ = , (14) 
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tan .eeπµ =ℜ  (15) 

It is Seaton theorem for a channel immersed in multichannel system, tan eeπµ =ℜ , or approximatively 

eeπµ ≈ℜ . These relations result into definition of complex effective quantum number nν = − µ  and of 
'complex quantum defect' Re Imiµ = µ + µ in terms of reduced R- matrix element. 

The Rydberg states, with energies 2 2/nE E nπ− = −α , from the electron closed channel will induce in 
the electron (elastic) scattering channel set of resonances shifted to new energy positions 2 2/Eν π= − α νE . 
The resonance equation, tan ( ) 0eenπ ν − + ℜ = , results in 

2
2 2

3
/ 2 ,nE E

nν π

α
= − α ν ≅ − µE  (16) 

with 2 2/nE E nπ= − α  (Seaton, 1983; see also Sobelman et al., 1981). The open channel resonance shift 
and width are determined by reduced R- matrix or complex quantum defect of Rydberg channel 

The decay width of Quantum Defect Channel Resonance is 
2

Im2
3 3

Im
– Im 2 2 ee

n nν ν

ℜµ α
= Γ = α =

π
 E . (17) 

The Rydberg channel logarithmic derivative 

cot ,eL< = − πν  (18) 

where / ( )E Eπν = α − , and ( ) .E E constπα = ν − = , results into, 

3

2 2

d d d 1 .
d d d sin 2

eL L
E E

ν π ν
= =

ν πν α
 (19) 

The decay width of Quantum Defect Channel Resonance in relation to potential scattering  

0 0 2

Im
– Im )

(d / d )
ee

e e

E
L E L−

ℜ
− = (E , (20) 

2 2 2 2

2 3 2 3

cot 2 cos
(d / d ) ( / sin )( / 2 )

e

e

L
L E

πν α πν
= =

π πν ν α ν π
, (21) 

2 2

0 0 2 3

Im 2 cos– Im ) Im .
(d / d )

ee
ee

e e

E
L E L −

ℜ α πν
− = = ℜ

ν π
 (E  (22) 

In the limit 2cos 1πν ≈ , or n=≈ integerν  (quasi-genuine Rydberg state), the two formulae of decay width, 
– Im ν E  and 0 0– Im( )E− E , do coincide. The limit nν ≈ or 00 E≅E  is congruent with validity of first-
order Taylor expansion of logarithmic derivative 0( )nL E . 

5. DIRECT (COUPLING) COMPRESSION OF CHANNEL RESONANCE 

There are two mechanisms of 'decay width compression' of channel resonance. One of them is 
'threshold compression' of decay width, (see formulae 8 and 9), mentioned by Lane (Lane, 1970) in relation 
to threshold effects originating in single particle resonances. Another one, mentioned with respect to 
'quasiresonant scattering', (Hategan, Graw and Comisel, 2005), is the 'direct (channel coupling) compression' 
of decay width due to channel couplings, even to interplay of channel resonance with background (potential) 
scattering. The last mechanism is here discussed for 'channel (coupling) resonances'. 
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The effective term of W  collision matrix, nNnnnNnN RLRW 11 )( −− ℜ−∝∆ , is resembling to additional 
term of Nℜ  reduced R-matrix. The only difference is the “bare” R-matrix element nnR  of eliminated  
n-channel is here replaced by its reduced (or effective) counterpart inn nn n nRℜ = + ∆ + Γ ; the n-channel 
reduced nnℜ -matrix element does include also rescattering effects from complementary open channels (N) 

1 1( ) .nn nn nN NN N NnR R R L R− −ℜ = − −  (23) 

The physical implication of the reduced R-matrix element nnℜ , instead of uncoupled n-channel R- matrix 

nnR , is obtained by writing the open retained channels component 11)( −−− NNN LR  in terms of the 0
NW  

collision matrix and 0
NT  transition matrix for open uncoupled channels, 0 01 2iN NW T= + . By using natural 

boundary conditions, iN NL P= , one obtains 1 1 1/ 2 0 1/ 2( ) ( i)NN N N N NR L P T P− −− = − . The reduced nnℜ -matrix 
element of the eliminated channel becomes,  

1/ 2 0 1/ 2(i )nn nn nN N N N NnR R P T P Rℜ = + −  (24) 

1/ 2 0 1/ 2Ren nN N N N NnR P T P R∆ = −  (25) 

1/ 2 0 1/ 2(1 Im ) .n nN N N N NnR P T P RΓ = −  (26) 

One has to remark that effective term of reduced R- matrix ('level's shift' n∆ and 'width' nΓ ) depends not only 

on coupling strength NnR  but also on rescattering 0
NT  in open channels. The imaginary component nΓ  of 

reduced R-matrix effective term has meaning of 'decay width'. (In chapter 3 on channel resonance one proves 
the relation (11) of the corresponding decay width to nΓ .) In following we discuss a specific property of the 
'decay width' related to coupling to and to rescattering in open complementary channels. The Unitarity 
Condition, aaaa TTT )(Im +=  results into 2

1
(1 Im ) (1 | | ) 1N

aa abb
T T

=
− = − <∑ . The corresponding component 

of the width is compressed by term 0 2
1 1

(1 | | )N N
na ab ana b

R T R
= =

−∑ ∑ . The width compression is mostly 

transparent for only one open channel a, 0 sin ai
aa aT e δ= δ  ( aδ -open channel scattering phase shift), 

2 2(1 | | ) cosn aa aTΓ ∝ − = δ  and 0 0 2/ Re /(1 | | ) tann n aa aa aT T∆ Γ = − − = − δ . 

6. DYNAMICAL ASPECTS OF CHANNEL COUPLING RESONANCES 

A bound or a quasistationary state, originating in an eliminated channel, induces a resonance in open 
competing channels. Both the width and level shift are determined by channels couplings and by rescattering 
in open channels. A channel resonance pole, defined by equation 01 =ℜ− nnn L  but not related to a specific 
R- matrix level, is subject of motion in complex energy plane, both by proximity threshold and esp by 
couplings to complementary reaction channels. A broad quasistationary state (from eliminated channel) 
results in a smaller width resonance which, in addition, is shifted to a lower energy. This result can be 
analytically demonstrated in terms of complex scattering length via its relation to channel reduced R- matrix 
element. 

Phenomena developing in threshold channel near zero-energy (bound-unbound transition zone) could 
be properly described in terms of Scattering Length, (e.g. Drukarev, 1978; Burke, 2011) . The scattering 
length na , for neutron s-wave, is defined in terms of nδ  scattering phase shift  

2
0cot 1/ 1/ 2 ,n nk a r kδ = − +  (27) 
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where k and 0r  are channel wave number and effective radius; the Scattering Length  defines the Scattering 
Amplitude just at threshold energy. On the other hand the s-wave nuclear scattering phase-shift nδ  is related 
to R-matrix element nnR  and penetration factor nP  through relation tan n n nnP Rδ = . In zero-energy limit the 
scattering length and nnR  matrix element, are related by nnn bRa −=  with b-channel radius. The relation is 

extended to complex phase-shift and reduced R-matrix element too, nnnn Pℜ=δ~tan . The complex scattering 
length 1 2in nna a a b= − = − ℜ  components are related to those of reduced R-matrix 
element, ( i )nn n n nRℜ = + ∆ + Γ , namely )(1 nnnRba ∆+−= , and 02 >Γ= nba . (The imaginary component 

0>Γn  is consequence of subunitary collision matrix element 1nnW <| | . The Optical Model Scattering 
Length has also a negative imaginary component too, 2ia− , with 02 >a  due to absorptive component of 
optical potential. The Optical Model pole is located at i /k a= , either in second or third wave number 
quadrant). The complex scattering length, 1 2ina a a= −  is an alternative way to take into account channels 
couplings. The complex scattering length is dependent on coupling and rescattering in open channel. 

The complex scattering length, in case of only one open channel o, depends on corresponding phase 
shift oδ  as 

1 2tan tan .n n n n o n oa a b a b a a= − ∆ = + Γ δ = + δ  (28) 

Therefore 1 na a>  provided tan 0oδ > ; also 2 na b= Γ  decreases as effect of coupling and rescattering in 
open channel. 

1 2
2 2

1 2

i
/ .

| | | |
a a

k i a
a a

+
= =

+
 (29) 

As 1a  increases and 2a  decreases one obtains that both 2
11 /Re aak ∝  and 2

12 /Im aak ∝  decrease so the 
pole is shifted to threshold. It is an analytical demonstration that channels couplings result into shift of the 
channel state pole to the real axis and into decrease of its decay width.  

In literature, (Badalyan et al., 1982), one reports on “channel coupling pole” observed in numerical 
experiments for multichannel scattering; a single channel pole may be driven to physical region of the 
complex energy plane when channel coupling becomes effective. The “channel coupling resonances” and 
multichannel resonances originating in quasistationary or bound channel states have similar width property. 

This approach to channel (also to inner) resonances can be compared to K-matrix formalism for 
resonances (Chung et al., 1995). There are two types of resonances which differ in dynamical character; they 
are parameterized, according to K-matrix, in two distinct forms. Resonances can arise from strongly varying 
K-matrix elements (pole). These 'normal' resonances correspond to dynamical sources at the constituent 
level; in our case they correspond to electron 'inner' resonances or 'compound nucleus' resonances. 
Resonances can appear also from constant K-matrix element provided the energy variation is supplied by 
phase space. These 'molecular' resonances are assumed to arise from couplings in the reaction channels; in 
our case the reduced R-matrix element nnℜ  does include couplings to complementary channels. The 

'channel' resonance, described by channel equation 01 =−ℜ −
nnn L , originates in constant reduced R-matrix 

element and in energy dependent logarithmic derivative. The energy variation of channel logarithmic 
derivative is implied in realization of the quasistationary state condition: 1−=ℜ nnn L . 

7. CONCLUSIONS 

The concept of reduced or effective operator, previously designed for R-Matrix, (or K-Matrix), can be 
extended to Collision/Scattering Matrix. The reason is the Collision Matrix is a primary concept in Scattering 
Physics, because it is associated with the whole Dynamics of Scattering Process. The Reduced Collision 
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Matrix consists from Collision Matrix of 'bare' retained channels (uncoupled to eliminated ones) and from an 
effective term representing the effect of eliminated channel(s) on the retained ones. The effective term 
contains the retained-eliminated channels couplings as well as a term related to dynamics of collision process 
in the eliminated channel n. This last term has the form 11 )( −− ℜ− nnnL  with nL  as channel logarithmic 

derivative and nnℜ  as channel reduced R-matrix element. Observe that in the decoupling limit the equation 

01 =ℜ−−
nnnL describes either the bound state (below n- channel threshold) or quasistationary state (above 

n-channel threshold). The bound or quasistationary state is not more described by an R-matrix pole but rather 
by channel state equation 01 =− nnn LR . If the eliminated channel is coupled to retained ones the equation 
becomes 01 =ℜ− nnn L . It is the equation which is applied here to describe different atomic or nuclear 
phenomena: Coupled Channel Resonances.  

The channel state equation 01 =ℜ− eee L  (e-Rydberg channel) is basis for derivation of Complex 
Quantum Defect and MQD Channel Resonances. The derivations require only the explicit form of Rydberg 
channel logarithmic derivative.  

A bound (closed eliminated channel) or a quasistationary (open eliminated channel) state do induce 
channel resonances in observed reaction channels; they are Channel Coupling Resonances. The reduced 
widths of channel resonances are subject of two mechanisms of compression: the R-Matrix Compression 
factor, effective only near threshold, and Direct (Coupling) Compression factor due to channels couplings. 
The last mechanism could be put into correspondence with 'Molecular Resonances' or with 'Channel 
Coupling Pole' observed in numerical experiments for multichannel scattering: a single channel pole may be 
driven to physical region of the complex energy plane if channel couplings become effective. 
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